


default search action
23rd COLT 2010: Haifa, Israel
- Adam Tauman Kalai, Mehryar Mohri:

COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010. Omnipress 2010, ISBN 978-0-9822529-2-5 - Karthik Sridharan, Ambuj Tewari:

Convex Games in Banach Spaces. 1-13 - John C. Duchi, Shai Shalev-Shwartz, Yoram Singer, Ambuj Tewari:

Composite Objective Mirror Descent. 14-26 - Noga Alon:

Voting Paradoxes. 27 - Alekh Agarwal, Ofer Dekel, Lin Xiao:

Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback. 28-40 - Jean-Yves Audibert, Sébastien Bubeck, Rémi Munos:

Best Arm Identification in Multi-Armed Bandits. 41-53 - Philippe Rigollet, Assaf Zeevi:

Nonparametric Bandits with Covariates. 54-66 - Junya Honda, Akimichi Takemura:

An Asymptotically Optimal Bandit Algorithm for Bounded Support Models. 67-79 - Eyal Even-Dar, Shie Mannor, Yishay Mansour:

Learning with Global Cost in Stochastic Environments. 80-92 - Wouter M. Koolen, Manfred K. Warmuth, Jyrki Kivinen:

Hedging Structured Concepts. 93-105 - Wojciech Kotlowski, Peter Grünwald, Steven de Rooij:

Following the Flattened Leader. 106-118 - Daniil Ryabko:

Sequence Prediction in Realizable and Non-realizable Cases. 119-131 - Sascha Geulen, Berthold Vöcking, Melanie Winkler:

Regret Minimization for Online Buffering Problems Using the Weighted Majority Algorithm. 132-143 - Elad Hazan, Satyen Kale, Manfred K. Warmuth:

Learning Rotations with Little Regret. 144-154 - Varun Kanade, Leslie G. Valiant, Jennifer Wortman Vaughan:

Evolution with Drifting Targets. 155-167 - Koby Crammer, Yishay Mansour, Eyal Even-Dar, Jennifer Wortman Vaughan:

Regret Minimization With Concept Drift. 168-180 - John Case, Timo Kötzing:

Strongly Non-U-Shaped Learning Results by General Techniques. 181-193 - Dominik D. Freydenberger, Daniel Reidenbach:

Inferring Descriptive Generalisations of Formal Languages. 194-206 - Dmitry Gavinsky:

Quantum Predictive Learning and Communication Complexity with Single Input. 207-217 - Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, Ohad Shamir:

Online Learning of Noisy Data with Kernels. 218-230 - Gergely Neu, András György, Csaba Szepesvári:

The Online Loop-free Stochastic Shortest-Path Problem. 231-243 - H. Brendan McMahan, Matthew J. Streeter:

Adaptive Bound Optimization for Online Convex Optimization. 244-256 - John C. Duchi, Elad Hazan, Yoram Singer:

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. 257-269 - Margareta Ackerman, Shai Ben-David, David Loker:

Characterization of Linkage-based Clustering. 270-281 - Maria-Florina Balcan, Pramod Gupta:

Robust Hierarchical Clustering. 282-294 - Purnamrita Sarkar, Deepayan Chakrabarti, Andrew W. Moore:

Theoretical Justification of Popular Link Prediction Heuristics. 295-307 - Robert E. Schapire:

The Convergence Rate of AdaBoost. 308-309 - Homin K. Lee:

Learning Talagrand DNF Formulas. 310-311 - Sven Koenig:

Open Problem: Analyzing Ant Robot Coverage. 312-313 - Elad Hazan, Satyen Kale, Manfred K. Warmuth:

On-line Variance Minimization in O(n2) per Trial? 314-315 - John Langford:

Robust Efficient Conditional Probability Estimation. 316-317 - Jacob D. Abernethy:

Can We Learn to Gamble Efficiently? 318-319 - Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella:

Active Learning on Trees and Graphs. 320-332 - Daniel Golovin, Andreas Krause:

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization. 333-345 - Ofer Dekel, Claudio Gentile, Karthik Sridharan:

Robust Selective Sampling from Single and Multiple Teachers. 346-358 - Pranjal Awasthi, Avrim Blum, Or Sheffet:

Improved Guarantees for Agnostic Learning of Disjunctions. 359-367 - Adam R. Klivans, Homin K. Lee, Andrew Wan:

Mansour's Conjecture is True for Random DNF Formulas. 368-380 - Adi Akavia:

Deterministic Sparse Fourier Approximation via Fooling Arithmetic Progressions. 381-393 - Anupam Gupta, John D. Lafferty, Han Liu, Larry A. Wasserman, Min Xu:

Forest Density Estimation. 394-406 - Mikhail Belkin, Kaushik Sinha:

Toward Learning Gaussian Mixtures with Arbitrary Separation. 407-419 - Vladimir Koltchinskii, Stas Minsker:

Sparse Recovery in Convex Hulls of Infinite Dictionaries. 420-432 - Lee-Ad Gottlieb, Leonid Kontorovich, Robert Krauthgamer:

Efficient Classification for Metric Data. 433-440 - Shai Shalev-Shwartz, Ohad Shamir, Karthik Sridharan:

Learning Kernel-Based Halfspaces with the Zero-One Loss. 441-450 - Risi Kondor, Marconi S. Barbosa:

Ranking with Kernels in Fourier space. 451-463 - Bastian Steudel, Dominik Janzing, Bernhard Schölkopf:

Causal Markov Condition for Submodular Information Measures. 464-476 - Sébastien Bubeck, Rémi Munos:

Open Loop Optimistic Planning. 477-489 - Huan Xu, Constantine Caramanis, Shie Mannor:

Principal Component Analysis with Contaminated Data: The High Dimensional Case. 490-502 - Huan Xu, Shie Mannor:

Robustness and Generalization. 503-515 - David Xiao:

Learning to Create is as Hard as Learning to Appreciate. 516-528

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














