default search action
GECCO 2024: Melbourne, VIC, Australia
- Xiaodong Li, Julia Handl:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2024, Melbourne, VIC, Australia, July 14-18, 2024. ACM 2024, ISBN 979-8-4007-0494-9
Keynote Talk
- Una-May O'Reilly:
Coevolution in Natural and Artificial Systems. - Suzie Sheehy:
Lessons from curiosity-driven physics research. - Toby Walsh:
Generative AI: why all the fuss?
Benchmarking, Benchmarks, Software and Reproducibility
- Ali Ahrari, Jonathan E. Fieldsend, Mike Preuss, Xiaodong Li, Michael Epitropakis:
New Tunable Test Problems for Benchmarking Niching Methods for Multimodal Optimization. - Roman Kalkreuth, Thomas Bäck:
CGP++ : A Modern C++ Implementation of Cartesian Genetic Programming. - Cedric J. Rodriguez, Sarah L. Thomson, Tanja Alderliesten, Peter A. N. Bosman:
Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation. - Thai Bao Tran, Ngoc Hoang Luong:
On the Investigation of Multimodal Evolutionary Algorithms Using Search Trajectory Networks. - Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-Scale Benchmarking of Metaphor-Based Optimization Heuristics. - Danial Yazdani, Juergen Branke, Mohammad Sadegh Khorshidi, Mohammad Nabi Omidvar, Xiaodong Li, Amir H. Gandomi, Xin Yao:
Clustering in Dynamic Environments: A Framework for Benchmark Dataset Generation With Heterogeneous Changes. - Yuanting Zhong, Xincan Wang, Yuhong Sun, Yue-Jiao Gong:
SDDObench: A Benchmark for Streaming Data-Driven Optimization with Concept Drift.
Complex Systems
- Timothée Anne, Jean-Baptiste Mouret:
Parametric-Task MAP-Elites. - Kameron Bielawski, Nate Gaylinn, Cameron Lunn, Kevin Motia, Joshua Bongard:
Evolving Hierarchical Neural Cellular Automata. - Andrea Ferigo, Elia Cunegatti, Giovanni Iacca:
Neuron-centric Hebbian Learning. - Tanja Katharina Kaiser:
Learning from Evolution: Improving Collective Decision-Making Mechanisms using Insights from Evolutionary Robotics. - Paul Templier, Luca Grillotti, Emmanuel Rachelson, Dennis Wilson, Antoine Cully:
Quality with Just Enough Diversity in Evolutionary Policy Search. - Sarah L. Thomson, Léni K. Le Goff, Emma Hart, Edgar Buchanan:
Understanding Fitness Landscapes in Morpho-Evolution via Local Optima Networks. - Wen-Chi Yang:
Integrating Diverse Evolutionary Patterns of Collective Animal Behaviours into a Unified Selfish Herd Model.
Evolutionary Combinatorial Optimization and Metaheuristics
- Jakob Bossek, Christian Grimme:
Generalised Kruskal Mutation for the Multi-Objective Minimum Spanning Tree Problem. - Maria Bresich, Günther R. Raidl, Steffen Limmer:
Letting a Large Neighborhood Search for an Electric Dial-A-Ride Problem Fly: On-The-Fly Charging Station Insertion. - Camilo Chacón Sartori, Christian Blum, Gabriela Ochoa:
An Extension of STNWeb Functionality: On the Use of Hierarchical Agglomerative Clustering as an Advanced Search Space Partitioning Strategy. - Camilo Chacón Sartori, Christian Blum, Gabriela Ochoa:
Large Language Models for the Automated Analysis of Optimization Algorithms. - Benjamin Doerr, Martin S. Krejca, Nguyen Vu:
Superior Genetic Algorithms for the Target Set Selection Problem Based on Power-Law Parameter Choices and Simple Greedy Heuristics. - Cheng Gong, Yang Nan, Lie Meng Pang, Hisao Ishibuchi, Qingfu Zhang:
Heuristic Initialization and Knowledge-based Mutation for Large-Scale Multi-Objective 0-1 Knapsack Problems. - Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann:
Effective 2- and 3-Objective MOEA/D Approaches for the Chance Constrained Knapsack Problem. - Kyo Kuroki, Satoru Jimbo, Thiem Van Chu, Masato Motomura, Kazushi Kawamura:
Classical Thermodynamics-based Parallel Annealing Algorithm for High-speed and Robust Combinatorial Optimization. - Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart:
Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution. - Thilina Pathirage Don, Aneta Neumann, Frank Neumann:
The Chance Constrained Travelling Thief Problem: Problem Formulations and Algorithms. - Kokila Kasuni Perera, Aneta Neumann:
Multi-Objective Evolutionary Algorithms with Sliding Window Selection for the Dynamic Chance-Constrained Knapsack Problem. - Quan Minh Phan, Ngoc Hoang Luong:
Efficient Multi-Fidelity Neural Architecture Search with Zero-Cost Proxy-Guided Local Search. - Valentino Santucci, Marco Baioletti, Marco Tomassini:
Optimization through Iterative Smooth Morphological Transformations. - Han Zhang, Qing Li, Xin Yao:
An Adaptive Interactive Routing-Packing Strategy for Split Delivery Vehicle Routing Problem with 3D Loading Constraints.
Evolutionary Machine Learning
- Pivithuru Thejan Amarasinghe, Diem Pham, Binh Tran, Su Nguyen, Yuan Sun, Damminda Alahakoon:
Evolutionary Multi-Objective Optimisation for Fairness-Aware Self Adjusting Memory Classifiers in Data Streams. - Pedro Barbosa, Rosina Savisaar, Alcides Fonseca:
Semantically Rich Local Dataset Generation for Explainable AI in Genomics. - Amanda Bertschinger, James P. Bagrow, Joshua Clifford Bongard:
Evolving Form and Function: Dual-Objective Optimization in Neural Symbolic Regression Networks. - Joshua Cook, Kagan Tumer:
Learning Aligned Local Evaluations For Better Credit Assignment In Cooperative Coevolution. - Leonardo Lucio Custode, Ivanoe De Falco, Antonio Della Cioppa, Giovanni Iacca, Umberto Scafuri:
NEvoFed: A Decentralized Approach to Federated NeuroEvolution of Heterogeneous Neural Networks. - Hangqi Ding, Haoran Xu, Yue Wu, Hao Li, Maoguo Gong, Wenping Ma, Qiguang Miao, Jiao Shi, Yu Lei:
Evolutionary Multitasking with Two-level Knowledge Transfer for Multi-view Point Cloud Registration. - Gaurav Dixit, Kagan Tumer:
Informed Diversity Search for Learning in Asymmetric Multiagent Systems. - Everardo Gonzalez, Siddarth Viswanathan, Kagan Tumer:
Influence Based Fitness Shaping for Coevolutionary Agents. - Erik Hemberg, Una-May O'Reilly, Jamal Toutouh:
Cooperative Coevolutionary Spatial Topologies for Autoencoder Training. - Angus Kenny, Tapabrata Ray, Steffen Limmer, Hemant Kumar Singh, Tobias Rodemann, Markus Olhofer:
Using Bayesian Optimization to Improve Hyperparameter Search in TPOT. - Yi Liu, Yu Cui, Wen Cheng, Will Neil Browne, Bing Xue, Chengyuan Zhu, Yiding Zhang, Mingkai Sheng, Lingfang Zeng:
A Phenotypic Learning Classifier System for Problems with Continuous Features. - Zeqiong Lv, Chao Bian, Chao Qian, Yanan Sun:
Runtime Analysis of Population-based Evolutionary Neural Architecture Search for a Binary Classification Problem. - Alican Mertan, Nick Cheney:
Towards Multi-Morphology Controllers with Diversity and Knowledge Distillation. - Clint Morris, Michael Jurado, Jason Zutty:
LLM Guided Evolution - The Automation of Models Advancing Models. - Shuaiqun Pan, Diederick Vermetten, Manuel López-Ibáñez, Thomas Bäck, Hao Wang:
Transfer Learning of Surrogate Models via Domain Affine Transformation. - Nian Ran, Bahrul Ilmi Nasution, Claire Little, Richard Allmendinger, Mark J. Elliot:
Multi-objective evolutionary GAN for tabular data synthesis. - Erdi Sayar, Giovanni Iacca, Alois Knoll:
Multi-Objective Evolutionary Hindsight Experience Replay for Robot Manipulation Tasks. - Lukasz Tulczyjew, Michal Przewozniczek, Renato Tinós, Agata M. Wijata, Jakub Nalepa:
CANNIBAL Unveils the Hidden Gems: Hyperspectral Band Selection via Clustering of Weighted Variable Interaction Graphs. - Jiahong Wei, Bing Xue, Mengjie Zhang:
EZUAS: Evolutionary Zero-shot U-shape Architecture Search for Medical Image Segmentation. - Alexa A. Woodward, Harsh Bandhey, Jason H. Moore, Ryan J. Urbanowicz:
Survival-LCS: A Rule-Based Machine Learning Approach to Survival Analysis. - Michal Wójcik, Milosz Kadzinski:
Nature-inspired Preference Learning Algorithms Using the Choquet Integral. - Jiang Zhu, Hong Zhao, He Yu, Jing Liu:
Pixel Logo Attack: Embedding Attacks as Logo-Like Pixels.
Evolutionary Multiobjective Optimization
- Andrejaana Andova, Jordan N. Cork, Tea Tusar, Bogdan Filipic:
Enhancing Algorithm Performance Prediction in Constrained Multiobjective Optimization Using Additional Training Problems. - Denis Antipov, Aneta Neumann, Frank Neumann:
A Detailed Experimental Analysis of Evolutionary Diversity Optimization for OneMinMax. - Longcan Chen, Lie Meng Pang, Qingfu Zhang, Hisao Ishibuchi:
Enhancing the Convergence Ability of Evolutionary Multi-objective Optimization Algorithms with Momentum. - Duc-Cuong Dang, Andre Opris, Dirk Sudholt:
Illustrating the Efficiency of Popular Evolutionary Multi-Objective Algorithms Using Runtime Analysis. - Benjamin Doerr, Joshua D. Knowles, Aneta Neumann, Frank Neumann:
A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis. - Behrooz Ghasemishabankareh, Xiaodong Li, Melih Ozlen:
User-Preference Based Evolutionary Algorithms for Solving Multi-Objective Nonlinear Minimum Cost Flow Problems. - Cheng Gong, Yang Nan, Lie Meng Pang, Hisao Ishibuchi, Qingfu Zhang:
Performance of NSGA-III on Multi-objective Combinatorial Optimization Problems Heavily Depends on Its Implementations. - Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann:
Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem. - Ahmer Khan, Kalyanmoy Deb:
Innovation Path: Discovering an Ordered Set of Optimized Intermediate Solutions from an Existing to a Desired Solution. - Najwa Kouka, Vincenzo Piuri, Pierangela Samarati:
Tasks Scheduling with Load Balancing in Fog Computing: a Bi-level Multi-Objective Optimization Approach. - Miqing Li, Xiaofeng Han, Xiaochen Chu, Zimin Liang:
Empirical Comparison between MOEAs and Local Search on Multi-Objective Combinatorial Optimisation Problems. - Yanchi Li, Wenyin Gong, Qiong Gu:
Transfer Search Directions Among Decomposed Subtasks for Evolutionary Multitasking in Multiobjective Optimization. - Zhenyu Liang, Tao Jiang, Kebin Sun, Ran Cheng:
GPU-accelerated Evolutionary Multiobjective Optimization Using Tensorized RVEA. - Yang Nan, Hisao Ishibuchi, Tianye Shu, Ke Shang:
Analysis of Real-World Constrained Multi-Objective Problems and Performance Comparison of Multi-Objective Algorithms. - Yang Nan, Hisao Ishibuchi, Tianye Shu, Ke Shang:
Gradient-Guided Local Search for IGD/IGDPlus Subset Selection. - Shakiba Shahbandegan, Emily L. Dolson:
On the robustness of lexicase selection to contradictory objectives. - Shoichiro Tanaka, Gabriela Ochoa, Arnaud Liefooghe, Keiki Takadama, Hiroyuki Sato:
Approximating Pareto Local Optimal Solution Networks. - Deepanshu Yadav, Palaniappan Ramu, Kalyanmoy Deb:
An Updated Performance Metric for Preference-Based Evolutionary Multi-Objective Optimization Algorithms. - Xiankun Yan, Aneta Neumann, Frank Neumann:
Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems. - Rongguang Ye, Longcan Chen, Jinyuan Zhang, Hisao Ishibuchi:
Evolutionary Preference Sampling for Pareto Set Learning. - Fan Yu, Qun Chen, Jinlong Zhou:
Extending Pareto Dominance for Multi-Constraints Satisfaction and Multi-Performance Enhancement in Constrained Multi-Objective Optimization.
Evolutionary Numerical Optimization
- Georgios Andreadis, Tanja Alderliesten, Peter A. N. Bosman:
Fitness-based Linkage Learning and Maximum-Clique Conditional Linkage Modelling for Gray-box Optimization with RV-GOMEA. - Ryoki Hamano, Shota Saito, Masahiro Nomura, Kento Uchida, Shinichi Shirakawa:
CatCMA : Stochastic Optimization for Mixed-Category Problems. - Marcin Michal Komarnicki, Michal Witold Przewozniczek, Renato Tinós, Xiaodong Li:
Overlapping Cooperative Co-Evolution for Overlapping Large-Scale Global Optimization Problems. - David H. Lee, Anishalakshmi V. Palaparthi, Matthew C. Fontaine, Bryon Tjanaka, Stefanos Nikolaidis:
Density Descent for Diversity Optimization. - Hongqiao Lian, Zeyuan Ma, Hongshu Guo, Ting Huang, Yue-Jiao Gong:
RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning. - Daiki Morinaga, Youhei Akimoto:
Sign-Averaging Covariance Matrix Adaptation Evolution Strategy. - Jeremy Porter, Dirk V. Arnold:
Direct Augmented Lagrangian Evolution Strategies. - Ryoji Tanabe:
Benchmarking Parameter Control Methods in Differential Evolution for Mixed-Integer Black-Box Optimization. - Kento Uchida, Ryoki Hamano, Masahiro Nomura, Shota Saito, Shinichi Shirakawa:
CMA-ES for Safe Optimization. - Kento Uchida, Kenta Nishihara, Shinichi Shirakawa:
CMA-ES with Adaptive Reevaluation for Multiplicative Noise.
Genetic Algorithms
- Andrew Festa, Gaurav Dixit, Kagan Tumer:
Reinforcing Inter-Class Dependencies in the Asymmetric Island Model. - Yong-Feng Ge, Hua Wang, Jinli Cao, Yanchun Zhang, Georgios Kambourakis:
Federated Genetic Algorithm: Two-Layer Privacy-Preserving Trajectory Data Publishing. - Yufan Kang, Rongsheng Zhang, Wei Shao, Flora D. Salim, Jeffrey Chan:
Promoting Two-sided Fairness in Dynamic Vehicle Routing Problems. - Gloria Pietropolli, Stefano Nichele, Eric Medvet:
The Role of the Substrate in CA-based Evolutionary Algorithms. - María Riveros, Nicolás Rojas-Morales, Elizabeth Montero, Gabriela Ochoa:
Understanding Search Trajectories in Parameter Tuning. - Furong Ye, Frank Neumann, Jacob de Nobel, Aneta Neumann, Thomas Bäck:
What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms.
General Evolutionary Computation and Hybrids
- Brahim Aboutaib, Andrew M. Sutton:
Mixed Binomial Distributions for Binary Mutation Operators. - Sofya Aksenyuk, Szymon Bujowski, Maciej Komosinski, Konrad Miazga:
Late Bloomers, First Glances, Second Chances: Exploration of the Mechanisms Behind Fitness Diversity. - Darren M. Chitty, James Charles, Alberto Moraglio, Ed Keedwell:
Applying a Quantum Annealer to the Traffic Assignment Problem. - Adam Gaier, James Stoddart, Lorenzo Villaggi, Shyam Sudhakaran:
Generative Design through Quality-Diversity Data Synthesis and Language Models. - Kazuaki Harada, Hitoshi Iba:
Lamarckian Co-design of Soft Robots via Transfer Learning. - Mario Alejandro Hevia Fajardo, Erik Hemberg, Jamal Toutouh, Una-May O'Reilly, Per Kristian Lehre:
A Self-adaptive Coevolutionary Algorithm. - Maciej Komosinski, Agnieszka Mensfelt:
Distance-Targeting Mutation Operator for Evolutionary Design of 3D Structures.
Genetic Programming
- Kirill Antonov, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein, Anna V. Kononova:
A Functional Analysis Approach to Symbolic Regression. - Wolfgang Banzhaf, Illya Bakurov:
On the Nature of the Phenotype in Tree Genetic Programming. - Kei Sen Fong, Mehul Motani:
MetaSR: A Meta-Learning Approach to Fitness Formulation for Frequency-Aware Symbolic Regression. - Thomas Helmuth, Jayden Fedoroff, Edward R. Pantridge, Lee Spector:
Facilitating Function Application in Code Building Genetic Programming. - Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, William G. La Cava:
Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing. - Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, William G. La Cava:
Minimum variance threshold for epsilon-lexicase selection. - Steven Jorgensen, Giorgia Nadizar, Gloria Pietropolli, Luca Manzoni, Eric Medvet, Una-May O'Reilly, Erik Hemberg:
Large Language Model-based Test Case Generation for GP Agents. - Xiao-Cheng Liao, Yi Mei, Mengjie Zhang:
Learning Traffic Signal Control via Genetic Programming. - Giorgia Nadizar, Eric Medvet, Dennis Wilson:
Searching for a Diversity of Interpretable Graph Control Policies. - Su Nguyen, Dhananjay R. Thiruvady, Yuan Sun, Mengjie Zhang:
Genetic-based Constraint Programming for Resource Constrained Job Scheduling. - Andrew Ni, Lee Spector:
Effective Adaptive Mutation Rates for Program Synthesis. - Etienne Russeil, Fabrício Olivetti de França, Konstantin L. Malanchev, Bogdan Burlacu, Emille E. O. Ishida, Marion Leroux, Clément Michelin, Guillaume Moinard, Emmanuel Gangler:
Multiview Symbolic Regression. - Thalea Schlender, Mafalda Malafaia, Tanja Alderliesten, Peter A. N. Bosman:
Improving the efficiency of GP-GOMEA for higher-arity operators. - Jiahao Wen, Junlan Dong, Jinghui Zhong:
Sign Change Detection based Fitness Evaluation for Automatic Implicit Equation Discovery. - Longfei Felix Yan, Hui Ma, Gang Chen:
Reinforcement Learning-Assisted Genetic Programming Hyper Heuristic Approach to Location-Aware Dynamic Online Application Deployment in Clouds. - Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, Mengjie Zhang:
Bias-Variance Decomposition: An Effective Tool to Improve Generalization of Genetic Programming-based Evolutionary Feature Construction for Regression.
Learning for Evolutionary Computation
- Konstantin Dietrich, Diederick Vermetten, Carola Doerr, Pascal Kerschke:
Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization. - Jiyuan Pei, Jialin Liu, Yi Mei:
Learning from Offline and Online Experiences: A Hybrid Adaptive Operator Selection Framework. - Quentin Renau, Emma Hart:
Improving Algorithm-Selectors and Performance-Predictors via Learning Discriminating Training Samples. - Saba Sadeghi Ahouei, Jacob de Nobel, Aneta Neumann, Thomas Bäck, Frank Neumann:
Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. - Eliad Shem Tov, Achiya Elyasaf:
Deep Neural Crossover: A Multi-Parent Operator That Leverages Gene Correlations. - Jonathan Wurth, Helena Stegherr, Michael Heider, Jörg Hähner:
GRAHF: A Hyper-Heuristic Framework for Evolving Heterogeneous Island Model Topologies. - Tao Xu, Hongyang Chen, Jun He:
Accelerate Evolution Strategy by Proximal Policy Optimization. - Hongjie Xu, Yunzhuang Shen, Yuan Sun, Xiaodong Li:
Machine Learning-Enhanced Ant Colony Optimization for Column Generation.
Neuroevolution
- Manon Flageat, Bryan Lim, Antoine Cully:
Enhancing MAP-Elites with Multiple Parallel Evolution Strategies. - Brandon Morgan, Dean Hougen:
Evolving Loss Functions for Specific Image Augmentation Techniques. - Brandon Morgan, Dean Hougen:
Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution. - Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, Christopher W. Cleghorn:
LLMatic: Neural Architecture Search Via Large Language Models And Quality Diversity Optimization. - Joachim Winther Pedersen, Erwan Plantec, Eleni Nisioti, Milton Montero, Sebastian Risi:
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents. - Tran Hai Thanh, Long Doan, Ngoc Hoang Luong, Huynh Thi Thanh Binh:
THNAS-GA: A Genetic Algorithm for Training-free Hardware-aware Neural Architecture Search. - Corinna Triebold, Anil Yaman:
Evolving Generalist Controllers to Handle a Wide Range of Morphological Variations. - An Vo, Ngoc Hoang Luong:
Efficient Multi-Objective Neural Architecture Search via Pareto Dominance-based Novelty Search. - Lishuang Wang, Mengfei Zhao, Enyu Liu, Kebin Sun, Ran Cheng:
Tensorized NeuroEvolution of Augmenting Topologies for GPU Acceleration.
Real World Applications
- Jordan T. Bishop, Jason Jooste, David Howard:
Evolutionary Exploration of Triply Periodic Minimal Surfaces via Quality Diversity. - Mathilde Chen, David Makowski, Alberto Tonda:
Multi-Objective Optimization for Large-scale Allocation of Soybean Crops. - Xiang-Ling Chen, Xiao-Cheng Liao, Feng-Feng Wei, Wei-Neng Chen:
An Order-aware Adaptive Iterative Local Search Metaheuristic for Multi-depot UAV Pickup and Delivery Problem. - Christian Cintrano, Jamal Toutouh, Sergio Nesmachnow:
Optimizing Electric Vehicle Charging Station Placement Integrating Daily Mobility Patterns and Residential Locations. - Victor Hugo Vidigal Corrêa, Thiago Alves de Queiroz, Manuel Iori, André Gustavo dos Santos, Mutsunori Yagiura, Giorgio Zucchi:
Optimizing a Car Patrolling Application by Iterated Local Search. - Felipe Dumont, María Cristina Riff:
2-Step Evolutionary Algorithm for the generation of dungeons with lock door missions using horizontal symmetry. - Mathew Falloon, Hui Ma, Aaron Chen:
Energy-Aware Dynamic Resource Allocation and Container Migration in Cloud Servers: A Co-evolution GPHH Approach. - Fábio Augusto Faria, Luiz Henrique Buris, Luís Augusto Martins Pereira, Fabio Augusto Menocci Cappabianco:
Creating Ensembles of Classifiers through UMDA for Aerial Scene Classification. - Sharlotte Gounder, Frank Neumann, Aneta Neumann:
Evolutionary Diversity Optimisation for Sparse Directed Communication Networks. - Sebastian Gruber, Paul Feichtenschlager, Christoph G. Schuetz:
Using Genetic Algorithms for Privacy-Preserving Optimization of Multi-Objective Assignment Problems in Time-Critical Settings: An Application in Air Traffic Flow Management. - Mujtaba Hassan, Jo Vliegen, Stjepan Picek, Nele Mentens:
A Systematic Exploration of Evolutionary Computation for the Design of Hardware-oriented Non-cryptographic Hash Functions. - Aline Hufschmitt, Patrice Parraud:
Genetic Meta Cipher. - Hannah Janmohamed, Marta Wolinska, Shikha Surana, Thomas Pierrot, Aron Walsh, Antoine Cully:
Multi-Objective Quality-Diversity for Crystal Structure Prediction. - Rachit Kumar, David Zhang, Marylyn DeRiggi Ritchie:
Genetic Algorithm Selection of Interacting Features (GASIF) for Selecting Biological Gene-Gene Interactions. - Atanu Mazumdar, Bhavya Jain, Monisha Mitra, Prodyut Dhar:
Interactive Evolutionary Multiobjective Optimization of Primer Design with Uncertain Objectives. - Eduardo Bouhid Neto, Fábio Augusto Faria, Amanda de Almeida Sales De Oliveira, Álvaro Luiz Fazenda:
A Satellite Band Selection Framework for Amazon Forest Deforestation Detection Task. - Huy Quang Ngo, Mingyu Guo, Hung X. Nguyen:
Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys. - Adel Nikfarjam, Ty Stanford, Aneta Neumann, Dorothea Dumuid, Frank Neumann:
Quality Diversity Approaches for Time-Use Optimisation to Improve Health Outcomes. - Akinola Ogunsemi, John A. W. McCall, Alexandru-Ciprian Zavoianu, Lee A. Christie:
Cost and Performance Comparison of Holistic Solution Approaches for Complex Supply Chains on a Novel Linked Problem Benchmark. - Diego Daniel Pedroza-Perez, Jamal Toutouh, Gabriel Luque:
Redesigning road infrastructure to integrate e-scooter micromobility as part of multimodal transportation. - Martina Saletta, Claudio Ferretti:
Exploring the Prompt Space of Large Language Models through Evolutionary Sampling. - Evi Sijben, Jeroen Jansen, Peter A. N. Bosman, Tanja Alderliesten:
Function Class Learning with Genetic Programming: Towards Explainable Meta Learning for Tumor Growth Functionals. - Qurrat Ul Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang:
Feature Extraction with Automated Scale Selection in Skin Cancer Image Classification: A Genetic Programming Approach. - Trinh Van Chien, Ngo Tran Anh Thu, Lam Nguyen, Nguyen Binh, Huynh Thi Thanh Binh:
On the Performance of User Association in Space-Ground Communications with Integer-Coded Genetic Algorithms. - Aljosa Vodopija, Jordan N. Cork, Bogdan Filipic:
The Lunar Lander Landing Site Selection Benchmark Reexamined: Problem Characterization and Algorithm Performance. - Tongyu Wu, Yuntian Zhang, Changhao Miao, Chen Chen, Shuxin Ding:
Mixed-Variable Correlation-Aware Metaheuristic for Deployment Optimization of 3-D Sensor Networks. - Chixin Xiao, Maoxin He, Dechen Jiang, Yiwei Zhang, Yuxin Tang, Zhenyu Ling:
Differential Evolution Based on Light-Weight-Surrogate for Solving High-Dimensional Energy Management Problem. - Peijie Xu, Andy Song, Ke Wang:
Genetic Programming Empowered Feature Construction towards Energy Efficient BVI Wearables. - Yingfang Yuan, Wenjun Wang, Xin Li, Kefan Chen, Yonghan Zhang, Wei Pang:
Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy.
Search-Based Software Engineering
- Michael Auer, Dominik Diner, Gordon Fraser:
Search-based Crash Reproduction for Android Apps. - Deyun Lyu, Zhenya Zhang, Paolo Arcaini, Fuyuki Ishikawa, Thomas Laurent, Jianjun Zhao:
Search-Based Repair of DNN Controllers of AI-Enabled Cyber-Physical Systems Guided by System-Level Specifications. - Francisco Zanartu, Christoph Treude, Markus Wagner:
Socialz: Multi-Feature Social Fuzz Testing.
Swarm Intelligence
- Mehmet Anil Akbay, Christian Blum, Michella Saliba:
The Electric Vehicle Problem with Road Junctions and Road Types: An Ant Colony Optimization Approach. - Aseel Ismael Ali, Edward C. Keedwell, Ayah Helal:
A Differential Pheromone Grouping Ant Colony Optimization Algorithm for the 1-D Bin Packing Problem. - Ting Dong, Haoxin Wang, Wenbo Ding, Libao Shi:
A Self-adaptive Rotationally Invariant Particle Swarm Optimization for Global Optimization. - Kordel K. France, Anirban Paul, Ivneet Banga, Shalini Prasad:
Emergent Behavior in Evolutionary Swarms for Machine Olfaction. - Matthias Kergaßner, Oliver Keszöcze, Rolf Wanka:
Markov Chain-based Optimization Time Analysis of Bivalent Ant Colony Optimization for Sorting and LeadingOnes. - Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, Yue-Jiao Gong:
Auto-configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement Learning. - Xin-Yu Wang, Qi-Te Yang, Yi Jiang, Kay Chen Tan, Jun Zhang, Zhi-Hui Zhan:
Fine-Grain Knowledge Transfer-based Multitask Particle Swarm Optimization with Dual Clustering-based Task Generation for High-Dimensional Feature Selection. - Yong Zhang, Ke-Jing Du, Yi Jiang, Li-Min Wang, Hua Wang, Zhi-Hui Zhan:
Adaptive Aggregative Multitask Competitive Particle Swarm Optimization with Bi-Directional Asymmetric Flip Strategy for High-Dimensional Feature Selection.
Theory
- Denis Antipov, Benjamin Doerr, Alexandra Ivanova:
Already Moderate Population Sizes Provably Yield Strong Robustness to Noise. - Jakob Baumann, Ignaz Rutter, Dirk Sudholt:
Evolutionary Computation Meets Graph Drawing: Runtime Analysis for Crossing Minimisation on Layered Graph Drawings. - Alistair Benford, Per Kristian Lehre:
Runtime Analysis of Coevolutionary Algorithms on a Class of Symmetric Zero-Sum Games. - Duc-Cuong Dang, Per Kristian Lehre:
The SLO Hierarchy of pseudo-Boolean Functions and Runtime of Evolutionary Algorithms. - Paul Fischer, John Alasdair Warwicker, Carsten Witt:
A Runtime Analysis of Bias-invariant Neuroevolution and Dynamic Fitness Evaluation. - Jonathan Gadea Harder, Timo Kötzing, Xiaoyue Li, Aishwarya Radhakrishnan, Janosch Ruff:
Run Time Bounds for Integer-Valued OneMax Functions. - Martin S. Krejca, Carsten Witt:
A Flexible Evolutionary Algorithm with Dynamic Mutation Rate Archive. - Johannes Lengler, Leon Schiller, Oliver Sieberling:
Plus Strategies are Exponentially Slower for Planted Optima of Random Height. - Andre Opris, Duc-Cuong Dang, Frank Neumann, Dirk Sudholt:
Runtime Analyses of NSGA-III on Many-Objective Problems. - Andre Opris, Johannes Lengler, Dirk Sudholt:
A Tight O(4k/pc) Runtime Bound for a (μ+1)GA on Jumpk for Realistic Crossover Probabilities. - Marcus Schmidbauer, Andre Opris, Jakob Bossek, Frank Neumann, Dirk Sudholt:
Guiding Quality Diversity on Monotone Submodular Functions: Customising the Feature Space by Adding Boolean Conjunctions.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.