


Остановите войну!
for scientists:
Martin T. Vechev
Person information

- affiliation: ETH Zürich, Department of Computer Science, Switzerland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j12]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL): 1-33 (2022) - [c126]Marc Fischer, Christian Sprecher, Dimitar I. Dimitrov, Gagandeep Singh, Martin T. Vechev:
Shared Certificates for Neural Network Verification. CAV (1) 2022: 127-148 - [c125]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. ICML 2022: 8559-8580 - [c124]Pesho Ivanov, Benjamin Bichsel, Martin T. Vechev:
Fast and Optimal Sequence-to-Graph Alignment Guided by Seeds. RECOMB 2022: 306-325 - [c123]Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, Martin T. Vechev:
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. IEEE Symposium on Security and Privacy 2022: 179-197 - [i38]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Jovanovic, Martin T. Vechev:
LAMP: Extracting Text from Gradients with Language Model Priors. CoRR abs/2202.08827 (2022) - [i37]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Robust and Accurate - Compositional Architectures for Randomized Smoothing. CoRR abs/2204.00487 (2022) - [i36]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. CoRR abs/2204.10049 (2022) - [i35]Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, Martin T. Vechev:
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. CoRR abs/2205.00263 (2022) - [i34]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
(De-)Randomized Smoothing for Decision Stump Ensembles. CoRR abs/2205.13909 (2022) - [i33]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Konstantinov, Martin T. Vechev:
Data Leakage in Federated Averaging. CoRR abs/2206.12395 (2022) - 2021
- [c122]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. AAAI 2021: 2504-2513 - [c121]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian Dan, Martin T. Vechev:
Scalable Polyhedral Verification of Recurrent Neural Networks. CAV (1) 2021: 225-248 - [c120]Jingxuan He, Gishor Sivanrupan, Petar Tsankov, Martin T. Vechev:
Learning to Explore Paths for Symbolic Execution. CCS 2021: 2526-2540 - [c119]Tobias Lorenz, Anian Ruoss, Mislav Balunovic, Gagandeep Singh, Martin T. Vechev:
Robustness Certification for Point Cloud Models. ICCV 2021: 7588-7598 - [c118]Mark Niklas Müller, Mislav Balunovic, Martin T. Vechev:
Certify or Predict: Boosting Certified Robustness with Compositional Architectures. ICLR 2021 - [c117]Berkay Berabi, Jingxuan He, Veselin Raychev, Martin T. Vechev:
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer. ICML 2021: 780-791 - [c116]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. ICML 2021: 3340-3351 - [c115]Miguel Zamora, Momchil Peychev, Sehoon Ha, Martin T. Vechev, Stelian Coros:
PODS: Policy Optimization via Differentiable Simulation. ICML 2021: 7805-7817 - [c114]Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Scaling Polyhedral Neural Network Verification on GPUs. MLSys 2021 - [c113]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. NeurIPS 2021: 26858-26870 - [c112]Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Metha: Network Verifiers Need To Be Correct Too! NSDI 2021: 99-113 - [c111]Anouk Paradis, Benjamin Bichsel, Samuel Steffen, Martin T. Vechev:
Unqomp: synthesizing uncomputation in Quantum circuits. PLDI 2021: 222-236 - [c110]Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev:
Learning to find naming issues with big code and small supervision. PLDI 2021: 296-311 - [c109]Gregory Bonaert
, Dimitar I. Dimitrov
, Maximilian Baader
, Martin T. Vechev:
Fast and precise certification of transformers. PLDI 2021: 466-481 - [c108]Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, Martin T. Vechev:
Robustness certification with generative models. PLDI 2021: 1141-1154 - [c107]Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev:
DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers. IEEE Symposium on Security and Privacy 2021: 391-409 - [i32]Nikola Jovanovic, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Certified Defenses: Why Tighter Relaxations May Hurt Training? CoRR abs/2102.06700 (2021) - [i31]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. CoRR abs/2102.11860 (2021) - [i30]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Precise Multi-Neuron Abstractions for Neural Network Certification. CoRR abs/2103.03638 (2021) - [i29]Tobias Lorenz, Anian Ruoss, Mislav Balunovic, Gagandeep Singh, Martin T. Vechev:
Robustness Certification for Point Cloud Models. CoRR abs/2103.16652 (2021) - [i28]Mislav Balunovic, Anian Ruoss, Martin T. Vechev:
Fair Normalizing Flows. CoRR abs/2106.05937 (2021) - [i27]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer
, Martin T. Vechev:
Boosting Randomized Smoothing with Variance Reduced Classifiers. CoRR abs/2106.06946 (2021) - [i26]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. CoRR abs/2107.00228 (2021) - [i25]Christian Sprecher, Marc Fischer, Dimitar I. Dimitrov, Gagandeep Singh, Martin T. Vechev:
Shared Certificates for Neural Network Verification. CoRR abs/2109.00542 (2021) - [i24]Mark Niklas Müller, Robin Staab, Marc Fischer, Martin T. Vechev:
Effective Certification of Monotone Deep Equilibrium Models. CoRR abs/2110.08260 (2021) - [i23]Mislav Balunovic, Dimitar I. Dimitrov, Robin Staab, Martin T. Vechev:
Bayesian Framework for Gradient Leakage. CoRR abs/2111.04706 (2021) - [i22]Momchil Peychev, Anian Ruoss, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Latent Space Smoothing for Individually Fair Representations. CoRR abs/2111.13650 (2021) - [i21]Matthew Mirman, Maximilian Baader, Martin T. Vechev:
The Fundamental Limits of Interval Arithmetic for Neural Networks. CoRR abs/2112.05235 (2021) - 2020
- [c106]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. ICLR 2020 - [c105]Mislav Balunovic, Martin T. Vechev:
Adversarial Training and Provable Defenses: Bridging the Gap. ICLR 2020 - [c104]Larissa Laich, Pavol Bielik, Martin T. Vechev:
Guiding Program Synthesis by Learning to Generate Examples. ICLR 2020 - [c103]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. ICML 2020: 896-907 - [c102]Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. ICML 2020: 2356-2365 - [c101]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certified Defense to Image Transformations via Randomized Smoothing. NeurIPS 2020 - [c100]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. NeurIPS 2020 - [c99]Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin T. Vechev:
Config2Spec: Mining Network Specifications from Network Configurations. NSDI 2020: 969-984 - [c98]Benjamin Bichsel, Maximilian Baader, Timon Gehr, Martin T. Vechev:
Silq: a high-level quantum language with safe uncomputation and intuitive semantics. PLDI 2020: 286-300 - [c97]Timon Gehr, Samuel Steffen, Martin T. Vechev:
λPSI: exact inference for higher-order probabilistic programs. PLDI 2020: 883-897 - [c96]Jingxuan He, Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Learning fast and precise numerical analysis. PLDI 2020: 1112-1127 - [c95]Pesho Ivanov
, Benjamin Bichsel
, Harun Mustafa
, André Kahles
, Gunnar Rätsch
, Martin T. Vechev
:
AStarix: Fast and Optimal Sequence-to-Graph Alignment. RECOMB 2020: 104-119 - [c94]Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Probabilistic Verification of Network Configurations. SIGCOMM 2020: 750-764 - [c93]Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, Martin T. Vechev:
VerX: Safety Verification of Smart Contracts. IEEE Symposium on Security and Privacy 2020: 1661-1677 - [i20]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. CoRR abs/2002.04694 (2020) - [i19]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. CoRR abs/2002.10312 (2020) - [i18]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certification of Semantic Perturbations via Randomized Smoothing. CoRR abs/2002.12463 (2020) - [i17]Raphaël Dang-Nhu, Gagandeep Singh
, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. CoRR abs/2003.03778 (2020) - [i16]Matthew Mirman, Timon Gehr, Martin T. Vechev:
Robustness Certification of Generative Models. CoRR abs/2004.14756 (2020) - [i15]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian Dan, Martin T. Vechev:
Fast and Effective Robustness Certification for Recurrent Neural Networks. CoRR abs/2005.13300 (2020) - [i14]Christoph Müller, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020) - [i13]Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Scalable Inference of Symbolic Adversarial Examples. CoRR abs/2007.12133 (2020) - [i12]Nick Baumann, Samuel Steffen, Benjamin Bichsel, Petar Tsankov, Martin T. Vechev:
zkay v0.2: Practical Data Privacy for Smart Contracts. CoRR abs/2009.01020 (2020) - [i11]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. CoRR abs/2009.09318 (2020)
2010 – 2019
- 2019
- [j11]Veselin Raychev, Martin T. Vechev, Andreas Krause
:
Predicting program properties from 'big code'. Commun. ACM 62(3): 99-107 (2019) - [j10]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL): 41:1-41:30 (2019) - [c92]Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, Martin T. Vechev:
Learning to Fuzz from Symbolic Execution with Application to Smart Contracts. CCS 2019: 531-548 - [c91]Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, Martin T. Vechev:
zkay: Specifying and Enforcing Data Privacy in Smart Contracts. CCS 2019: 1759-1776 - [c90]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
Boosting Robustness Certification of Neural Networks. ICLR (Poster) 2019 - [c89]Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin T. Vechev:
DL2: Training and Querying Neural Networks with Logic. ICML 2019: 1931-1941 - [c88]Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin T. Vechev:
Beyond the Single Neuron Convex Barrier for Neural Network Certification. NeurIPS 2019: 15072-15083 - [c87]Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Certifying Geometric Robustness of Neural Networks. NeurIPS 2019: 15287-15297 - [c86]Jan Eberhardt, Samuel Steffen, Veselin Raychev, Martin T. Vechev:
Unsupervised learning of API aliasing specifications. PLDI 2019: 745-759 - [c85]Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, Martin T. Vechev:
Scalable taint specification inference with big code. PLDI 2019: 760-774 - [i10]Matthew Mirman, Gagandeep Singh, Martin T. Vechev:
A Provable Defense for Deep Residual Networks. CoRR abs/1903.12519 (2019) - [i9]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. CoRR abs/1909.13846 (2019) - [i8]Marc Fischer
, Matthew Mirman, Steven Stalder, Martin T. Vechev:
Online Robustness Training for Deep Reinforcement Learning. CoRR abs/1911.00887 (2019) - [i7]Philippe Schlattner, Pavol Bielik, Martin T. Vechev:
Learning to Infer User Interface Attributes from Images. CoRR abs/1912.13243 (2019) - 2018
- [j9]Pavol Bielik, Marc Fischer, Martin T. Vechev:
Robust relational layout synthesis from examples for Android. Proc. ACM Program. Lang. 2(OOPSLA): 156:1-156:29 (2018) - [j8]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
A practical construction for decomposing numerical abstract domains. Proc. ACM Program. Lang. 2(POPL): 55:1-55:28 (2018) - [j7]Dimitar K. Dimitrov, Martin T. Vechev, Vivek Sarkar:
Race Detection in Two Dimensions. ACM Trans. Parallel Comput. 4(4): 19:1-19:22 (2018) - [c84]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Fast Numerical Program Analysis with Reinforcement Learning. CAV (1) 2018: 211-229 - [c83]Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, Martin T. Vechev:
Securify: Practical Security Analysis of Smart Contracts. CCS 2018: 67-82 - [c82]Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, Martin T. Vechev:
DP-Finder: Finding Differential Privacy Violations by Sampling and Optimization. CCS 2018: 508-524 - [c81]Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, Martin T. Vechev:
Debin: Predicting Debug Information in Stripped Binaries. CCS 2018: 1667-1680 - [c80]Benjamin Bichsel, Timon Gehr, Martin T. Vechev:
Fine-Grained Semantics for Probabilistic Programs. ESOP 2018: 145-185 - [c79]Matthew Mirman, Dimitar K. Dimitrov, Pavle Djordjevic, Timon Gehr, Martin T. Vechev:
Training Neural Machines with Trace-Based Supervision. ICML 2018: 3566-3574 - [c78]Matthew Mirman, Timon Gehr, Martin T. Vechev:
Differentiable Abstract Interpretation for Provably Robust Neural Networks. ICML 2018: 3575-3583 - [c77]Mislav Balunovic, Pavol Bielik, Martin T. Vechev:
Learning to Solve SMT Formulas. NeurIPS 2018: 10338-10349 - [c76]Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin T. Vechev:
Fast and Effective Robustness Certification. NeurIPS 2018: 10825-10836 - [c75]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion. NSDI 2018: 579-594 - [c74]Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin T. Vechev:
Net2Text: Query-Guided Summarization of Network Forwarding Behaviors. NSDI 2018: 609-623 - [c73]Lucas Brutschy, Dimitar K. Dimitrov, Peter Müller, Martin T. Vechev:
Static serializability analysis for causal consistency. PLDI 2018: 90-104 - [c72]Rumen Paletov, Petar Tsankov, Veselin Raychev, Martin T. Vechev:
Inferring crypto API rules from code changes. PLDI 2018: 450-464 - [c71]Marco F. Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin T. Vechev, Vikash K. Mansinghka:
Incremental inference for probabilistic programs. PLDI 2018: 571-585 - [c70]Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, Martin T. Vechev:
Bayonet: probabilistic inference for networks. PLDI 2018: 586-602 - [c69]Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Practical concurrent traversals in search trees. PPoPP 2018: 207-218 - [c68]Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, Martin T. Vechev:
AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. IEEE Symposium on Security and Privacy 2018: 3-18 - [c67]Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, Martin T. Vechev:
NetHide: Secure and Practical Network Topology Obfuscation. USENIX Security Symposium 2018: 693-709 - [c66]Cedric Baumann, Andrei Marian Dan, Yuri Meshman, Torsten Hoefler, Martin T. Vechev:
Automatic Verification of RMA Programs via Abstraction Extrapolation. VMCAI 2018: 47-70 - [i6]Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli, Martin T. Vechev:
Securify: Practical Security Analysis of Smart Contracts. CoRR abs/1806.01143 (2018) - 2017
- [j6]Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, Eran Yahav:
Effective abstractions for verification under relaxed memory models. Comput. Lang. Syst. Struct. 47: 62-76 (2017) - [c65]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Learning a Static Analyzer from Data. CAV (1) 2017: 233-253 - [c64]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Network-Wide Configuration Synthesis. CAV (2) 2017: 261-281 - [c63]Andrei Marian Dan, Manu Sridharan
, Satish Chandra, Jean-Baptiste Jeannin, Martin T. Vechev:
Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts. CAV (2) 2017: 521-541 - [c62]Martin Kucera, Petar Tsankov, Timon Gehr, Marco Guarnieri
, Martin T. Vechev:
Synthesis of Probabilistic Privacy Enforcement. CCS 2017: 391-408 - [c61]Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Learning Disjunctions of Predicates. COLT 2017: 346-369 - [c60]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Program Synthesis for Character Level Language Modeling. ICLR (Poster) 2017 - [c59]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Fast polyhedra abstract domain. POPL 2017: 46-59 - [c58]Lucas Brutschy, Dimitar K. Dimitrov, Peter Müller, Martin T. Vechev:
Serializability for eventual consistency: criterion, analysis, and applications. POPL 2017: 458-472 - [c57]Roman May, Ahmed El-Hassany, Laurent Vanbever, Martin T. Vechev:
BigBug: Practical Concurrency Analysis for SDN. SOSR 2017: 88-94 - [e2]Albert Cohen, Martin T. Vechev:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. ACM 2017, ISBN 978-1-4503-4988-8 [contents] - [i5]Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Learning Disjunctions of Predicates. CoRR abs/1706.05070 (2017) - 2016
- [j5]Martin T. Vechev, Eran Yahav:
Programming with "Big Code". Found. Trends Program. Lang. 3(4): 231-284 (2016) - [c56]Petar Tsankov, Marco Pistoia, Omer Tripp, Martin T. Vechev, Pietro Ferrara:
FASE: functionality-aware security enforcement. ACSAC 2016: 471-483 - [c55]Timon Gehr, Sasa Misailovic, Martin T. Vechev:
PSI: Exact Symbolic Inference for Probabilistic Programs. CAV (1) 2016: 62-83 - [c54]Benjamin Bichsel, Veselin Raychev, Petar Tsankov, Martin T. Vechev:
Statistical Deobfuscation of Android Applications. CCS 2016: 343-355 - [c53]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
PHOG: Probabilistic Model for Code. ICML 2016: 2933-2942 - [c52]Andrei Marian Dan, Patrick Lam, Torsten Hoefler, Martin T. Vechev:
Modeling and analysis of remote memory access programming. OOPSLA 2016: 129-144 - [c51]Veselin Raychev, Pavol Bielik, Martin T. Vechev:
Probabilistic model for code with decision trees. OOPSLA 2016: 731-747 - [c50]Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, Martin T. Vechev:
SDNRacer: concurrency analysis for software-defined networks. PLDI 2016: 402-415 - [c49]Veselin Raychev, Pavol Bielik, Martin T. Vechev, Andreas Krause:
Learning programs from noisy data. POPL 2016: 761-774 - [i4]Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Optimal Learning of Specifications from Examples. CoRR abs/1608.00089 (2016) - [i3]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Learning a Static Analyzer from Data. CoRR abs/1611.01752 (2016) - [i2]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Network-wide Configuration Synthesis. CoRR abs/1611.02537 (2016) - 2015
- [c48]Timon Gehr, Dimitar K. Dimitrov, Martin T. Vechev:
Learning Commutativity Specifications. CAV (1) 2015: 307-323 - [c47]Jibin Ou, Martin T. Vechev, Otmar Hilliges:
An Interactive System for Data Structure Development. CHI 2015: 3053-3062 - [c46]Casper Svenning Jensen, Anders Møller
, Veselin Raychev, Dimitar K. Dimitrov, Martin T. Vechev:
Stateless model checking of event-driven applications. OOPSLA 2015: 57-73 - [c45]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Scalable race detection for Android applications. OOPSLA 2015: 332-348 - [c44]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Making numerical program analysis fast. PLDI 2015: 303-313 - [c43]Veselin Raychev, Martin T. Vechev, Andreas Krause:
Predicting Program Properties from "Big Code". POPL 2015: 111-124 - [c42]