


default search action
Sijia Liu 0001
Person information
- affiliation: Michigan State University, Department of Computer Science and Engineering, East Lansing, USA
- affiliation (2018 - 2020): IBM Research, MIT-IBM Watson AI Lab, Cambridge, MA, USA
- affiliation (2016 - 2017): University of Michigan, Ann Arbor, MI, USA
- affiliation (PhD 2016): Syracuse University, NY, USA
Other persons with the same name
- Sijia Liu — disambiguation page
- Sijia Liu 0002
— Mayo Clinic, Rochester, MN, USA (and 1 more)
- Sijia Liu 0003
— Beijing Jiaotong University, School of Electrical Engineering, China
- Sijia Liu 0004
— Zhengzhou Information Science and Technology Institute, Zhengzhou, China
- Sijia Liu 0005
— BYD Lithium Battery Company, Ltd., Shenzhen, China (and 1 more)
- Sijia Liu 0006
— City University of Hong Kong, Hong Kong, SAR, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j25]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu
:
Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization. Comput. Optim. Appl. 87(1): 117-147 (2024) - [j24]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu
:
Correction to: Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization. Comput. Optim. Appl. 89(2): 575-578 (2024) - [j23]Yuguang Yao, Xiao Guo, Vishal Asnani, Yifan Gong, Jiancheng Liu, Xue Lin, Xiaoming Liu, Sijia Liu:
Reverse Engineering of Deceptions on Machine- and Human-Centric Attacks. Found. Trends Priv. Secur. 6(2): 53-152 (2024) - [j22]Yihua Zhang
, Prashant Khanduri
, Ioannis C. Tsaknakis
, Yuguang Yao
, Mingyi Hong
, Sijia Liu
:
An Introduction to Bilevel Optimization: Foundations and applications in signal processing and machine learning. IEEE Signal Process. Mag. 41(1): 38-59 (2024) - [c147]Chongyu Fan, Jiancheng Liu, Alfred Olivier Hero, Sijia Liu
:
Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning. ECCV (21) 2024: 278-297 - [c146]Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu:
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy to Generate Unsafe Images ... For Now. ECCV (57) 2024: 385-403 - [c145]Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu:
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning. EMNLP 2024: 4276-4292 - [c144]Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng:
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints. EMNLP (Findings) 2024: 7773-7812 - [c143]Brian Zhang, Yuguang Yao, Sijia Liu:
Elevating Visual Prompting in Transfer Learning Via Pruned Model Ensembles: No Retrain, No Pain. ICASSP 2024: 6000-6004 - [c142]Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, Sijia Liu:
DeepZero: Scaling Up Zeroth-Order Optimization for Deep Model Training. ICLR 2024 - [c141]Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong
, Dennis Wei, Sijia Liu:
SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation. ICLR 2024 - [c140]Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, Sijia Liu:
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency. ICLR 2024 - [c139]Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, Pin-Yu Chen:
What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding. ICML 2024 - [c138]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. ICML 2024 - [c137]Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, Pin-Yu Chen:
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis. SAM 2024: 1-5 - [c136]Jiabao Ji, Bairu Hou, Zhen Zhang, Guanhua Zhang, Wenqi Fan, Qing Li, Yang Zhang, Gaowen Liu, Sijia Liu, Shiyu Chang:
Advancing the Robustness of Large Language Models through Self-Denoised Smoothing. NAACL (Short Papers) 2024: 246-257 - [c135]Bingsheng Yao
, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Yisi Sang, Sijia Liu, James A. Hendler, Dakuo Wang:
More Samples or More Prompts? Exploring Effective Few-Shot In-Context Learning for LLMs with In-Context Sampling. NAACL-HLT (Findings) 2024: 1772-1790 - [c134]Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Kompella, Sijia Liu, Shiyu Chang:
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference. NeurIPS 2024 - [c133]Quanfu Fan, Yilai Li, Yuguang Yao, John Cohn, Sijia Liu, Ziping Xu, Seychelle M. Vos, Michael A. Cianfrocco:
CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection. WACV 2024: 7877-7887 - [i157]Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu, Yuguang Yao, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, Yang Liu:
Rethinking Machine Unlearning for Large Language Models. CoRR abs/2402.08787 (2024) - [i156]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. CoRR abs/2402.11592 (2024) - [i155]Yihua Zhang, Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jiancheng Liu, Xiaoming Liu, Sijia Liu:
UnlearnCanvas: A Stylized Image Dataset to Benchmark Machine Unlearning for Diffusion Models. CoRR abs/2402.11846 (2024) - [i154]Hongkang Li, Shuai Zhang, Yihua Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance. CoRR abs/2403.07310 (2024) - [i153]Chongyu Fan, Jiancheng Liu, Alfred O. Hero III, Sijia Liu:
Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning. CoRR abs/2403.07362 (2024) - [i152]Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, Sijia Liu:
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency. CoRR abs/2403.10717 (2024) - [i151]Jiabao Ji, Bairu Hou, Zhen Zhang, Guanhua Zhang, Wenqi Fan, Qing Li, Yang Zhang, Gaowen Liu, Sijia Liu, Shiyu Chang:
Advancing the Robustness of Large Language Models through Self-Denoised Smoothing. CoRR abs/2404.12274 (2024) - [i150]Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu:
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning. CoRR abs/2404.18239 (2024) - [i149]Yuguang Yao, Steven A. Grosz, Sijia Liu, Anil K. Jain:
Hide and Seek: How Does Watermarking Impact Face Recognition? CoRR abs/2404.18890 (2024) - [i148]Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu:
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models. CoRR abs/2405.15234 (2024) - [i147]Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, Pin-Yu Chen:
What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding. CoRR abs/2406.01977 (2024) - [i146]Wei Li, Pin-Yu Chen, Sijia Liu, Ren Wang:
PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection. CoRR abs/2406.05826 (2024) - [i145]Zonglin Di, Zhaowei Zhu, Jinghan Jia, Jiancheng Liu, Zafar Takhirov, Bo Jiang, Yuanshun Yao, Sijia Liu, Yang Liu:
Label Smoothing Improves Machine Unlearning. CoRR abs/2406.07698 (2024) - [i144]Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, Shiyu Chang:
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference. CoRR abs/2406.08607 (2024) - [i143]Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, Pin-Yu Chen:
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis. CoRR abs/2406.17167 (2024) - [i142]Yuguang Yao, Anil K. Jain, Sijia Liu:
Adversarial Watermarking for Face Recognition. CoRR abs/2409.16056 (2024) - [i141]Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng:
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints. CoRR abs/2410.06458 (2024) - [i140]Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, Sijia Liu:
Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning. CoRR abs/2410.07163 (2024) - [i139]Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, Sijia Liu:
WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models. CoRR abs/2410.17509 (2024) - [i138]Haomin Zhuang, Yihua Zhang, Kehan Guo, Jinghan Jia, Gaowen Liu, Sijia Liu, Xiangliang Zhang:
UOE: Unlearning One Expert Is Enough For Mixture-of-experts LLMS. CoRR abs/2411.18797 (2024) - [i137]Changchang Sun, Ren Wang, Yihua Zhang, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Sijia Liu, Yan Yan:
Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification. CoRR abs/2412.16780 (2024) - 2023
- [j21]Tong Steven Sun
, Yuyang Gao
, Shubham Khaladkar
, Sijia Liu
, Liang Zhao
, Young-Ho Kim
, Sungsoo Ray Hong
:
Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations. Proc. ACM Hum. Comput. Interact. 7(CSCW2): 1-32 (2023) - [c132]Sijia Liu, Patrick Lange, Behnam Hedayatnia, Alexandros Papangelis, Di Jin, Andrew Wirth, Yang Liu, Dilek Hakkani-Tur:
Towards Credible Human Evaluation of Open-Domain Dialog Systems Using Interactive Setup. AAAI 2023: 13264-13272 - [c131]Pin-Yu Chen, Sijia Liu:
Holistic Adversarial Robustness of Deep Learning Models. AAAI 2023: 15411-15420 - [c130]Sijia Liu:
AAAI New Faculty Highlights: General and Scalable Optimization for Robust AI. AAAI 2023: 15447 - [c129]Soumyadeep Pal, Ren Wang, Yuguang Yao, Sijia Liu:
Towards Understanding How Self-training Tolerates Data Backdoor Poisoning. SafeAI@AAAI 2023 - [c128]Yimeng Zhang
, Akshay Karkal Kamath
, Qiucheng Wu, Zhiwen Fan, Wuyang Chen, Zhangyang Wang, Shiyu Chang, Sijia Liu, Cong Hao:
Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge Devices. ASP-DAC 2023: 745-750 - [c127]Sijia Liu
, Jiahao Liu
, Hansu Gu
, Dongsheng Li
, Tun Lu
, Peng Zhang
, Ning Gu
:
AutoSeqRec: Autoencoder for Efficient Sequential Recommendation. CIKM 2023: 1493-1502 - [c126]Ren Wang, Yuxuan Li, Sijia Liu:
Exploring Diversified Adversarial Robustness in Neural Networks via Robust Mode Connectivity. CVPR Workshops 2023: 2346-2352 - [c125]Haomin Zhuang, Yihua Zhang, Sijia Liu:
A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion. CVPR Workshops 2023: 2385-2392 - [c124]Yimeng Zhang
, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding:
Text-Visual Prompting for Efficient 2D Temporal Video Grounding. CVPR 2023: 14794-14804 - [c123]Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, Sijia Liu:
Understanding and Improving Visual Prompting: A Label-Mapping Perspective. CVPR 2023: 19133-19143 - [c122]Prakhar Gupta, Yang Liu, Di Jin, Behnam Hedayatnia, Spandana Gella, Sijia Liu, Patrick Lange, Julia Hirschberg, Dilek Hakkani-Tur:
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines. EMNLP (Findings) 2023: 14031-14047 - [c121]Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, Sijia Liu:
Visual Prompting for Adversarial Robustness. ICASSP 2023: 1-5 - [c120]Jinghan Jia, Yihua Zhang, Dogyoon Song, Sijia Liu, Alfred O. Hero III:
Robustness-Preserving Lifelong Learning Via Dataset Condensation. ICASSP 2023: 1-5 - [c119]Hui Li, Jinghan Jia, Shijun Liang, Yuguang Yao, Saiprasad Ravishankar, Sijia Liu:
SMUG: Towards Robust Mri Reconstruction by Smoothed Unrolling. ICASSP 2023: 1-5 - [c118]Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu Chang, Zhangyang Wang, Sijia Liu:
Robust Mixture-of-Expert Training for Convolutional Neural Networks. ICCV 2023: 90-101 - [c117]Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, Miao Liu:
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks. ICLR 2023 - [c116]Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu, Shiyu Chang:
TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization. ICLR 2023 - [c115]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen:
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity. ICLR 2023 - [c114]Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. ICLR 2023 - [c113]Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks. ICML 2023: 6074-6114 - [c112]Prashant Khanduri, Ioannis C. Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, Mingyi Hong:
Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach. ICML 2023: 16291-16325 - [c111]Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu:
Model Sparsity Can Simplify Machine Unlearning. NeurIPS 2023 - [c110]Shuai Zhang, Hongkang Li, Meng Wang, Miao Liu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Keerthiram Murugesan, Subhajit Chaudhury:
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with ε-Greedy Exploration. NeurIPS 2023 - [c109]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. NeurIPS 2023 - [c108]Sarik Ghazarian, Behnam Hedayatnia, Di Jin, Sijia Liu, Nanyun Peng, Yang Liu, Dilek Hakkani-Tur:
MERCY: Multiple Response Ranking Concurrently in Realistic Open-Domain Conversational Systems. SIGDIAL 2023: 615-631 - [c107]Jinghan Jia, Shashank Srikant, Tamara Mitrovska, Chuang Gan, Shiyu Chang, Sijia Liu, Una-May O'Reilly:
ClawSAT: Towards Both Robust and Accurate Code Models. SANER 2023: 212-223 - [i136]Soumyadeep Pal, Ren Wang, Yuguang Yao, Sijia Liu:
Towards Understanding How Self-training Tolerates Data Backdoor Poisoning. CoRR abs/2301.08751 (2023) - [i135]Alex Gu, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Certified Interpretability Robustness for Class Activation Mapping. CoRR abs/2301.11324 (2023) - [i134]Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, Miao Liu:
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks. CoRR abs/2302.02922 (2023) - [i133]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen:
A Theoretical Understanding of shallow Vision Transformers: Learning, Generalization, and Sample Complexity. CoRR abs/2302.06015 (2023) - [i132]Yihua Zhang, Pranay Sharma
, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. CoRR abs/2303.02343 (2023) - [i131]Jinghan Jia, Yihua Zhang, Dogyoon Song, Sijia Liu, Alfred O. Hero III:
Robustness-preserving Lifelong Learning via Dataset Condensation. CoRR abs/2303.04183 (2023) - [i130]Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding:
Text-Visual Prompting for Efficient 2D Temporal Video Grounding. CoRR abs/2303.04995 (2023) - [i129]Yuguang Yao, Jiancheng Liu, Yifan Gong, Xiaoming Liu, Yanzhi Wang, Xue Lin, Sijia Liu:
Can Adversarial Examples Be Parsed to Reveal Victim Model Information? CoRR abs/2303.07474 (2023) - [i128]Ren Wang, Yuxuan Li, Sijia Liu:
Robust Mode Connectivity-Oriented Adversarial Defense: Enhancing Neural Network Robustness Against Diversified 𝓁p Attacks. CoRR abs/2303.10225 (2023) - [i127]Jiaheng Wei, Zhaowei Zhu, Gang Niu, Tongliang Liu, Sijia Liu, Masashi Sugiyama, Yang Liu:
Fairness Improves Learning from Noisily Labeled Long-Tailed Data. CoRR abs/2303.12291 (2023) - [i126]Hui Li, Jinghan Jia, Shijun Liang, Yuguang Yao, Saiprasad Ravishankar, Sijia Liu:
SMUG: Towards robust MRI reconstruction by smoothed unrolling. CoRR abs/2303.12735 (2023) - [i125]Haomin Zhuang, Yihua Zhang, Sijia Liu:
A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion. CoRR abs/2303.16378 (2023) - [i124]Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma
, Sijia Liu:
Model Sparsification Can Simplify Machine Unlearning. CoRR abs/2304.04934 (2023) - [i123]Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks. CoRR abs/2306.04073 (2023) - [i122]Tong Steven Sun, Yuyang Gao, Shubham Khaladkar, Sijia Liu, Liang Zhao, Young-Ho Kim, Sungsoo Ray Hong:
Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations. CoRR abs/2307.04036 (2023) - [i121]Zhen Zhang, Guanhua Zhang, Bairu Hou, Wenqi Fan, Qing Li, Sijia Liu, Yang Zhang, Shiyu Chang:
Certified Robustness for Large Language Models with Self-Denoising. CoRR abs/2307.07171 (2023) - [i120]Yihua Zhang, Prashant Khanduri, Ioannis C. Tsaknakis, Yuguang Yao, Mingyi Hong, Sijia Liu:
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning. CoRR abs/2308.00788 (2023) - [i119]Sijia Liu, Jiahao Liu, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang, Ning Gu:
AutoSeqRec: Autoencoder for Efficient Sequential Recommendation. CoRR abs/2308.06878 (2023) - [i118]Yequan Zhao, Xinling Yu, Zhixiong Chen, Ziyue Liu
, Sijia Liu, Zheng Zhang:
Tensor-Compressed Back-Propagation-Free Training for (Physics-Informed) Neural Networks. CoRR abs/2308.09858 (2023) - [i117]Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu Chang, Zhangyang Wang, Sijia Liu:
Robust Mixture-of-Expert Training for Convolutional Neural Networks. CoRR abs/2308.10110 (2023) - [i116]Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer
, Jiancheng Liu, Konstantinos Parasyris
, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, Sijia Liu:
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training. CoRR abs/2310.02025 (2023) - [i115]Hsi-Ai Tsao, Lei Hsiung, Pin-Yu Chen, Sijia Liu, Tsung-Yi Ho:
AutoVP: An Automated Visual Prompting Framework and Benchmark. CoRR abs/2310.08381 (2023) - [i114]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. CoRR abs/2310.08782 (2023) - [i113]Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu:
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now. CoRR abs/2310.11868 (2023) - [i112]Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong
, Sijia Liu:
SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation. CoRR abs/2310.12508 (2023) - [i111]Shuai Zhang, Hongkang Li, Meng Wang, Miao Liu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Keerthiram Murugesan, Subhajit Chaudhury:
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with ε-Greedy Exploration. CoRR abs/2310.16173 (2023) - [i110]Zhuoshi Pan, Yuguang Yao, Gaowen Liu, Bingquan Shen, H. Vicky Zhao, Ramana Rao Kompella, Sijia Liu:
From Trojan Horses to Castle Walls: Unveiling Bilateral Backdoor Effects in Diffusion Models. CoRR abs/2311.02373 (2023) - [i109]Bingsheng Yao
, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Sijia Liu, James A. Hendler, Dakuo Wang:
More Samples or More Prompt Inputs? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering. CoRR abs/2311.09782 (2023) - [i108]Can Jin, Tianjin Huang, Yihua Zhang, Mykola Pechenizkiy, Sijia Liu, Shiwei Liu, Tianlong Chen:
Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective. CoRR abs/2312.01397 (2023) - [i107]Xiao Guo, Vishal Asnani, Sijia Liu, Xiaoming Liu:
Tracing Hyperparameter Dependencies for Model Parsing via Learnable Graph Pooling Network. CoRR abs/2312.02224 (2023) - [i106]Shijun Liang, Van Hoang Minh Nguyen, Jinghan Jia, Ismail Alkhouri, Sijia Liu, Saiprasad Ravishankar:
Robust MRI Reconstruction by Smoothed Unrolling (SMUG). CoRR abs/2312.07784 (2023) - 2022
- [j20]Ren Wang
, Tianqi Chen
, Philip Yao, Sijia Liu, Indika Rajapakse
, Alfred O. Hero III
:
ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense. IEEE Access 10: 103074-103088 (2022) - [j19]Ao Liu
, Xiaoyu Chen, Sijia Liu, Lirong Xia
, Chuang Gan:
Certifiably robust interpretation via Rényi differential privacy. Artif. Intell. 313: 103787 (2022) - [j18]Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning. Trans. Mach. Learn. Res. 2022 (2022) - [j17]Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang:
Can You Win Everything with A Lottery Ticket? Trans. Mach. Learn. Res. 2022 (2022) - [j16]Tianyun Zhang
, Shaokai Ye, Xiaoyu Feng, Xiaolong Ma
, Kaiqi Zhang, Zhengang Li, Jian Tang
, Sijia Liu
, Xue Lin
, Yongpan Liu
, Makan Fardad
, Yanzhi Wang
:
StructADMM: Achieving Ultrahigh Efficiency in Structured Pruning for DNNs. IEEE Trans. Neural Networks Learn. Syst. 33(5): 2259-2273 (2022) - [j15]Yifan Gong, Geng Yuan
, Zheng Zhan, Wei Niu
, Zhengang Li, Pu Zhao
, Yuxuan Cai, Sijia Liu, Bin Ren, Xue Lin, Xulong Tang
, Yanzhi Wang:
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration. ACM Trans. Design Autom. Electr. Syst. 27(5): 47:1-47:26 (2022) - [c106]Chia-Yi Hsu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Chia-Mu Yu:
Adversarial Examples Can Be Effective Data Augmentation for Unsupervised Machine Learning. AAAI 2022: 6926-6934 - [c105]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Zeroth-Order Optimization for Composite Problems with Functional Constraints. AAAI 2022: 7453-7461 - [c104]Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, Zhangyang Wang:
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free. CVPR 2022: 588-599 - [c103]Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu:
Proactive Image Manipulation Detection. CVPR 2022: 15365-15374 - [c102]Vardaan Taneja, Pin-Yu Chen, Yuguang Yao, Sijia Liu:
When Does Backdoor Attack Succeed in Image Reconstruction? A Study of Heuristics vs. Bi-Level Solution. ICASSP 2022: 4398-4402 - [c101]Yifan Gong, Yuguang Yao, Yize Li, Yimeng Zhang, Xiaoming Liu, Xue Lin, Sijia Liu:
Reverse Engineering of Imperceptible Adversarial Image Perturbations. ICLR 2022 - [c100]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
How unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis. ICLR 2022 - [c99]Tianshu Huang, Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Optimizer Amalgamation. ICLR 2022 - [c98]