default search action
Romain Couillet
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j47]Hugo Lebeau, Florent Chatelain, Romain Couillet:
Asymptotic Gaussian Fluctuations of Eigenvectors in Spectral Clustering. IEEE Signal Process. Lett. 31: 1920-1924 (2024) - [i58]Hugo Lebeau, Florent Chatelain, Romain Couillet:
A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation. CoRR abs/2402.03169 (2024) - [i57]Hugo Lebeau, Florent Chatelain, Romain Couillet:
Asymptotic Gaussian Fluctuations of Eigenvectors in Spectral Clustering. CoRR abs/2402.12302 (2024) - [i56]Victor Leger, Romain Couillet:
A Large Dimensional Analysis of Multi-task Semi-Supervised Learning. CoRR abs/2402.13646 (2024) - [i55]Victor Leger, Romain Couillet:
Asymptotic Bayes risk of semi-supervised learning with uncertain labeling. CoRR abs/2403.17767 (2024) - 2023
- [c99]Minh-Toan Nguyen, Romain Couillet:
Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture. AISTATS 2023: 5063-5078 - [c98]Cyprien Doz, Chengfang Ren, Jean Philippe Ovarlez, Romain Couillet:
Large Dimensional Analysis of LS-SVM Transfer Learning: Application to Polsar Classification. ICASSP 2023: 1-5 - [c97]Malik Tiomoko, Romain Couillet, Frédéric Pascal:
PCA-based Multi-Task Learning: a Random Matrix Approach. ICML 2023: 34280-34300 - [i54]Minh-Toan Nguyen, Romain Couillet:
Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture. CoRR abs/2303.02048 (2023) - 2022
- [j46]José Henrique de Morais Goulart, Romain Couillet, Pierre Comon:
A Random Matrix Perspective on Random Tensors. J. Mach. Learn. Res. 23: 264:1-264:36 (2022) - [j45]Romain Couillet, Denis Trystram, Thierry Ménissier:
The Submerged Part of the AI-Ceberg [Perspectives]. IEEE Signal Process. Mag. 39(5): 10-17 (2022) - [c96]Hafiz Tiomoko Ali, Zhenyu Liao, Romain Couillet:
Random matrices in service of ML footprint: ternary random features with no performance loss. ICLR 2022 - [c95]Hugo Lebeau, Romain Couillet, Florent Chatelain:
A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory Resources. ICML 2022: 12253-12281 - 2021
- [j44]Xiaoyi Mai, Romain Couillet:
Consistent Semi-Supervised Graph Regularization for High Dimensional Data. J. Mach. Learn. Res. 22: 94:1-94:48 (2021) - [j43]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
A Unified Framework for Spectral Clustering in Sparse Graphs. J. Mach. Learn. Res. 22: 217:1-217:56 (2021) - [c94]Mohamed El Amine Seddik, Cosme Louart, Romain Couillet, Mohamed Tamaazousti:
The Unexpected Deterministic and Universal Behavior of Large Softmax Classifiers. AISTATS 2021: 1045-1053 - [c93]Charles Séjourné, Romain Couillet, Pierre Comon:
A Large-Dimensional Analysis of Symmetric SNE. ICASSP 2021: 2970-2974 - [c92]Zhenyu Liao, Romain Couillet, Michael W. Mahoney:
Sparse Quantized Spectral Clustering. ICLR 2021 - [c91]Malik Tiomoko, Hafiz Tiomoko Ali, Romain Couillet:
Deciphering and Optimizing Multi-Task Learning: a Random Matrix Approach. ICLR 2021 - [c90]Romain Couillet, Florent Chatelain, Nicolas Le Bihan:
Two-way kernel matrix puncturing: towards resource-efficient PCA and spectral clustering. ICML 2021: 2156-2165 - [i53]Romain Couillet, Florent Chatelain, Nicolas Le Bihan:
Two-way kernel matrix puncturing: towards resource-efficient PCA and spectral clustering. CoRR abs/2102.12293 (2021) - [i52]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs. CoRR abs/2103.03561 (2021) - [i51]José Henrique de Morais Goulart, Romain Couillet, Pierre Comon:
A Random Matrix Perspective on Random Tensors. CoRR abs/2108.00774 (2021) - [i50]Hafiz Tiomoko Ali, Zhenyu Liao, Romain Couillet:
Random matrices in service of ML footprint: ternary random features with no performance loss. CoRR abs/2110.01899 (2021) - [i49]Sami Fakhry, Romain Couillet, Malik Tiomoko:
Multi-task learning on the edge: cost-efficiency and theoretical optimality. CoRR abs/2110.04639 (2021) - [i48]Malik Tiomoko, Romain Couillet, Frédéric Pascal:
PCA-based Multi Task Learning: a Random Matrix Approach. CoRR abs/2111.00924 (2021) - 2020
- [j42]Khalil Elkhalil, Abla Kammoun, Romain Couillet, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini:
A Large Dimensional Study of Regularized Discriminant Analysis. IEEE Trans. Signal Process. 68: 2464-2479 (2020) - [c89]Romain Couillet, Yagmur Gizem Cinar, Éric Gaussier, Muhammad Imran:
Word Representations Concentrate and This is Good News! CoNLL 2020: 325-334 - [c88]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Optimal Laplacian Regularization for Sparse Spectral Community Detection. ICASSP 2020: 3237-3241 - [c87]Malik Tiomoko, Cosme Louart, Romain Couillet:
Large Dimensional Asymptotics of Multi-Task Learning. ICASSP 2020: 8787-8791 - [c86]Mohamed El Amine Seddik, Cosme Louart, Mohamed Tamaazousti, Romain Couillet:
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures. ICML 2020: 8573-8582 - [c85]Tayeb Zarrouk, Romain Couillet, Florent Chatelain, Nicolas Le Bihan:
Performance-Complexity Trade-Off in Large Dimensional Statistics. MLSP 2020: 1-6 - [c84]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Community detection in sparse time-evolving graphs with a dynamical Bethe-Hessian. NeurIPS 2020 - [c83]Zhenyu Liao, Romain Couillet, Michael W. Mahoney:
A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent. NeurIPS 2020 - [i47]Mohamed El Amine Seddik, Cosme Louart, Mohamed Tamaazousti, Romain Couillet:
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures. CoRR abs/2001.08370 (2020) - [i46]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
A unified framework for spectral clustering in sparse graphs. CoRR abs/2003.09198 (2020) - [i45]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Community detection in sparse time-evolving graphs with a dynamical Bethe-Hessian. CoRR abs/2006.04510 (2020) - [i44]Zhenyu Liao, Romain Couillet, Michael W. Mahoney:
A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent. CoRR abs/2006.05013 (2020) - [i43]Xiaoyi Mai, Romain Couillet:
Consistent Semi-Supervised Graph Regularization for High Dimensional Data. CoRR abs/2006.07575 (2020) - [i42]Malik Tiomoko Ali, Romain Couillet, Hafiz Tiomoko:
Large Dimensional Analysis and Improvement of Multi Task Learning. CoRR abs/2009.01591 (2020) - [i41]Zhenyu Liao, Romain Couillet, Michael W. Mahoney:
Sparse Quantized Spectral Clustering. CoRR abs/2010.01376 (2020)
2010 – 2019
- 2019
- [j41]Romain Couillet, Malik Tiomoko, Steeve Zozor, Eric Moisan:
Random matrix-improved estimation of covariance matrix distances. J. Multivar. Anal. 174 (2019) - [j40]Zhenyu Liao, Romain Couillet:
A Large Dimensional Analysis of Least Squares Support Vector Machines. IEEE Trans. Signal Process. 67(4): 1065-1074 (2019) - [c82]Malik Tiomoko, Romain Couillet:
Estimation of Covariance Matrix Distances in the High Dimension Low Sample Size Regime. CAMSAP 2019: 341-345 - [c81]Romain Couillet:
A Random Matrix Analysis and Optimization Framework to Large Dimensional Transfer Learning. CAMSAP 2019: 401-404 - [c80]Romain Couillet:
High Dimensional Robust Classification: A Random Matrix Analysis. CAMSAP 2019: 420-424 - [c79]Zhenyu Liao, Romain Couillet:
On Inner-Product Kernels of High Dimensional Data. CAMSAP 2019: 579-583 - [c78]Cosme Louart, Romain Couillet:
A Concentration of Measure Perspective to Robust Statistics. CAMSAP 2019: 679-683 - [c77]Arun Kadavankandy, Romain Couillet:
Asymptotic Gaussian Fluctuations of Spectral Clustering Eigenvectors. CAMSAP 2019: 694-698 - [c76]Malik Tiomoko, Romain Couillet:
Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions. EUSIPCO 2019: 1-5 - [c75]Lorenzo Dall'Amico, Romain Couillet:
Community Detection in Sparse Realistic Graphs: Improving the Bethe Hessian. ICASSP 2019: 2942-2946 - [c74]Xiaoyi Mai, Zhenyu Liao, Romain Couillet:
A Large Scale Analysis of Logistic Regression: Asymptotic Performance and New Insights. ICASSP 2019: 3357-3361 - [c73]Xiaoyi Mai, Romain Couillet:
Revisiting and Improving Semi-supervised Learning: A Large Dimensional Approach. ICASSP 2019: 3547-3551 - [c72]Malik Tiomoko, Romain Couillet, Eric Moisan, Steeve Zozor:
Improved Estimation of the Distance between Covariance Matrices. ICASSP 2019: 7445-7449 - [c71]Mohamed El Amine Seddik, Mohamed Tamaazousti, Romain Couillet:
Kernel Random Matrices of Large Concentrated Data: the Example of GAN-Generated Images. ICASSP 2019: 7480-7484 - [c70]Hafiz Tiomoko Ali, Sijia Liu, Yasin Yilmaz, Romain Couillet, Indika Rajapakse, Alfred O. Hero III:
Latent Heterogeneous Multilayer Community Detection. ICASSP 2019: 8142-8146 - [c69]Mohamed El Amine Seddik, Mohamed Tamaazousti, Romain Couillet:
A Kernel Random Matrix-Based Approach for Sparse PCA. ICLR (Poster) 2019 - [c68]Malik Tiomoko, Romain Couillet, Florent Bouchard, Guillaume Ginolhac:
Random Matrix Improved Covariance Estimation for a Large Class of Metrics. ICML 2019: 6254-6263 - [c67]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs. NeurIPS 2019: 4039-4049 - [i40]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Optimized Deformed Laplacian for Spectrum-based Community Detection in Sparse Heterogeneous Graphs. CoRR abs/1901.09715 (2019) - [i39]Malik Tiomoko, Florent Bouchard, Guillaume Ginolhac, Romain Couillet:
Random Matrix Improved Covariance Estimation for a Large Class of Metrics. CoRR abs/1902.02554 (2019) - [i38]Malik Tiomoko, Romain Couillet:
Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions. CoRR abs/1903.03447 (2019) - [i37]Zhenyu Liao, Romain Couillet:
Inner-product Kernels are Asymptotically Equivalent to Binary Discrete Kernels. CoRR abs/1909.06788 (2019) - [i36]Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay:
Optimal Laplacian regularization for sparse spectral community detection. CoRR abs/1912.01419 (2019) - 2018
- [j39]Abla Kammoun, Romain Couillet, Frédéric Pascal, Mohamed-Slim Alouini:
Optimal Design of the Adaptive Normalized Matched Filter Detector Using Regularized Tyler Estimators. IEEE Trans. Aerosp. Electron. Syst. 54(2): 755-769 (2018) - [j38]Liusha Yang, Matthew R. McKay, Romain Couillet:
High-Dimensional MVDR Beamforming: Optimized Solutions Based on Spiked Random Matrix Models. IEEE Trans. Signal Process. 66(7): 1933-1947 (2018) - [j37]Nicolas Auguin, David Morales-Jiménez, Matthew R. McKay, Romain Couillet:
Large-Dimensional Behavior of Regularized Maronna's M-Estimators of Covariance Matrices. IEEE Trans. Signal Process. 66(13): 3529-3542 (2018) - [j36]Apostolos Karadimitrakis, Aris L. Moustakas, Romain Couillet:
Gallager Bound for MIMO Channels: Large- $N$ Asymptotics. IEEE Trans. Wirel. Commun. 17(2): 1323-1330 (2018) - [c66]Xiaoyi Mai, Romain Couillet:
Semi-Supervised Spectral Clustering. ACSSC 2018: 2012-2016 - [c65]Romain Couillet, Zhenyu Liao, Xiaoyi Mai:
Classification Asymptotics in the Random Matrix Regime. EUSIPCO 2018: 1875-1879 - [c64]Hafiz Tiomoko Ali, Abla Kammoun, Romain Couillet:
Random Matrix Asymptotics of Inner Product Kernel Spectral Clustering. ICASSP 2018: 2441-2445 - [c63]Cosme Louart, Romain Couillet:
A Random Matrix and Concentration Inequalities Framework for Neural Networks Analysis. ICASSP 2018: 4214-4218 - [c62]Zhenyu Liao, Romain Couillet:
On the Spectrum of Random Features Maps of High Dimensional Data. ICML 2018: 3069-3077 - [c61]Zhenyu Liao, Romain Couillet:
The Dynamics of Learning: A Random Matrix Approach. ICML 2018: 3078-3087 - [c60]Hafiz Tiomoko Ali, Abla Kammoun, Romain Couillet:
Random Matrix-Improved Kernels For Large Dimensional Spectral Clustering. SSP 2018: 453-457 - [c59]Liusha Yang, Matthew R. McKay, Romain Couillet:
Random Matrix-Optimized High-Dimensional MVDR Beamforming. SSP 2018: 473-477 - [i35]Zhenyu Liao, Romain Couillet:
On the Spectrum of Random Features Maps of High Dimensional Data. CoRR abs/1805.11916 (2018) - [i34]Zhenyu Liao, Romain Couillet:
The Dynamics of Learning: A Random Matrix Approach. CoRR abs/1805.11917 (2018) - [i33]Hafiz Tiomoko Ali, Sijia Liu, Yasin Yilmaz, Alfred O. Hero III, Romain Couillet, Indika Rajapakse:
Latent heterogeneous multilayer community detection. CoRR abs/1806.07963 (2018) - [i32]Romain Couillet, Malik Tiomoko, Steeve Zozor, Eric Moisan:
Random matrix-improved estimation of covariance matrix distances. CoRR abs/1810.04534 (2018) - [i31]Yacine Chitour, Zhenyu Liao, Romain Couillet:
A Geometric Approach of Gradient Descent Algorithms in Neural Networks. CoRR abs/1811.03568 (2018) - 2017
- [j35]Hafiz Tiomoko Ali, Romain Couillet:
Improved spectral community detection in large heterogeneous networks. J. Mach. Learn. Res. 18: 225:1-225:49 (2017) - [j34]Meysam Sadeghi, Luca Sanguinetti, Romain Couillet, Chau Yuen:
Large System Analysis of Power Normalization Techniques in Massive MIMO. IEEE Trans. Veh. Technol. 66(10): 9005-9017 (2017) - [j33]Meysam Sadeghi, Luca Sanguinetti, Romain Couillet, Chau Yuen:
Reducing the Computational Complexity of Multicasting in Large-Scale Antenna Systems. IEEE Trans. Wirel. Commun. 16(5): 2963-2975 (2017) - [c58]Cosme Louart, Romain Couillet:
Harnessing neural networks: A random matrix approach. ICASSP 2017: 2282-2286 - [c57]Zhenyu Liao, Romain Couillet:
Random matrices meet machine learning: A large dimensional analysis of LS-SVM. ICASSP 2017: 2397-2401 - [c56]Xiaoyi Mai, Romain Couillet:
The counterintuitive mechanism of graph-based semi-supervised learning in the big data regime. ICASSP 2017: 2821-2825 - [c55]Khalil Elkhalil, Abla Kammoun, Romain Couillet, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini:
Asymptotic performance of regularized quadratic discriminant analysis based classifiers. MLSP 2017: 1-6 - [c54]Apostolos Karadimitrakis, Romain Couillet, Aris L. Moustakas, Luca Sanguinetti:
The Gallager Bound in Fiber Optical MIMO. WSA 2017: 1-8 - [i30]Cosme Louart, Zhenyu Liao, Romain Couillet:
A Random Matrix Approach to Neural Networks. CoRR abs/1702.05419 (2017) - [i29]Meysam Sadeghi, Luca Sanguinetti, Romain Couillet, Chau Yuen:
Reducing the Computational Complexity of Multicasting in Large-Scale Antenna Systems. CoRR abs/1702.05901 (2017) - [i28]Meysam Sadeghi, Luca Sanguinetti, Romain Couillet, Chau Yuen:
Large System Analysis of Power Normalization Techniques in Massive MIMO. CoRR abs/1705.07183 (2017) - [i27]Xiaoyi Mai, Romain Couillet:
A random matrix analysis and improvement of semi-supervised learning for large dimensional data. CoRR abs/1711.03404 (2017) - [i26]Apostolos Karadimitrakis, Aris L. Moustakas, Romain Couillet:
Gallager Bound for MIMO Channels: Large-N Asymptotics. CoRR abs/1711.08632 (2017) - 2016
- [j32]Romain Couillet, Gilles Wainrib, Harry Sevi, Hafiz Tiomoko Ali:
The Asymptotic Performance of Linear Echo State Neural Networks. J. Mach. Learn. Res. 17: 178:1-178:35 (2016) - [j31]Romain Couillet, Abla Kammoun, Frédéric Pascal:
Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals. J. Multivar. Anal. 143: 249-274 (2016) - [j30]Romain Couillet:
Introduction. Traitement du Signal 33(2-3): 159-160 (2016) - [j29]Romain Couillet:
Estimation robuste et matrices aléatoires. Traitement du Signal 33(2-3): 273-320 (2016) - [j28]Romain Couillet, Gilles Wainrib:
Perspectives en matrices aléatoires et grands réseaux. Traitement du Signal 33(2-3): 351-376 (2016) - [j27]Azary Abboud, Franck Iutzeler, Romain Couillet, Mérouane Debbah, Houria Siguerdidjane:
Distributed Production-Sharing Optimization and Application to Power Grid Networks. IEEE Trans. Signal Inf. Process. over Networks 2(1): 16-28 (2016) - [j26]Abla Kammoun, Romain Couillet, Frédéric Pascal, Mohamed-Slim Alouini:
Convergence and Fluctuations of Regularized Tyler Estimators. IEEE Trans. Signal Process. 64(4): 1048-1060 (2016) - [j25]Rémy Boyer, Romain Couillet, Bernard Henri Fleury, Pascal Larzabal:
Large-System Estimation Performance in Noisy Compressed Sensing With Random Support of Known Cardinality - A Bayesian Analysis. IEEE Trans. Signal Process. 64(21): 5525-5535 (2016) - [j24]Luca Sanguinetti, Romain Couillet, Mérouane Debbah:
Large System Analysis of Base Station Cooperation for Power Minimization. IEEE Trans. Wirel. Commun. 15(8): 5480-5496 (2016) - [c53]Romain Couillet, Abla Kammoun:
Random matrix improved subspace clustering. ACSSC 2016: 90-94 - [c52]Hafiz Tiomoko Ali, Romain Couillet:
Random matrix improved community detection in heterogeneous networks. ACSSC 2016: 1385-1389 - [c51]Hafiz Tiomoko Ali, Romain Couillet:
Performance analysis of spectral community detection in realistic graph models. ICASSP 2016: 4548-4552 - [c50]Romain Couillet, Gilles Wainrib, Hafiz Tiomoko Ali, Harry Sevi:
A Random Matrix Approach to Echo-State Neural Networks. ICML 2016: 517-525 - [c49]Nicolas Auguin, David Morales-Jiménez, Matthew R. McKay, Romain Couillet:
Robust shrinkage M-estimators of large covariance matrices. SSP 2016: 1-4 - [c48]Romain Couillet, Gilles Wainrib, Harry Sevi, Hafiz Tiomoko Ali:
Training performance of echo state neural networks. SSP 2016: 1-4 - [c47]Abla Kammoun, Romain Couillet, Frédéric Pascal, Mohamed-Slim Alouini:
Optimal adaptive normalized matched filter for large antenna arrays. SSP 2016: 1-5 - [i25]Romain Couillet, Gilles Wainrib, Harry Sevi, Hafiz Tiomoko Ali:
The Asymptotic Performance of Linear Echo State Neural Networks. CoRR abs/1603.07866 (2016) - 2015
- [j23]Romain Couillet, Frédéric Pascal, Jack W. Silverstein:
The random matrix regime of Maronna's M-estimator with elliptically distributed samples. J. Multivar. Anal. 139: 56-78 (2015) - [j22]Romain Couillet:
Robust spiked random matrices and a robust G-MUSIC estimator. J. Multivar. Anal. 140: 139-161 (2015) - [j21]Yacine Chitour, Romain Couillet, Frédéric Pascal:
On the Convergence of Maronna's M-Estimators of Scatter. IEEE Signal Process. Lett. 22(6): 709-712 (2015) - [j20]Jakob Hoydis, Romain Couillet, Pablo Piantanida:
The Second-Order Coding Rate of the MIMO Quasi-Static Rayleigh Fading Channel. IEEE Trans. Inf. Theory 61(12): 6591-6622 (2015) - [j19]Axel Müller, Romain Couillet, Emil Björnson, Sebastian Wagner, Mérouane Debbah:
Interference-Aware RZF Precoding for Multicell Downlink Systems. IEEE Trans. Signal Process. 63(15): 3959-3973 (2015) - [j18]Julia Vinogradova, Romain Couillet, Walid Hachem:
Estimation of Toeplitz Covariance Matrices in Large Dimensional Regime With Application to Source Detection. IEEE Trans. Signal Process. 63(18): 4903-4913 (2015) - [j17]David Morales-Jiménez, Romain Couillet, Matthew R. McKay:
Large Dimensional Analysis of Robust M-Estimators of Covariance With Outliers. IEEE Trans. Signal Process. 63(21): 5784-5797 (2015) - [j16]Liusha Yang, Romain Couillet, Matthew R. McKay:
A Robust Statistics Approach to Minimum Variance Portfolio Optimization. IEEE Trans. Signal Process. 63(24): 6684-6697 (2015) - [c46]Liusha Yang, Romain Couillet, Matthew R. McKay:
Minimum variance portfolio optimization in the spiked covariance model. CAMSAP 2015: 13-16 - [c45]Romain Couillet, Florent Benaych-Georges:
Understanding big data spectral clustering. CAMSAP 2015: 29-32 - [c44]Romain Couillet, Maria Sabrina Greco, Jean Philippe Ovarlez, Frédéric Pascal:
RMT for whitening space correlation and applications to radar detection. CAMSAP 2015: 149-152 - [c43]Luca Sanguinetti, Romain Couillet, Mérouane Debbah:
Base Station Cooperation for Power Minimization in the Downlink: Large System Analysis. GLOBECOM 2015: 1-6 - [c42]Abla Kammoun, Romain Couillet, Frédéric Pascal:
Second order statistics of bilinear forms of robust scatter estimators. ICASSP 2015: 3412-3416 - [c41]David Morales-Jiménez, Romain Couillet, Matthew R. McKay:
Large dimensional analysis of Maronna's M-estimator with outliers. ICASSP 2015: 3417-3421 - [c40]