


Остановите войну!
for scientists:


default search action
Ron Goldman 0002
Ronald N. Goldman
Person information

- affiliation: Rice University, Houston, TX, USA
Other persons with the same name
- Ron Goldman 0001 — Oracle
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j117]Haohao Wang
, Ron Goldman:
Ruled Surfaces of Revolution with Moving Axes and Angles. Int. J. Comput. Geom. Appl. 31(2-3): 163-181 (2021) - 2020
- [j116]Juan Gerardo Alcázar
, Ron Goldman:
Recognizing algebraic affine rotation surfaces. Comput. Aided Geom. Des. 81: 101905 (2020) - [j115]Meng Li
, Ron Goldman:
Limits of sums for binomial and Eulerian numbers and their associated distributions. Discret. Math. 343(7): 111870 (2020)
2010 – 2019
- 2019
- [j114]Xiao-Wei Xu
, Ron Goldman:
On Lototsky-Bernstein operators and Lototsky-Bernstein bases. Comput. Aided Geom. Des. 68: 48-59 (2019) - [j113]Nira Dyn, Ron Goldman, David Levin:
High order smoothness of non-linear Lane-Riesenfeld algorithms in the functional setting. Comput. Aided Geom. Des. 71: 119-129 (2019) - [j112]Li-Yong Shen
, Sonia Pérez-Díaz
, Ron Goldman, Yifei Feng:
Representing rational curve segments and surface patches using semi-algebraic sets. Comput. Aided Geom. Des. 74 (2019) - [j111]Haohao Wang, Ron Goldman:
Surfaces of revolution with moving axes and angles. Graph. Model. 106 (2019) - [j110]Juan Du, Ron Goldman, Xuhui Wang:
Rational curves over generalized complex numbers. J. Symb. Comput. 93: 56-84 (2019) - [j109]Ron Goldman, Plamen Simeonov:
q-Blossoming for analytic functions. Numer. Algorithms 82(1): 107-121 (2019) - [i3]Meng Li, Ron Goldman:
Limits of Sums for Binomial and Eulerian Numbers and their Associated Distributions. CoRR abs/1903.06317 (2019) - 2018
- [j108]Li-Yong Shen
, Ron Goldman:
Combining complementary methods for implicitizing rational tensor product surfaces. Comput. Aided Des. 104: 100-112 (2018) - [j107]Haohao Wang, Ron Goldman:
Implicitizing ruled translational surfaces. Comput. Aided Geom. Des. 59: 98-106 (2018) - [j106]Yang Zhang, Visit Pataranutaporn, Ron Goldman:
de Boor-suitable (DS) T-splines. Graph. Model. 97: 40-49 (2018) - [j105]Haohao Wang, Ron Goldman:
Syzygies for translational surfaces. J. Symb. Comput. 89: 73-93 (2018) - [j104]Haohao Wang, Ron Goldman:
Using Dual Quaternion to Study Translational Surfaces. Math. Comput. Sci. 12(1): 69-75 (2018) - 2017
- [j103]Li-Yong Shen
, Ron Goldman:
Algorithms for computing strong μ-bases for rational tensor product surfaces. Comput. Aided Geom. Des. 52: 48-62 (2017) - [j102]Xiao-Wei Xu
, Xiao-Ming Zeng, Ron Goldman:
Shape preserving properties of univariate Lototsky-Bernstein operators. J. Approx. Theory 224: 13-42 (2017) - [j101]Yu Zhou, Ron Goldman, James McLurkin:
An Asymmetric Distributed Method for Sorting a Robot Swarm. IEEE Robotics Autom. Lett. 2(1): 261-268 (2017) - [j100]Li-Yong Shen
, Ron Goldman:
Strong μ-Bases for Rational Tensor Product Surfaces and Extraneous Factors Associated to Bad Base Points and Anomalies at Infinity. SIAM J. Appl. Algebra Geom. 1(1): 328-351 (2017) - [j99]Li-Yong Shen
, Ron Goldman:
Implicitizing Rational Tensor Product Surfaces Using the Resultant of Three Moving Planes. ACM Trans. Graph. 36(5): 167:1-167:14 (2017) - [j98]Juan Gerardo Alcázar
, Ron Goldman:
Detecting When an Implicit Equation or a Rational Parametrization Defines a Conical or Cylindrical Surface, or a Surface of Revolution. IEEE Trans. Vis. Comput. Graph. 23(12): 2550-2559 (2017) - [c17]Yu Zhou, Ron Goldman:
Building Fractals with a Robot Swarm. ICSI (2) 2017: 185-198 - 2016
- [j97]Xuhui Wang
, Ron Goldman, Thomas W. Sederberg:
Explicit μ-bases for conic sections and planar rational cubic curves. Comput. Aided Geom. Des. 41: 62-75 (2016) - [j96]Ron Goldman, Xuhui Wang
:
Two additional advantages of complex μ-bases for non-ruled real quadric surfaces. Comput. Aided Geom. Des. 42: 31-33 (2016) - [j95]Thomas W. Sederberg, Ronald N. Goldman, Xuhui Wang:
Birational 2D Free-Form Deformation of degree 1 × n. Comput. Aided Geom. Des. 44: 1-9 (2016) - [j94]Ron Goldman, Plamen Simeonov:
Generalized quantum splines. Comput. Aided Geom. Des. 47: 29-54 (2016) - [j93]Juan Gerardo Alcázar
, Ron Goldman, Carlos Hermoso
:
Algebraic surfaces invariant under scissor shears. Graph. Model. 87: 23-34 (2016) - [j92]Ron Goldman, Plamen Simeonov:
Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming. Numer. Algorithms 72(3): 605-634 (2016) - [j91]Juan Gerardo Alcázar
, Ron Goldman:
Finding the Axis of Revolution of an Algebraic Surface of Revolution. IEEE Trans. Vis. Comput. Graph. 22(9): 2082-2093 (2016) - [c16]Binhang Yuan, Ronald N. Goldman, Eric Wang
, Olushola Olorunnipa, David Khechoyan:
Generating a 3D Normative Infant Cranial Model. ICCS 2016: 988-998 - 2015
- [j90]Rachid Ait-Haddou, Ron Goldman:
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials. Appl. Math. Comput. 266: 267-276 (2015) - [j89]Ron Goldman, Thomas W. Sederberg, Xuhui Wang:
Complex μ-bases for real quadric surfaces. Comput. Aided Geom. Des. 37: 57-68 (2015) - [j88]Xuhui Wang, Ron Goldman:
Quaternion rational surfaces: Rational surfaces generated from the quaternion product of two rational space curves. Graph. Model. 81: 18-32 (2015) - [j87]Çetin Disibüyük
, Ron Goldman:
A unifying structure for polar forms and for Bernstein Bézier curves. J. Approx. Theory 192: 234-249 (2015) - [j86]Gülter Budakçi, Çetin Disibüyük
, Ron Goldman
, Halil Oruç
:
Extending fundamental formulas from classical B-splines to quantum B-splines. J. Comput. Appl. Math. 282: 17-33 (2015) - [j85]Ron Goldman, Plamen Simeonov:
Quantum Bernstein bases and quantum Bézier curves. J. Comput. Appl. Math. 288: 284-303 (2015) - 2014
- [j84]Xuhui Wang
, Ron Goldman:
Corrigendum to Example 4 in "μ-Bases for complex rational curves" [Computer Aided Geometric Design 30 (2013), 623-635]. Comput. Aided Geom. Des. 31(5): 277-278 (2014) - [j83]Ron Goldman, Plamen Simeonov, Yilmaz Simsek
:
Generating Functions for the q-Bernstein Bases. SIAM J. Discret. Math. 28(3): 1009-1025 (2014) - 2013
- [j82]Xuhui Wang
, Ron Goldman:
μ-Bases for complex rational curves. Comput. Aided Geom. Des. 30(7): 623-635 (2013) - [j81]Ron Goldman:
Modeling perspective projections in 3-dimensions by rotations in 4-dimensions. Graph. Model. 75(2): 41-55 (2013) - [j80]Xiaoran Shi, Xiaohong Jia, Ron Goldman:
Using a bihomogeneous resultant to find the singularities of rational space curves. J. Symb. Comput. 53: 1-25 (2013) - 2012
- [j79]Xiaohong Jia, Ron Goldman:
Using Smith normal forms and μ-bases to compute all the singularities of rational planar curves. Comput. Aided Geom. Des. 29(6): 296-314 (2012) - [j78]Xiaoran Shi, Ron Goldman:
Implicitizing rational surfaces of revolution using μ-bases. Comput. Aided Geom. Des. 29(6): 348-362 (2012) - [j77]Xiaoran Shi, Xuhui Wang
, Ron Goldman:
Using μ-bases to implicitize rational surfaces with a pair of orthogonal directrices. Comput. Aided Geom. Des. 29(7): 541-554 (2012) - [j76]Ron Goldman, Plamen Simeonov:
Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming. Graph. Model. 74(6): 326-334 (2012) - [j75]Plamen Simeonov, Vasilis Zafiris, Ron Goldman:
q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164(1): 77-104 (2012) - [c15]Ron Goldman:
Generating Functions for Uniform B-Splines. MMCS 2012: 172-188 - 2011
- [j74]Plamen Simeonov, Vasilis Zafiris, Ron Goldman:
h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves. Comput. Aided Geom. Des. 28(9): 549-565 (2011) - [j73]Ron Goldman:
Understanding quaternions. Graph. Model. 73(2): 21-49 (2011) - [j72]Nira Dyn, Ron Goldman:
Convergence and Smoothness of Nonlinear Lane-Riesenfeld Algorithms in the Functional Setting. Found. Comput. Math. 11(1): 79-94 (2011) - [p9]Ron Goldman:
A Homogeneous Model for Three-Dimensional Computer Graphics Based on the Clifford Algebra for ℝ3. Guide to Geometric Algebra in Practice 2011: 329-352 - 2010
- [b2]Ron Goldman:
Rethinking Quaternions. Synthesis Lectures on Computer Graphics and Animation, Morgan & Claypool Publishers 2010 - [j71]Xiaohong Jia, Haohao Wang, Ron Goldman:
Set-theoretic generators of rational space curves. J. Symb. Comput. 45(4): 414-433 (2010) - [i2]Xiaohong Jia, Ron Goldman:
Using Smith Normal Forms and mu-Bases to Compute all the Singularities of Rational Planar Curves. CoRR abs/1005.0085 (2010)
2000 – 2009
- 2009
- [j70]Scott Schaefer, Ron Goldman:
Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aided Geom. Des. 26(1): 75-81 (2009) - [j69]Ning Song, Ron Goldman:
mu-bases for polynomial systems in one variable. Comput. Aided Geom. Des. 26(2): 217-230 (2009) - [j68]Ron Goldman, Etienne Vouga, Scott Schaefer:
On the smoothness of real-valued functions generated by subdivision schemes using nonlinear binary averaging. Comput. Aided Geom. Des. 26(2): 231-242 (2009) - [j67]Haohao Wang, Xiaohong Jia, Ron Goldman:
Axial moving planes and singularities of rational space curves. Comput. Aided Geom. Des. 26(3): 300-316 (2009) - [j66]Xiaohong Jia, Ron Goldman:
µ-Bases and singularities of rational planar curves. Comput. Aided Geom. Des. 26(9): 970-988 (2009) - 2008
- [j65]Ron Goldman:
After the revolution: Geometric algebra for Computer Scientists in the twenty-first century. Comput. Aided Des. 40(5): 655-656 (2008) - [j64]Scott Schaefer, Etienne Vouga, Ron Goldman:
Nonlinear subdivision through nonlinear averaging. Comput. Aided Geom. Des. 25(3): 162-180 (2008) - [j63]Laurent Busé, Ron Goldman:
Division algorithms for Bernstein polynomials. Comput. Aided Geom. Des. 25(9): 850-865 (2008) - 2007
- [j62]Ning Song, Falai Chen, Ron Goldman:
Axial moving lines and singularities of rational planar curves. Comput. Aided Geom. Des. 24(4): 200-209 (2007) - [j61]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
Editorial: Special issue on Geometric Modeling (Dagstuhl 2005). Computing 79(2-4): 99 (2007) - [j60]Etienne Vouga, Ron Goldman:
Two blossoming proofs of the Lane-Riesenfeld algorithm. Computing 79(2-4): 153-162 (2007) - 2006
- [j59]Ming Zhang, Liqun Wang, Ronald N. Goldman:
Bézier Subdivision for Inverse Molecular Kinematics. Int. J. Comput. Geom. Appl. 16(5-6): 513-532 (2006) - [p8]Ron Goldman:
Algebraic geometry and geometric modeling: insight and computation. Algebraic Geometry and Geometric Modeling 2006: 1-22 - 2005
- [j58]Ming Zhang, R. Allen White, Liqun Wang, Ronald N. Goldman, Lydia E. Kavraki
, Brendan Hassett:
Improving conformational searches by geometric screening. Bioinform. 21(5): 624-630 (2005) - [j57]Ron Goldman:
Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7): 632-658 (2005) - [c14]Scott Schaefer, David Levin, Ron Goldman:
Subdivision Schemes and Attractors. Symposium on Geometry Processing 2005: 171-180 - [e2]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
Geometric Modeling, 29.05. - 03.06.2005. Dagstuhl Seminar Proceedings 05221, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany 2005 [contents] - [i1]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
05221 Report of the Dagstuhl seminar on - Geometric Modelling. Geometric Modeling 2005 - 2004
- [j56]Ron Goldman, Scott Schaefer, Tao Ju:
Turtle geometry in computer graphics and computer-aided design. Comput. Aided Des. 36(14): 1471-1482 (2004) - [j55]Ronald N. Goldman:
Multisided arrays of control points for multisided Bezier patches. Comput. Aided Geom. Des. 21: 243-261 (2004) - [j54]Tao Ju, Scott Schaefer, Ron Goldman:
Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6): 991-1004 (2004) - [j53]Ronald N. Goldman, Wenping Wang:
Using Invariants To Extract Geometric Characteristics Of Conic Sections From Rational Quadratic Parameterizations. Int. J. Comput. Geom. Appl. 14(3): 161-187 (2004) - [c13]Ronald N. Goldman:
The Fractal Nature of Bezier Curves. GMP 2004: 3-11 - [c12]Amit Khetan, Ning Song, Ron Goldman:
Sylvester-resultants for bivariate polynomials with planar newton polygons. ISSAC 2004: 205-212 - 2003
- [b1]Ronald N. Goldman:
Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling. Morgan Kaufmann series in computer graphics and geometric modeling, Morgan Kaufmann 2003, ISBN 978-1-55860-354-7, pp. I-XXIII, 1-551 - [j52]Wenping Wang, Ronald N. Goldman, Changhe Tu:
Enhancing Levin's method for computing quadric-surface intersections. Comput. Aided Geom. Des. 20(7): 401-422 (2003) - [j51]Ron Goldman:
Deriving Linear Transformations in Three Dimensions. IEEE Computer Graphics and Applications 23(3): 66-71 (2003) - [c11]Tao Ju, Ron Goldman:
Morphing Rational B-spline Curves and Surfaces Using Mass Distributions. Eurographics (Short Presentations) 2003 - [c10]Ron Goldman:
Computer Graphics in its Fifth Decade: Ferment at the Foundations. PG 2003: 4-21 - 2002
- [j50]Ronald N. Goldman, Géraldine Morin:
The affine invariant analytic blossom. Comput. Aided Geom. Des. 19(8): 621-623 (2002) - [j49]Wenping Wang, Barry Joe, Ronald N. Goldman:
Computing quadric surface intersections based on an analysis of plane cubic curves. Graph. Model. 64(6): 335-367 (2002) - [j48]Eng-Wee Chionh, Ming Zhang, Ronald N. Goldman:
Fast Computation of the Bezout and Dixon Resultant Matrices. J. Symb. Comput. 33(1): 13-29 (2002) - [j47]Ron Goldman:
On the algebraic and geometric foundations of computer graphics. ACM Trans. Graph. 21(1): 52-86 (2002) - 2001
- [j46]Géraldine Morin, Ronald N. Goldman:
Trimming analytic functions using right sided Poisson subdivision. Comput. Aided Des. 33(11): 813-824 (2001) - [j45]Géraldine Morin, Ronald N. Goldman:
On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput. Aided Geom. Des. 18(7): 657-666 (2001) - [j44]Ron Goldman:
Baseball Arithmetic and the Laws of Pseudoperspective. IEEE Computer Graphics and Applications 21(2): 70-78 (2001) - 2000
- [j43]Géraldine Morin, Ronald N. Goldman:
A subdivision scheme for Poisson curves and surfaces. Comput. Aided Geom. Des. 17(9): 813-833 (2000) - [j42]Ron Goldman:
The Ambient Spaces of Computer Graphics and Geometric Modeling. IEEE Computer Graphics and Applications 20(2): 76-84 (2000) - [j41]David A. Cox, Ronald N. Goldman, Ming Zhang:
On the Validity of Implicitization by Moving Quadrics for Rational Surfaces with No Base Points. J. Symb. Comput. 29(3): 419-440 (2000) - [c9]Ronald N. Goldman, Géraldine Morin:
Poisson Approximation. GMP 2000: 141-149 - [c8]Eng-Wee Chionh, Ming Zhang, Ronald N. Goldman:
Implicitization by Dixon A-Resultants. GMP 2000: 310-318 - [c7]Ming Zhang, Ronald N. Goldman:
Rectangular corner cutting and Sylvester A-resultants. ISSAC 2000: 301-308
1990 – 1999
- 1999
- [j40]Ming Zhang, Eng-Wee Chionh, Ronald N. Goldman:
On a relationship between the moving line and moving conic coefficient matrices. Comput. Aided Geom. Des. 16(6): 517-527 (1999) - [j39]Ron Goldman:
Blossoming with cancellation. Comput. Aided Geom. Des. 16(7): 671-689 (1999) - [j38]Ron Goldman:
The rational Bernstein bases and the multirational blossoms. Comput. Aided Geom. Des. 16(8): 701-738 (1999) - [c6]Ron Goldman:
Blossoming and Divided Difference. Geometric Modelling 1999: 155-184 - 1998
- [c5]L. Yohanes Stefanus, Ronald N. Goldman:
On the Linear Independence of the Bivariate Discrete Convolution Blending Functions. CATS 1998: 231-244 - 1997
- [j37]Wan Ainun Mior Othman
, Ronald N. Goldman:
The dual basis functions for the generalized Ball basis of odd degree. Comput. Aided Geom. Des. 14(6): 571-582 (1997) - [j36]Wenping Wang, Barry Joe, Ronald N. Goldman:
Rational Quadratic Parameterizations of Quadrics. Int. J. Comput. Geom. Appl. 7(6): 599- (1997) - [j35]Thomas W. Sederberg, Ron Goldman, Hang Du:
Implicitizing Rational Curves by the Method of Moving Algebraic Curves. J. Symb. Comput. 23(2/3): 153-175 (1997) - [j34]Suresh K. Lodha, Ron Goldman:
A unified approach to evaluation algorithms for multivariate polynomials. Math. Comput. 66(220): 1521-1553 (1997) - 1996
- [j33]Ayman W. Habib, Ronald N. Goldman:
Theories of contact specified by connection matrices. Comput. Aided Geom. Des. 13(9): 905-929 (1996) - 1995
- [j32]Suresh K. Lodha, Ron Goldman:
Change of basis algorithms for surfaces in CAGD. Comput. Aided Geom. Des. 12(8): 801-824 (1995) - [j31]Eng-Wee Chionh, Ronald N. Goldman:
Elimination and resultants. 1. Elimination and bivariate resultants. IEEE Computer Graphics and Applications 15(1): 69-77 (1995) - [j30]Eng-Wee Chionh, Ronald N. Goldman:
Elimination and resultants.2. Multivariate resultants. IEEE Computer Graphics and Applications 15(2): 60-69 (1995) - [j29]James R. Miller, Ronald N. Goldman:
Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any 2 Natural Quadric Surfaces. CVGIP Graph. Model. Image Process. 57(1): 55-66 (1995) - 1994
- [j28]Eng-Wee Chionh, Ronald N. Goldman:
On the Existence and the Coefficients of the Implicit Equation of Rational Surfaces. CVGIP Graph. Model. Image Process. 56(1): 19-24 (1994) - [p7]Phillip J. Barry, Ron Goldman:
Knot Insertion Using Forward Differences. Graphics Gems 1994: 251-255 - 1993
- [j27]Phillip J. Barry, Ronald N. Goldman, Charles A. Micchelli:
Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices. Adv. Comput. Math. 1(2): 139-171 (1993) - [j26]Ron Goldman, Joe D. Warren:
An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression. CVGIP Graph. Model. Image Process. 55(1): 58-62 (1993) - [j25]Ron Goldman, Joe D. Warren:
Erratum: Volume 55, Number 1 (1993) in the article "An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression," by Ron Goldman and Joe Warren, pages 58-62. CVGIP Graph. Model. Image Process. 55(4): 324 (1993) - [j24]Tony DeRose, Ronald N. Goldman, Hans Hagen, Stephen Mann
:
Functional Composition Algorithms via Blossoming. ACM Trans. Graph. 12(2): 113-135 (1993) - [c4]Phillip J. Barry, Ronald N. Goldman:
Unimodal Properties of Generalized Ball Bases. Geometric Modelling 1993: 35-41 - 1992
- [j23]Phillip J. Barry, John C. Beatty, Ronald N. Goldman:
Unimodal properties of B-spline and Bernstein-basis functions. Comput. Aided Des. 24(12): 627-636 (1992) - [j22]L. Yohanes Stefanus, Ronald N. Goldman:
Blossoming Marsden's identity. Comput. Aided Geom. Des. 9(2): 73-84 (1992) - [j21]Eng-Wee Chionh, Ronald N. Goldman:
Degree, multiplicity, and inversion formulas for rational surfaces using u-resultants. Comput. Aided Geom. Des. 9(2): 93-108 (1992) - [j20]James R. Miller, Ronald N. Goldman:
Using tangent balls to find plane sections of natural quadrics. IEEE Computer Graphics and Applications 12(2): 68-82 (1992) - [j19]Eng-Wee Chionh, Ronald N. Goldman:
Using multivariate resultants to find the implicit equation of a rational surface. Vis. Comput. 8(3): 171-180 (1992) - [p6]Ronald N. Goldman:
Cross Product in Four Dimensions and beyond. Graphics Gems III 1992: 84-88 - [p5]Ronald N. Goldman:
Decomposing Projective Transformations. Graphics Gems III 1992: 98-107 - [p4]Ronald N. Goldman:
Decomposing linear and Affine Transformations. Graphics Gems III 1992: 108-116 - [p3]