


Остановите войну!
for scientists:


default search action
Martin T. Vechev
Person information

- affiliation: ETH Zürich, Department of Computer Science, Switzerland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j18]Martin T. Vechev:
Technical Perspective: Beautiful Symbolic Abstractions for Safe and Secure Machine Learning. Commun. ACM 66(2): 104 (2023) - [j17]Mark Niklas Müller
, Marc Fischer
, Robin Staab
, Martin T. Vechev
:
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks. Proc. ACM Program. Lang. 7(PLDI): 786-810 (2023) - [j16]Luca Beurer-Kellner
, Marc Fischer
, Martin T. Vechev
:
Prompting Is Programming: A Query Language for Large Language Models. Proc. ACM Program. Lang. 7(PLDI): 1946-1969 (2023) - [c144]Jingxuan He
, Martin T. Vechev
:
Large Language Models for Code: Security Hardening and Adversarial Testing. CCS 2023: 1865-1879 - [c143]Johan Lokna
, Anouk Paradis
, Dimitar I. Dimitrov
, Martin T. Vechev
:
Group and Attack: Auditing Differential Privacy. CCS 2023: 1905-1918 - [c142]Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman Goel, Elliott Ash, Martin T. Vechev:
Human-Guided Fair Classification for Natural Language Processing. ICLR 2023 - [c141]Mark Niklas Müller, Franziska Eckert, Marc Fischer, Martin T. Vechev:
Certified Training: Small Boxes are All You Need. ICLR 2023 - [c140]Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Efficient Certified Training and Robustness Verification of Neural ODEs. ICLR 2023 - [c139]Nikola Jovanovic, Mislav Balunovic, Dimitar Iliev Dimitrov, Martin T. Vechev:
FARE: Provably Fair Representation Learning with Practical Certificates. ICML 2023: 15401-15420 - [c138]Mark Vero, Mislav Balunovic, Dimitar Iliev Dimitrov, Martin T. Vechev:
TabLeak: Tabular Data Leakage in Federated Learning. ICML 2023: 35051-35083 - [i59]Jingxuan He, Martin T. Vechev:
Controlling Large Language Models to Generate Secure and Vulnerable Code. CoRR abs/2302.05319 (2023) - [i58]Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Efficient Certified Training and Robustness Verification of Neural ODEs. CoRR abs/2303.05246 (2023) - [i57]Benjamin Bichsel, Maximilian Baader, Anouk Paradis, Martin T. Vechev:
Abstraqt: Analysis of Quantum Circuits via Abstract Stabilizer Simulation. CoRR abs/2304.00921 (2023) - [i56]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
TAPS: Connecting Certified and Adversarial Training. CoRR abs/2305.04574 (2023) - [i55]Niels Mündler, Jingxuan He, Slobodan Jenko, Martin T. Vechev:
Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation. CoRR abs/2305.15852 (2023) - [i54]Florian E. Dorner, Nikola Konstantinov, Georgi Pashaliev, Martin T. Vechev:
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization. CoRR abs/2305.16272 (2023) - [i53]Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanovic, Martin T. Vechev:
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning. CoRR abs/2306.03013 (2023) - [i52]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Understanding Certified Training with Interval Bound Propagation. CoRR abs/2306.10426 (2023) - [i51]Mark Vero, Mislav Balunovic, Martin T. Vechev:
Programmable Synthetic Tabular Data Generation. CoRR abs/2307.03577 (2023) - [i50]Robin Staab, Mark Vero, Mislav Balunovic, Martin T. Vechev:
Beyond Memorization: Violating Privacy Via Inference with Large Language Models. CoRR abs/2310.07298 (2023) - [i49]Maximilian Baader, Mark Niklas Müller, Yuhao Mao, Martin T. Vechev:
Expressivity of ReLU-Networks under Convex Relaxations. CoRR abs/2311.04015 (2023) - [i48]Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Prompt Sketching for Large Language Models. CoRR abs/2311.04954 (2023) - [i47]Robin Staab, Nikola Jovanovic, Mislav Balunovic, Martin T. Vechev:
From Principle to Practice: Vertical Data Minimization for Machine Learning. CoRR abs/2311.10500 (2023) - [i46]Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, Martin T. Vechev:
Controlled Text Generation via Language Model Arithmetic. CoRR abs/2311.14479 (2023) - 2022
- [j15]Mark Niklas Müller, Gleb Makarchuk
, Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL): 1-33 (2022) - [j14]Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Konstantinov, Martin T. Vechev:
Data Leakage in Federated Averaging. Trans. Mach. Learn. Res. 2022 (2022) - [j13]Nikola Jovanovic, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
On the Paradox of Certified Training. Trans. Mach. Learn. Res. 2022 (2022) - [j12]Matthew Mirman, Maximilian Baader, Martin T. Vechev:
The Fundamental Limits of Neural Networks for Interval Certified Robustness. Trans. Mach. Learn. Res. 2022 (2022) - [c137]Marc Fischer
, Christian Sprecher, Dimitar I. Dimitrov
, Gagandeep Singh
, Martin T. Vechev
:
Shared Certificates for Neural Network Verification. CAV (1) 2022: 127-148 - [c136]Nikola Jovanovic, Marc Fischer, Samuel Steffen, Martin T. Vechev:
Private and Reliable Neural Network Inference. CCS 2022: 1663-1677 - [c135]Samuel Steffen, Benjamin Bichsel, Martin T. Vechev:
Zapper: Smart Contracts with Data and Identity Privacy. CCS 2022: 2735-2749 - [c134]Momchil Peychev
, Anian Ruoss
, Mislav Balunovic
, Maximilian Baader
, Martin T. Vechev
:
Latent Space Smoothing for Individually Fair Representations. ECCV (13) 2022: 535-554 - [c133]Mislav Balunovic, Dimitar Iliev Dimitrov, Robin Staab, Martin T. Vechev:
Bayesian Framework for Gradient Leakage. ICLR 2022 - [c132]Mislav Balunovic, Anian Ruoss, Martin T. Vechev:
Fair Normalizing Flows. ICLR 2022 - [c131]Dimitar Iliev Dimitrov, Gagandeep Singh
, Timon Gehr, Martin T. Vechev:
Provably Robust Adversarial Examples. ICLR 2022 - [c130]Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, Martin T. Vechev:
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. ICLR 2022 - [c129]Miklós Z. Horváth
, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Boosting Randomized Smoothing with Variance Reduced Classifiers. ICLR 2022 - [c128]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. ICML 2022: 8559-8580 - [c127]Mislav Balunovic, Dimitar I. Dimitrov, Nikola Jovanovic, Martin T. Vechev:
LAMP: Extracting Text from Gradients with Language Model Priors. NeurIPS 2022 - [c126]Luca Beurer-Kellner, Martin T. Vechev, Laurent Vanbever, Petar Velickovic:
Learning to Configure Computer Networks with Neural Algorithmic Reasoning. NeurIPS 2022 - [c125]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
(De-)Randomized Smoothing for Decision Stump Ensembles. NeurIPS 2022 - [c124]Pesho Ivanov, Benjamin Bichsel, Martin T. Vechev:
Fast and Optimal Sequence-to-Graph Alignment Guided by Seeds. RECOMB 2022: 306-325 - [c123]Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, Martin T. Vechev:
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. SP 2022: 179-197 - [i45]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Jovanovic, Martin T. Vechev:
LAMP: Extracting Text from Gradients with Language Model Priors. CoRR abs/2202.08827 (2022) - [i44]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Robust and Accurate - Compositional Architectures for Randomized Smoothing. CoRR abs/2204.00487 (2022) - [i43]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. CoRR abs/2204.10049 (2022) - [i42]Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, Martin T. Vechev:
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. CoRR abs/2205.00263 (2022) - [i41]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
(De-)Randomized Smoothing for Decision Stump Ensembles. CoRR abs/2205.13909 (2022) - [i40]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Konstantinov, Martin T. Vechev:
Data Leakage in Federated Averaging. CoRR abs/2206.12395 (2022) - [i39]Mark Vero, Mislav Balunovic, Dimitar I. Dimitrov, Martin T. Vechev:
Data Leakage in Tabular Federated Learning. CoRR abs/2210.01785 (2022) - [i38]Mark Niklas Müller, Franziska Eckert, Marc Fischer, Martin T. Vechev:
Certified Training: Small Boxes are All You Need. CoRR abs/2210.04871 (2022) - [i37]Nikola Jovanovic, Mislav Balunovic, Dimitar I. Dimitrov, Martin T. Vechev:
FARE: Provably Fair Representation Learning. CoRR abs/2210.07213 (2022) - [i36]Nikola Jovanovic, Marc Fischer, Samuel Steffen, Martin T. Vechev:
Private and Reliable Neural Network Inference. CoRR abs/2210.15614 (2022) - [i35]Luca Beurer-Kellner, Martin T. Vechev, Laurent Vanbever, Petar Velickovic:
Learning to Configure Computer Networks with Neural Algorithmic Reasoning. CoRR abs/2211.01980 (2022) - [i34]Luca Beurer-Kellner, Marc Fischer, Martin T. Vechev:
Prompting Is Programming: A Query Language For Large Language Models. CoRR abs/2212.06094 (2022) - [i33]Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman Goel, Elliott Ash, Martin T. Vechev:
Human-Guided Fair Classification for Natural Language Processing. CoRR abs/2212.10154 (2022) - 2021
- [c122]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. AAAI 2021: 2504-2513 - [c121]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh
, Andrei Marian Dan, Martin T. Vechev:
Scalable Polyhedral Verification of Recurrent Neural Networks. CAV (1) 2021: 225-248 - [c120]Jingxuan He
, Gishor Sivanrupan, Petar Tsankov, Martin T. Vechev:
Learning to Explore Paths for Symbolic Execution. CCS 2021: 2526-2540 - [c119]Tobias Lorenz, Anian Ruoss, Mislav Balunovic, Gagandeep Singh
, Martin T. Vechev:
Robustness Certification for Point Cloud Models. ICCV 2021: 7588-7598 - [c118]Mark Niklas Müller, Mislav Balunovic, Martin T. Vechev:
Certify or Predict: Boosting Certified Robustness with Compositional Architectures. ICLR 2021 - [c117]Berkay Berabi, Jingxuan He, Veselin Raychev, Martin T. Vechev:
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer. ICML 2021: 780-791 - [c116]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. ICML 2021: 3340-3351 - [c115]Miguel Zamora, Momchil Peychev, Sehoon Ha, Martin T. Vechev, Stelian Coros:
PODS: Policy Optimization via Differentiable Simulation. ICML 2021: 7805-7817 - [c114]Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Scaling Polyhedral Neural Network Verification on GPUs. MLSys 2021 - [c113]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. NeurIPS 2021: 26858-26870 - [c112]Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Metha: Network Verifiers Need To Be Correct Too! NSDI 2021: 99-113 - [c111]Anouk Paradis, Benjamin Bichsel, Samuel Steffen, Martin T. Vechev:
Unqomp: synthesizing uncomputation in Quantum circuits. PLDI 2021: 222-236 - [c110]Jingxuan He
, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev:
Learning to find naming issues with big code and small supervision. PLDI 2021: 296-311 - [c109]Gregory Bonaert
, Dimitar I. Dimitrov
, Maximilian Baader
, Martin T. Vechev:
Fast and precise certification of transformers. PLDI 2021: 466-481 - [c108]Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, Martin T. Vechev:
Robustness certification with generative models. PLDI 2021: 1141-1154 - [c107]Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev:
DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers. SP 2021: 391-409 - [i32]Nikola Jovanovic, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Certified Defenses: Why Tighter Relaxations May Hurt Training? CoRR abs/2102.06700 (2021) - [i31]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. CoRR abs/2102.11860 (2021) - [i30]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Precise Multi-Neuron Abstractions for Neural Network Certification. CoRR abs/2103.03638 (2021) - [i29]Tobias Lorenz
, Anian Ruoss, Mislav Balunovic, Gagandeep Singh, Martin T. Vechev:
Robustness Certification for Point Cloud Models. CoRR abs/2103.16652 (2021) - [i28]Mislav Balunovic, Anian Ruoss, Martin T. Vechev:
Fair Normalizing Flows. CoRR abs/2106.05937 (2021) - [i27]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer
, Martin T. Vechev:
Boosting Randomized Smoothing with Variance Reduced Classifiers. CoRR abs/2106.06946 (2021) - [i26]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. CoRR abs/2107.00228 (2021) - [i25]Christian Sprecher, Marc Fischer
, Dimitar I. Dimitrov, Gagandeep Singh, Martin T. Vechev:
Shared Certificates for Neural Network Verification. CoRR abs/2109.00542 (2021) - [i24]Mark Niklas Müller, Robin Staab, Marc Fischer
, Martin T. Vechev:
Effective Certification of Monotone Deep Equilibrium Models. CoRR abs/2110.08260 (2021) - [i23]Mislav Balunovic, Dimitar I. Dimitrov, Robin Staab, Martin T. Vechev:
Bayesian Framework for Gradient Leakage. CoRR abs/2111.04706 (2021) - [i22]Momchil Peychev, Anian Ruoss, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Latent Space Smoothing for Individually Fair Representations. CoRR abs/2111.13650 (2021) - [i21]Matthew Mirman, Maximilian Baader, Martin T. Vechev:
The Fundamental Limits of Interval Arithmetic for Neural Networks. CoRR abs/2112.05235 (2021) - 2020
- [c106]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. ICLR 2020 - [c105]Mislav Balunovic, Martin T. Vechev:
Adversarial Training and Provable Defenses: Bridging the Gap. ICLR 2020 - [c104]Larissa Laich, Pavol Bielik, Martin T. Vechev:
Guiding Program Synthesis by Learning to Generate Examples. ICLR 2020 - [c103]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. ICML 2020: 896-907 - [c102]Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. ICML 2020: 2356-2365 - [c101]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certified Defense to Image Transformations via Randomized Smoothing. NeurIPS 2020 - [c100]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. NeurIPS 2020 - [c99]Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin T. Vechev:
Config2Spec: Mining Network Specifications from Network Configurations. NSDI 2020: 969-984 - [c98]Benjamin Bichsel, Maximilian Baader, Timon Gehr, Martin T. Vechev:
Silq: a high-level quantum language with safe uncomputation and intuitive semantics. PLDI 2020: 286-300 - [c97]Timon Gehr, Samuel Steffen, Martin T. Vechev:
λPSI: exact inference for higher-order probabilistic programs. PLDI 2020: 883-897 - [c96]Jingxuan He
, Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Learning fast and precise numerical analysis. PLDI 2020: 1112-1127 - [c95]Pesho Ivanov
, Benjamin Bichsel
, Harun Mustafa
, André Kahles
, Gunnar Rätsch
, Martin T. Vechev
:
AStarix: Fast and Optimal Sequence-to-Graph Alignment. RECOMB 2020: 104-119 - [c94]Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Probabilistic Verification of Network Configurations. SIGCOMM 2020: 750-764 - [c93]Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, Martin T. Vechev:
VerX: Safety Verification of Smart Contracts. SP 2020: 1661-1677 - [i20]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. CoRR abs/2002.04694 (2020) - [i19]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. CoRR abs/2002.10312 (2020) - [i18]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certification of Semantic Perturbations via Randomized Smoothing. CoRR abs/2002.12463 (2020) - [i17]Raphaël Dang-Nhu, Gagandeep Singh
, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. CoRR abs/2003.03778 (2020) - [i16]Matthew Mirman, Timon Gehr, Martin T. Vechev:
Robustness Certification of Generative Models. CoRR abs/2004.14756 (2020) - [i15]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian Dan, Martin T. Vechev:
Fast and Effective Robustness Certification for Recurrent Neural Networks. CoRR abs/2005.13300 (2020) - [i14]Christoph Müller, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020) - [i13]Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Scalable Inference of Symbolic Adversarial Examples. CoRR abs/2007.12133 (2020) - [i12]Nick Baumann, Samuel Steffen, Benjamin Bichsel, Petar Tsankov, Martin T. Vechev:
zkay v0.2: Practical Data Privacy for Smart Contracts. CoRR abs/2009.01020 (2020) - [i11]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. CoRR abs/2009.09318 (2020)
2010 – 2019
- 2019
- [j11]Veselin Raychev, Martin T. Vechev, Andreas Krause
:
Predicting program properties from 'big code'. Commun. ACM 62(3): 99-107 (2019) - [j10]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL): 41:1-41:30 (2019) - [c92]Jingxuan He
, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, Martin T. Vechev:
Learning to Fuzz from Symbolic Execution with Application to Smart Contracts. CCS 2019: 531-548 - [c91]Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, Martin T. Vechev:
zkay: Specifying and Enforcing Data Privacy in Smart Contracts. CCS 2019: 1759-1776 - [c90]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
Boosting Robustness Certification of Neural Networks. ICLR (Poster) 2019 - [c89]Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin T. Vechev:
DL2: Training and Querying Neural Networks with Logic. ICML 2019: 1931-1941 - [c88]Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin T. Vechev:
Beyond the Single Neuron Convex Barrier for Neural Network Certification. NeurIPS 2019: 15072-15083 - [c87]Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Certifying Geometric Robustness of Neural Networks. NeurIPS 2019: 15287-15297 - [c86]Jan Eberhardt, Samuel Steffen, Veselin Raychev, Martin T. Vechev:
Unsupervised learning of API aliasing specifications. PLDI 2019: 745-759 - [c85]Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, Martin T. Vechev:
Scalable taint specification inference with big code. PLDI 2019: 760-774 - [i10]Matthew Mirman, Gagandeep Singh, Martin T. Vechev:
A Provable Defense for Deep Residual Networks. CoRR abs/1903.12519 (2019) - [i9]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. CoRR abs/1909.13846 (2019) - [i8]Marc Fischer
, Matthew Mirman, Steven Stalder, Martin T. Vechev:
Online Robustness Training for Deep Reinforcement Learning. CoRR abs/1911.00887 (2019) - [i7]Philippe Schlattner, Pavol Bielik, Martin T. Vechev:
Learning to Infer User Interface Attributes from Images. CoRR abs/1912.13243 (2019) - 2018
- [j9]Pavol Bielik, Marc Fischer, Martin T. Vechev:
Robust relational layout synthesis from examples for Android. Proc. ACM Program. Lang. 2(OOPSLA): 156:1-156:29 (2018) - [j8]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
A practical construction for decomposing numerical abstract domains. Proc. ACM Program. Lang. 2(POPL): 55:1-55:28 (2018) - [j7]Dimitar K. Dimitrov, Martin T. Vechev, Vivek Sarkar:
Race Detection in Two Dimensions. ACM Trans. Parallel Comput. 4(4): 19:1-19:22 (2018) - [c84]