


default search action
David A. Sontag
Person information
- affiliation: MIT, Cambridge, MA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [c101]Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David A. Sontag, Ameet Talwalkar:
Need Help? Designing Proactive AI Assistants for Programming. CHI 2025: 881:1-881:18 - [i90]Stefan Hegselmann, Georg von Arnim, Tillmann Rheude, Noel Kronenberg
, David A. Sontag, Gerhard Hindricks, Roland Eils, Benjamin Wild:
Large Language Models are Powerful EHR Encoders. CoRR abs/2502.17403 (2025) - [i89]Sebastian Zhao, Alan Zhu, Hussein Mozannar, David A. Sontag, Ameet Talwalkar, Valerie Chen:
CodingGenie: A Proactive LLM-Powered Programming Assistant. CoRR abs/2503.14724 (2025) - 2024
- [j10]Sharon Jiang
, Barbara D. Lam
, Monica Agrawal, Shannon Shen, Nicholas Kurtzman, Steven Horng
, David R. Karger, David A. Sontag:
Machine learning to predict notes for chart review in the oncology setting: a proof of concept strategy for improving clinician note-writing. J. Am. Medical Informatics Assoc. 31(7): 1578-1582 (2024) - [j9]Zeshan M. Hussain, Edward De Brouwer, Rebecca Boiarsky
, Sama Setty, Neeraj Gupta
, Guohui Liu, Cong Li, Jaydeep Srimani, Jacob Zhang, Rich Labotka, David A. Sontag:
Joint AI-driven event prediction and longitudinal modeling in newly diagnosed and relapsed multiple myeloma. npj Digit. Medicine 7(1) (2024) - [c100]Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, David A. Sontag:
Learning to Decode Collaboratively with Multiple Language Models. ACL (1) 2024: 12974-12990 - [c99]Ilker Demirel, Edward De Brouwer, Zeshan M. Hussain, Michael Oberst
, Anthony Philippakis, David A. Sontag:
Benchmarking Observational Studies with Experimental Data under Right-Censoring. AISTATS 2024: 4285-4293 - [c98]Ilker Demirel, Ahmed M. Alaa, Anthony Philippakis, David A. Sontag:
Prediction-powered Generalization of Causal Inferences. ICML 2024 - [c97]Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David A. Sontag, Ahmed M. Alaa:
Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning. NeurIPS 2024 - [c96]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Theoretical Analysis of Weak-to-Strong Generalization. NeurIPS 2024 - [i88]Niklas Mannhardt, Elizabeth Bondi-Kelly, Barbara D. Lam, Chloe O'Connell, Mercy Asiedu, Hussein Mozannar, Monica Agrawal, Alejandro Buendia, Tatiana Urman, Irbaz B. Riaz, Catherine E. Ricciardi, Marzyeh Ghassemi, David A. Sontag:
Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study. CoRR abs/2401.09637 (2024) - [i87]Stefan Hegselmann, Shannon Zejiang Shen, Florian Gierse, Monica Agrawal, David A. Sontag, Xiaoyi Jiang:
A Data-Centric Approach To Generate Faithful and High Quality Patient Summaries with Large Language Models. CoRR abs/2402.15422 (2024) - [i86]Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David A. Sontag, Ahmed M. Alaa:
Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning. CoRR abs/2403.00177 (2024) - [i85]Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, David A. Sontag:
Learning to Decode Collaboratively with Multiple Language Models. CoRR abs/2403.03870 (2024) - [i84]Hussein Mozannar, Valerie Chen, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, David A. Sontag:
The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers. CoRR abs/2404.02806 (2024) - [i83]Zeshan M. Hussain, Barbara D. Lam, Fernando A. Acosta-Perez, Irbaz B. Riaz, Maia L. Jacobs, Andrew J. Yee, David A. Sontag:
Evaluating Physician-AI Interaction for Cancer Management: Paving the Path towards Precision Oncology. CoRR abs/2404.15187 (2024) - [i82]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Theoretical Analysis of Weak-to-Strong Generalization. CoRR abs/2405.16043 (2024) - [i81]Ilker Demirel, Ahmed M. Alaa, Anthony Philippakis, David A. Sontag:
Prediction-powered Generalization of Causal Inferences. CoRR abs/2406.02873 (2024) - [i80]Christina X. Ji, Ahmed M. Alaa, David A. Sontag:
Seq-to-Final: A Benchmark for Tuning from Sequential Distributions to a Final Time Point. CoRR abs/2407.09642 (2024) - [i79]Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David A. Sontag, Ameet Talwalkar:
Need Help? Designing Proactive AI Assistants for Programming. CoRR abs/2410.04596 (2024) - 2023
- [c95]Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, David A. Sontag:
TabLLM: Few-shot Classification of Tabular Data with Large Language Models. AISTATS 2023: 5549-5581 - [c94]Zeshan M. Hussain, Ming-Chieh Shih, Michael Oberst
, Ilker Demirel, David A. Sontag:
Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions. AISTATS 2023: 5869-5898 - [c93]Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Who Should Predict? Exact Algorithms For Learning to Defer to Humans. AISTATS 2023: 10520-10545 - [c92]Ahmed M. Alaa, Zeshan M. Hussain, David A. Sontag:
Conformalized Unconditional Quantile Regression. AISTATS 2023: 10690-10702 - [c91]Christina X. Ji, Ahmed M. Alaa, David A. Sontag:
Large-Scale Study of Temporal Shift in Health Insurance Claims. CHIL 2023: 243-278 - [c90]Sharon Jiang, Shannon Shen, Monica Agrawal, Barbara D. Lam, Nicholas Kurtzman, Steven Horng, David R. Karger, David A. Sontag:
Conceptualizing Machine Learning for Dynamic Information Retrieval of Electronic Health Record Notes. MLHC 2023: 343-359 - [c89]Hussein Mozannar, Jimin J. Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Effective Human-AI Teams via Learned Natural Language Rules and Onboarding. NeurIPS 2023 - [i78]Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Who Should Predict? Exact Algorithms For Learning to Defer to Humans. CoRR abs/2301.06197 (2023) - [i77]Zeshan M. Hussain, Ming-Chieh Shih, Michael Oberst, Ilker Demirel, David A. Sontag:
Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions. CoRR abs/2301.13133 (2023) - [i76]Ahmed M. Alaa, Zeshan M. Hussain, David A. Sontag:
Conformalized Unconditional Quantile Regression. CoRR abs/2304.01426 (2023) - [i75]Zejiang Shen, Tal August, Pao Siangliulue, Kyle Lo, Jonathan Bragg
, Jeff Hammerbacher, Doug Downey, Joseph Chee Chang, David A. Sontag:
Beyond Summarization: Designing AI Support for Real-World Expository Writing Tasks. CoRR abs/2304.02623 (2023) - [i74]Christina X. Ji, Ahmed M. Alaa, David A. Sontag:
Large-Scale Study of Temporal Shift in Health Insurance Claims. CoRR abs/2305.05087 (2023) - [i73]Hussein Mozannar, Yuria Utsumi, Irene Y. Chen, Stephanie S. Gervasi, Michele Ewing, Aaron Smith-McLallen
, David A. Sontag:
Closing the Gap in High-Risk Pregnancy Care Using Machine Learning and Human-AI Collaboration. CoRR abs/2305.17261 (2023) - [i72]Sharon Jiang, Shannon Shen, Monica Agrawal, Barbara D. Lam, Nicholas Kurtzman, Steven Horng, David R. Karger, David A. Sontag:
Conceptualizing Machine Learning for Dynamic Information Retrieval of Electronic Health Record Notes. CoRR abs/2308.08494 (2023) - [i71]Hussein Mozannar, Jimin J. Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Effective Human-AI Teams via Learned Natural Language Rules and Onboarding. CoRR abs/2311.01007 (2023) - [i70]Lucas Torroba Hennigen, Shannon Shen, Aniruddha Nrusimha, Bernhard Gapp, David A. Sontag, Yoon Kim:
Towards Verifiable Text Generation with Symbolic References. CoRR abs/2311.09188 (2023) - 2022
- [j8]Fredrik D. Johansson, Uri Shalit, Nathan Kallus, David A. Sontag:
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects. J. Mach. Learn. Res. 23: 166:1-166:50 (2022) - [c88]Hussein Mozannar, Arvind Satyanarayan, David A. Sontag:
Teaching Humans When to Defer to a Classifier via Exemplars. AAAI 2022: 5323-5331 - [c87]Irene Y. Chen, Rahul G. Krishnan, David A. Sontag:
Clustering Interval-Censored Time-Series for Disease Phenotyping. AAAI 2022: 6211-6221 - [c86]Monica N. Agrawal, Hunter Lang, Michael Offin, Lior Gazit, David A. Sontag:
Leveraging Time Irreversibility with Order-Contrastive Pre-training. AISTATS 2022: 2330-2353 - [c85]Rickard K. A. Karlsson, Martin Willbo, Zeshan M. Hussain, Rahul G. Krishnan, David A. Sontag, Fredrik Johansson:
Using time-series privileged information for provably efficient learning of prediction models. AISTATS 2022: 5459-5484 - [c84]Monica Agrawal
, Stefan Hegselmann, Hunter Lang, Yoon Kim, David A. Sontag:
Large language models are few-shot clinical information extractors. EMNLP 2022: 1998-2022 - [c83]Mohammad-Amin Charusaie, Hussein Mozannar, David A. Sontag, Samira Samadi:
Sample Efficient Learning of Predictors that Complement Humans. ICML 2022: 2972-3005 - [c82]Hunter Lang, Monica N. Agrawal, Yoon Kim, David A. Sontag:
Co-training Improves Prompt-based Learning for Large Language Models. ICML 2022: 11985-12003 - [c81]Ahmed M. Alaa, Anthony Philippakis, David A. Sontag:
ETAB: A Benchmark Suite for Visual Representation Learning in Echocardiography. NeurIPS 2022 - [c80]Zeshan M. Hussain, Michael Oberst, Ming-Chieh Shih, David A. Sontag:
Falsification before Extrapolation in Causal Effect Estimation. NeurIPS 2022 - [c79]Hunter Lang, Aravindan Vijayaraghavan, David A. Sontag:
Training Subset Selection for Weak Supervision. NeurIPS 2022 - [c78]Nikolaj Thams, Michael Oberst, David A. Sontag:
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets. NeurIPS 2022 - [i69]Hunter Lang, Monica Agrawal, Yoon Kim, David A. Sontag:
Co-training Improves Prompt-based Learning for Large Language Models. CoRR abs/2202.00828 (2022) - [i68]Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, David A. Sontag:
Large Language Models are Zero-Shot Clinical Information Extractors. CoRR abs/2205.12689 (2022) - [i67]Nikolaj Thams, Michael Oberst, David A. Sontag:
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets. CoRR abs/2205.15947 (2022) - [i66]Hunter Lang, Aravindan Vijayaraghavan, David A. Sontag:
Training Subset Selection for Weak Supervision. CoRR abs/2206.02914 (2022) - [i65]Mohammad-Amin Charusaie, Hussein Mozannar, David A. Sontag, Samira Samadi:
Sample Efficient Learning of Predictors that Complement Humans. CoRR abs/2207.09584 (2022) - [i64]Zeshan M. Hussain, Michael Oberst, Ming-Chieh Shih, David A. Sontag:
Falsification before Extrapolation in Causal Effect Estimation. CoRR abs/2209.13708 (2022) - [i63]Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, David A. Sontag:
TabLLM: Few-shot Classification of Tabular Data with Large Language Models. CoRR abs/2210.10723 (2022) - 2021
- [j7]Julia Wu
, Venkatesh Sivaraman, Dheekshita Kumar, Juan M. Banda, David A. Sontag:
Pulse of the pandemic: Iterative topic filtering for clinical information extraction from social media. J. Biomed. Informatics 120: 103844 (2021) - [c77]Rohan S. Kodialam, Rebecca Boiarsky, Justin Lim, Aditya Sai, Neil Dixit, David A. Sontag:
Deep Contextual Clinical Prediction with Reverse Distillation. AAAI 2021: 249-258 - [c76]James Mullenbach, Yada Pruksachatkun, Sean Adler, Jennifer Seale, Jordan Swartz, T. Greg McKelvey, Hui Dai, Yi Yang, David A. Sontag:
CLIP: A Dataset for Extracting Action Items for Physicians from Hospital Discharge Notes. ACL/IJCNLP (1) 2021: 1365-1378 - [c75]Alexander K. Lew, Monica Agrawal, David A. Sontag, Vikash Mansinghka:
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. AISTATS 2021: 1927-1935 - [c74]Hunter Lang, Aravind Reddy, David A. Sontag, Aravindan Vijayaraghavan:
Beyond Perturbation Stability: LP Recovery Guarantees for MAP Inference on Noisy Stable Instances. AISTATS 2021: 3043-3051 - [c73]Ariel Levy, Monica Agrawal
, Arvind Satyanarayan
, David A. Sontag:
Assessing the Impact of Automated Suggestions on Decision Making: Domain Experts Mediate Model Errors but Take Less Initiative. CHI 2021: 72:1-72:13 - [c72]Zeshan M. Hussain, Rahul G. Krishnan, David A. Sontag:
Neural Pharmacodynamic State Space Modeling. ICML 2021: 4500-4510 - [c71]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch). ICML 2021: 5990-5999 - [c70]Michael Oberst, Nikolaj Thams, Jonas Peters, David A. Sontag:
Regularizing towards Causal Invariance: Linear Models with Proxies. ICML 2021: 8260-8270 - [c69]Jason Zhao, Monica Agrawal, Pedram Razavi, David A. Sontag:
Directing Human Attention in Event Localization for Clinical Timeline Creation. MLHC 2021: 80-102 - [c68]Justin Lim, Christina X. Ji, Michael Oberst, Saul Blecker, Leora Horwitz, David A. Sontag:
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance. NeurIPS 2021: 15328-15343 - [c67]Luke S. Murray, Divya Gopinath, Monica Agrawal, Steven Horng, David A. Sontag, David R. Karger
:
MedKnowts: Unified Documentation and Information Retrieval for Electronic Health Records. UIST 2021: 1169-1183 - [i62]Julia Wu, Venkatesh Sivaraman, Dheekshita Kumar, Juan M. Banda, David A. Sontag:
Pulse of the Pandemic: Iterative Topic Filtering for Clinical Information Extraction from Social Media. CoRR abs/2102.06836 (2021) - [i61]Irene Y. Chen, Rahul G. Krishnan, David A. Sontag:
Clustering Left-Censored Multivariate Time-Series. CoRR abs/2102.07005 (2021) - [i60]Zeshan M. Hussain, Rahul G. Krishnan, David A. Sontag:
Neural Pharmacodynamic State Space Modeling. CoRR abs/2102.11218 (2021) - [i59]Hunter Lang, Aravind Reddy, David A. Sontag, Aravindan Vijayaraghavan:
Beyond Perturbation Stability: LP Recovery Guarantees for MAP Inference on Noisy Stable Instances. CoRR abs/2103.00034 (2021) - [i58]Michael Oberst, Nikolaj Thams, Jonas Peters, David A. Sontag:
Regularizing towards Causal Invariance: Linear Models with Proxies. CoRR abs/2103.02477 (2021) - [i57]Ariel Levy, Monica Agrawal, Arvind Satyanarayan, David A. Sontag:
Assessing the Impact of Automated Suggestions on Decision Making: Domain Experts Mediate Model Errors but Take Less Initiative. CoRR abs/2103.04725 (2021) - [i56]James Mullenbach, Yada Pruksachatkun, Sean Adler, Jennifer Seale, Jordan Swartz, T. Greg McKelvey, Hui Dai, Yi Yang, David A. Sontag:
CLIP: A Dataset for Extracting Action Items for Physicians from Hospital Discharge Notes. CoRR abs/2106.02524 (2021) - [i55]Luke S. Murray, Divya Gopinath, Monica Agrawal, Steven Horng, David A. Sontag, David R. Karger:
MedKnowts: Unified Documentation and Information Retrieval for Electronic Health Records. CoRR abs/2109.11451 (2021) - [i54]Justin Lim, Christina X. Ji, Michael Oberst, Saul Blecker, Leora Horwitz, David A. Sontag:
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance. CoRR abs/2110.14508 (2021) - [i53]Rickard Karlsson, Martin Willbo, Zeshan M. Hussain, Rahul G. Krishnan, David A. Sontag, Fredrik D. Johansson:
Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models. CoRR abs/2110.14993 (2021) - [i52]Monica Agrawal, Hunter Lang, Michael Offin, Lior Gazit, David A. Sontag:
Leveraging Time Irreversibility with Order-Contrastive Pre-training. CoRR abs/2111.02599 (2021) - [i51]Hussein Mozannar, Arvind Satyanarayan, David A. Sontag:
Teaching Humans When To Defer to a Classifier via Examplars. CoRR abs/2111.11297 (2021) - 2020
- [j6]Colby Redfield, Abdulhakim Tlimat
, Yoni Halpern, David W. Schoenfeld
, Edward Ullman, David A. Sontag, Larry A. Nathanson, Steven Horng
:
Derivation and validation of a machine learning record linkage algorithm between emergency medical services and the emergency department. J. Am. Medical Informatics Assoc. 27(1): 147-153 (2020) - [c66]Michael Oberst, Fredrik D. Johansson, Dennis Wei, Tian Gao, Gabriel A. Brat, David A. Sontag, Kush R. Varshney:
Characterization of Overlap in Observational Studies. AISTATS 2020: 788-798 - [c65]Rares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej Risteski, David A. Sontag:
Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models. ICML 2020: 1211-1219 - [c64]Maggie Makar, Fredrik D. Johansson, John V. Guttag
, David A. Sontag:
Estimation of Bounds on Potential Outcomes For Decision Making. ICML 2020: 6661-6671 - [c63]Hussein Mozannar, David A. Sontag:
Consistent Estimators for Learning to Defer to an Expert. ICML 2020: 7076-7087 - [c62]Soorajnath Boominathan, Michael Oberst
, Helen Zhou, Sanjat Kanjilal, David A. Sontag:
Treatment Policy Learning in Multiobjective Settings with Fully Observed Outcomes. KDD 2020: 1937-1947 - [c61]James Mullenbach, Jordan Swartz, T. Greg McKelvey, Hui Dai, David A. Sontag:
Knowledge Base Completion for Constructing Problem-Oriented Medical Records. MLHC 2020: 198-222 - [c60]Divya Gopinath, Monica Agrawal, Luke S. Murray, Steven Horng, David R. Karger, David A. Sontag:
Fast, Structured Clinical Documentation via Contextual Autocomplete. MLHC 2020: 842-870 - [c59]Monica Agrawal, Chloe O'Connell, Yasmin Fatemi, Ariel Levy, David A. Sontag:
Robust Benchmarking for Machine Learning of Clinical Entity Extraction. MLHC 2020: 928-949 - [c58]Irene Y. Chen, Monica Agrawal, Steven Horng, David A. Sontag:
Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health KnowledgeGraph. PSB 2020: 19-30 - [i50]Fredrik D. Johansson, Uri Shalit, Nathan Kallus, David A. Sontag:
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects. CoRR abs/2001.07426 (2020) - [i49]James Mullenbach, Jordan Swartz, T. Greg McKelvey, Hui Dai, David A. Sontag:
Knowledge Base Completion for Constructing Problem-Oriented Medical Records. CoRR abs/2004.12905 (2020) - [i48]Sooraj Boominathan, Michael Oberst, Helen Zhou, Sanjat Kanjilal
, David A. Sontag:
Treatment Policy Learning in Multiobjective Settings with Fully Observed Outcomes. CoRR abs/2006.00927 (2020) - [i47]Hussein Mozannar, David A. Sontag:
Consistent Estimators for Learning to Defer to an Expert. CoRR abs/2006.01862 (2020) - [i46]Rohan S. Kodialam, Rebecca Boiarsky, David A. Sontag:
Deep Contextual Clinical Prediction with Reverse Distillation. CoRR abs/2007.05611 (2020) - [i45]Alexander K. Lew, Monica Agrawal, David A. Sontag, Vikash K. Mansinghka:
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. CoRR abs/2007.11838 (2020) - [i44]Divya Gopinath, Monica Agrawal, Luke S. Murray, Steven Horng, David R. Karger, David A. Sontag:
Fast, Structured Clinical Documentation via Contextual Autocomplete. CoRR abs/2007.15153 (2020) - [i43]Monica Agrawal, Chloe O'Connell, Yasmin Fatemi, Ariel Levy, David A. Sontag:
Robust Benchmarking for Machine Learning of Clinical Entity Extraction. CoRR abs/2007.16127 (2020) - [i42]Christina X. Ji, Michael Oberst, Sanjat Kanjilal, David A. Sontag:
Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies. CoRR abs/2010.04279 (2020) - [i41]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Graph cuts always find a global optimum (with a catch). CoRR abs/2011.03639 (2020)
2010 – 2019
- 2019
- [j5]Nathaniel R. Greenbaum
, Yacine Jernite, Yoni Halpern, Shelley Calder, Larry A. Nathanson, David A. Sontag, Steven Horng:
Improving documentation of presenting problems in the emergency department using a domain-specific ontology and machine learning-driven user interfaces. Int. J. Medical Informatics 132 (2019) - [j4]Ofer Meshi, Ben London, Adrian Weller, David A. Sontag:
Train and Test Tightness of LP Relaxations in Structured Prediction. J. Mach. Learn. Res. 20: 13:1-13:34 (2019) - [c57]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Block Stability for MAP Inference. AISTATS 2019: 216-225 - [c56]Fredrik D. Johansson, David A. Sontag, Rajesh Ranganath:
Support and Invertibility in Domain-Invariant Representations. AISTATS 2019: 527-536 - [c55]Anastasia Podosinnikova, Amelia Perry, Alexander S. Wein, Francis R. Bach, Alexandre d'Aspremont, David A. Sontag:
Overcomplete Independent Component Analysis via SDP. AISTATS 2019: 2583-2592 - [c54]Michael Oberst, David A. Sontag:
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models. ICML 2019: 4881-4890 - [c53]Viraj Prabhu, Anitha Kannan, Murali Ravuri, Manish Chaplain, David A. Sontag, Xavier Amatriain:
Few-Shot Learning for Dermatological Disease Diagnosis. MLHC 2019: 532-552 - [i40]Anastasia Podosinnikova, Amelia Perry, Alexander S. Wein, Francis R. Bach, Alexandre d'Aspremont, David A. Sontag:
Overcomplete Independent Component Analysis via SDP. CoRR abs/1901.08334 (2019) - [i39]Fredrik D. Johansson, David A. Sontag, Rajesh Ranganath:
Support and Invertibility in Domain-Invariant Representations. CoRR abs/1903.03448 (2019) - [i38]Michael Oberst
, David A. Sontag:
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models. CoRR abs/1905.05824 (2019) - [i37]Rares-Darius Buhai, Andrej Risteski, Yoni Halpern, David A. Sontag:
Benefits of Overparameterization in Single-Layer Latent Variable Generative Models. CoRR abs/1907.00030 (2019) - [i36]Fredrik D. Johansson, Dennis Wei, Michael Oberst
, Tian Gao, Gabriel A. Brat, David A. Sontag, Kush R. Varshney:
Characterization of Overlap in Observational Studies. CoRR abs/1907.04138 (2019) - [i35]Irene Y. Chen, Monica Agrawal, Steven Horng, David A. Sontag:
Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph. CoRR abs/1910.01116 (2019) - [i34]Viraj Prabhu, Anitha Kannan, Geoffrey J. Tso, Namit Katariya, Manish Chablani, David A. Sontag, Xavier Amatriain:
Open Set Medical Diagnosis. CoRR abs/1910.02830 (2019) - [i33]Maggie Makar, Fredrik D. Johansson, John V. Guttag, David A. Sontag:
Estimation of Utility-Maximizing Bounds on Potential Outcomes. CoRR abs/1910.04817 (2019) - 2018
- [j3]Sanjeev Arora, Rong Ge, Yoni Halpern, David M. Mimno, Ankur Moitra, David A. Sontag, Yichen Wu, Michael Zhu:
Learning topic models - provably and efficiently. Commun. ACM 61(4): 85-93 (2018) - [c52]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Optimality of Approximate Inference Algorithms on Stable Instances. AISTATS 2018: 1157-1166 - [c51]Yoon Kim, Sam Wiseman, Andrew C. Miller, David A. Sontag, Alexander M. Rush
:
Semi-Amortized Variational Autoencoders. ICML 2018: 2683-2692 - [c50]Irene Y. Chen, Fredrik D. Johansson, David A. Sontag:
Why Is My Classifier Discriminatory? NeurIPS 2018: 3543-3554 - [c49]Rachel Hodos, Ping Zhang, Hao-Chih Lee, Qiaonan Duan, Zichen Wang, Neil R. Clark, Avi Ma'ayan, Fei Wang, Brian A. Kidd, Jianying Hu, David A. Sontag, Joel Dudley:
Cell-specific prediction and application of drug-induced gene expression . PSB 2018: 32-43 - [c48]Rahul G. Krishnan, Arjun Khandelwal, Rajesh Ranganath, David A. Sontag:
Max-margin learning with the Bayes factor. UAI 2018: 896-905 - [i32]Yoon Kim, Sam Wiseman, Andrew C. Miller, David A. Sontag, Alexander M. Rush:
Semi-Amortized Variational Autoencoders. CoRR abs/1802.02550 (2018) - [i31]Irene Y. Chen, Fredrik D. Johansson, David A. Sontag:
Why Is My Classifier Discriminatory? CoRR abs/1805.12002 (2018) - [i30]Omer Gottesman, Fredrik D. Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher Mosch, Li-Wei H. Lehman, Matthieu Komorowski, Aldo Faisal, Leo Anthony Celi, David A. Sontag, Finale Doshi-Velez:
Evaluating Reinforcement Learning Algorithms in Observational Health Settings. CoRR abs/1805.12298 (2018) - [i29]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Block Stability for MAP Inference. CoRR abs/1810.05305 (2018) - [i28]Viraj Prabhu, Anitha Kannan, Murali Ravuri, Manish Chablani, David A. Sontag, Xavier Amatriain:
Prototypical Clustering Networks for Dermatological Disease Diagnosis. CoRR abs/1811.03066 (2018) - 2017
- [c47]Rahul G. Krishnan, Uri Shalit, David A. Sontag:
Structured Inference Networks for Nonlinear State Space Models. AAAI 2017: 2101-2109 - [c46]Asma Ghandeharioun, Szymon Fedor
, Lisa Sangermano, Dawn Ionescu, Jonathan Alpert, Chelsea Dale, David A. Sontag, Rosalind W. Picard:
Objective assessment of depressive symptoms with machine learning and wearable sensors data. ACII 2017: 325-332 - [c45]Juan M. Banda, Yoni Halpern, David A. Sontag, Nigam Shah:
Electronic phenotyping with APHRODITE and the Observational Health Sciences and Informatics (OHDSI) data network. CRI 2017 - [c44]Yacine Jernite, Anna Choromanska, David A. Sontag:
Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation. ICML 2017: 1665-1674 - [c43]Uri Shalit, Fredrik D. Johansson, David A. Sontag:
Estimating individual treatment effect: generalization bounds and algorithms. ICML 2017: 3076-3085 - [c42]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. NIPS 2017: 6446-6456 - [i27]Yacine Jernite, Samuel R. Bowman, David A. Sontag:
Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learning. CoRR abs/1705.00557 (2017) - [i26]Ankit Vani, Yacine Jernite, David A. Sontag:
Grounded Recurrent Neural Networks. CoRR abs/1705.08557 (2017) - [i25]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. CoRR abs/1705.08821 (2017) - [i24]Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:
Alpha-expansion is Exact on Stable Instances. CoRR abs/1711.02195 (2017) - 2016
- [j2]Yoni Halpern, Steven Horng, Youngduck Choi, David A. Sontag:
Electronic medical record phenotyping using the anchor and learn framework. J. Am. Medical Informatics Assoc. 23(4): 731-740 (2016) - [c41]Yoon Kim, Yacine Jernite, David A. Sontag, Alexander M. Rush
:
Character-Aware Neural Language Models. AAAI 2016: 2741-2749 - [c40]Adrian Weller, Mark Rowland, David A. Sontag:
Tightness of LP Relaxations for Almost Balanced Models. AISTATS 2016: 47-55 - [c39]Fei Wang, Gregor Stiglic, Mihaela van der Schaar, David A. Sontag, Christopher C. Yang:
Data Mining for Medical Informatics (DMMI) - Learning Health. AMIA 2016 - [c38]Saul Blecker, Stuart Katz, Leora Horwitz, Gilad J. Kuperman, Hannah Park, David A. Sontag:
Comparison of Approaches for Heart Failure Case Identification from EHR Data. AMIA 2016 - [c37]Youngduck Choi, Chill Yi-I Chiu, David A. Sontag:
Learning Low-Dimensional Representations of Medical Concepts. CRI 2016 - [c36]Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, David A. Sontag:
Train and Test Tightness of LP Relaxations in Structured Prediction. ICML 2016: 1776-1785 - [c35]Fredrik D. Johansson, Uri Shalit, David A. Sontag:
Learning Representations for Counterfactual Inference. ICML 2016: 3020-3029 - [c34]Shalmali Joshi, Suriya Gunasekar, David A. Sontag, Joydeep Ghosh:
Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization. MLHC 2016: 17-41 - [c33]Narges Razavian, Jake Marcus, David A. Sontag:
Multi-task Prediction of Disease Onsets from Longitudinal Laboratory Tests. MLHC 2016: 73-100 - [c32]Yoni Halpern, Steven Horng, David A. Sontag:
Clinical Tagging with Joint Probabilistic Models. MLHC 2016: 209-225 - [i23]Fredrik D. Johansson, Uri Shalit, David A. Sontag:
Learning Representations for Counterfactual Inference. CoRR abs/1605.03661 (2016) - [i22]Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, Yan Liu:
Recurrent Neural Networks for Multivariate Time Series with Missing Values. CoRR abs/1606.01865 (2016) - [i21]Uri Shalit, Fredrik D. Johansson, David A. Sontag:
Bounding and Minimizing Counterfactual Error. CoRR abs/1606.03976 (2016) - [i20]Narges Razavian, Jake Marcus, David A. Sontag:
Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests. CoRR abs/1608.00647 (2016) - [i19]Yoni Halpern, Steven Horng, David A. Sontag:
Clinical Tagging with Joint Probabilistic Models. CoRR abs/1608.00686 (2016) - [i18]Shalmali Joshi, Suriya Gunasekar, David A. Sontag, Joydeep Ghosh:
Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization. CoRR abs/1608.00704 (2016) - [i17]Rahul G. Krishnan, Uri Shalit, David A. Sontag:
Structured Inference Networks for Nonlinear State Space Models. CoRR abs/1609.09869 (2016) - [i16]Yacine Jernite, Anna Choromanska, David A. Sontag, Yann LeCun:
Simultaneous Learning of Trees and Representations for Extreme Classification, with Application to Language Modeling. CoRR abs/1610.04658 (2016) - 2015
- [j1]Narges Razavian
, Saul Blecker, Ann Marie Schmidt, Aaron Smith-McLallen
, Somesh Nigam, David A. Sontag:
Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors. Big Data 3(4): 277-287 (2015) - [c31]Josua Krause, Narges Razavian, Enrico Bertini, David A. Sontag:
Visual Exploration of Temporal Data in Electronic Medical Records. AMIA 2015 - [c30]Narges Razavian, Saul Blecker, David A. Sontag:
Gaussian Processes for interpreting Multiple Prostate Specific Antigen measurements for Prostate Cancer Prediction. AMIA 2015 - [c29]Amir Globerson, Tim Roughgarden, David A. Sontag, Cafer Yildirim:
How Hard is Inference for Structured Prediction? ICML 2015: 2181-2190 - [c28]Yacine Jernite, Alexander M. Rush
, David A. Sontag:
A Fast Variational Approach for Learning Markov Random Field Language Models. ICML 2015: 2209-2217 - [c27]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. NIPS 2015: 532-540 - [i15]Eliot Brenner, David A. Sontag:
Incorporating Type II Error Probabilities from Independence Tests into Score-Based Learning of Bayesian Network Structure. CoRR abs/1505.02870 (2015) - [i14]Yoon Kim, Yacine Jernite, David A. Sontag, Alexander M. Rush:
Character-Aware Neural Language Models. CoRR abs/1508.06615 (2015) - [i13]Ofer Meshi, Mehrdad Mahdavi, David A. Sontag:
On the Tightness of LP Relaxations for Structured Prediction. CoRR abs/1511.01419 (2015) - [i12]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. CoRR abs/1511.02124 (2015) - [i11]Yoni Halpern, Steven Horng, David A. Sontag:
Anchored Discrete Factor Analysis. CoRR abs/1511.03299 (2015) - [i10]Rahul G. Krishnan, Uri Shalit, David A. Sontag:
Deep Kalman Filters. CoRR abs/1511.05121 (2015) - [i9]Narges Razavian, David A. Sontag:
Temporal Convolutional Neural Networks for Diagnosis from Lab Tests. CoRR abs/1511.07938 (2015) - 2014
- [c26]Yoni Halpern, Youngduck Choi, Steven Horng, David A. Sontag:
Using Anchors to Estimate Clinical State without Labeled Data. AMIA 2014 - [c25]Nathan Silberman, David A. Sontag, Rob Fergus:
Instance Segmentation of Indoor Scenes Using a Coverage Loss. ECCV (1) 2014: 616-631 - [c24]Xiang Wang, David A. Sontag, Fei Wang:
Unsupervised learning of disease progression models. KDD 2014: 85-94 - [c23]Hung Hai Bui, Tuyen N. Huynh, David A. Sontag:
Lifted Tree-Reweighted Variational Inference. UAI 2014: 92-101 - [c22]Adrian Weller, Kui Tang, Tony Jebara, David A. Sontag:
Understanding the Bethe Approximation: When and How can it go Wrong? UAI 2014: 868-877 - [i8]Hung Hai Bui, Tuyen N. Huynh, David A. Sontag:
Lifted Tree-Reweighted Variational Inference. CoRR abs/1406.4200 (2014) - [i7]Amir Globerson, Tim Roughgarden, David A. Sontag, Cafer Yildirim:
Tight Error Bounds for Structured Prediction. CoRR abs/1409.5834 (2014) - 2013
- [c21]Sanjeev Arora, Rong Ge, Yonatan Halpern, David M. Mimno, Ankur Moitra, David A. Sontag, Yichen Wu, Michael Zhu:
A Practical Algorithm for Topic Modeling with Provable Guarantees. ICML (2) 2013: 280-288 - [c20]Yacine Jernite, Yonatan Halpern, David A. Sontag:
Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests. NIPS 2013: 2355-2363 - [c19]Eliot Brenner, David A. Sontag:
SparsityBoost: A New Scoring Function for Learning Bayesian Network Structure. UAI 2013 - [c18]Yonatan Halpern, David A. Sontag:
Unsupervised Learning of Noisy-Or Bayesian Networks. UAI 2013 - [i6]Eliot Brenner, David A. Sontag:
SparsityBoost: A New Scoring Function for Learning Bayesian Network Structure. CoRR abs/1309.6820 (2013) - [i5]Yonatan Halpern, David A. Sontag:
Unsupervised Learning of Noisy-Or Bayesian Networks. CoRR abs/1309.6834 (2013) - 2012
- [c17]David A. Sontag, Do Kook Choe, Yitao Li:
Efficiently Searching for Frustrated Cycles in MAP Inference. UAI 2012: 795-804 - [c16]David A. Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Susan T. Dumais, Bodo Billerbeck:
Probabilistic models for personalizing web search. WSDM 2012: 433-442 - [i4]David A. Sontag, Talya Meltzer, Amir Globerson, Tommi S. Jaakkola, Yair Weiss:
Tightening LP Relaxations for MAP using Message Passing. CoRR abs/1206.3288 (2012) - [i3]David A. Sontag, Do Kook Choe, Yitao Li:
Efficiently Searching for Frustrated Cycles in MAP Inference. CoRR abs/1210.4902 (2012) - [i2]Sanjeev Arora, Rong Ge, Yoni Halpern, David M. Mimno, Ankur Moitra, David A. Sontag, Yichen Wu, Michael Zhu:
A Practical Algorithm for Topic Modeling with Provable Guarantees. CoRR abs/1212.4777 (2012) - 2011
- [c15]Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la Chica, David A. Sontag:
Personalizing web search results by reading level. CIKM 2011: 403-412 - [c14]David A. Sontag, Daniel M. Roy:
Complexity of Inference in Latent Dirichlet Allocation. NIPS 2011: 1008-1016 - 2010
- [b1]David A. Sontag:
Approximate inference in graphical models using linear programming relaxations. Massachusetts Institute of Technology, Cambridge, MA, USA, 2010 - [c13]Alexander M. Rush
, David A. Sontag, Michael Collins, Tommi S. Jaakkola:
On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing. EMNLP 2010: 1-11 - [c12]Terry Koo, Alexander M. Rush
, Michael Collins, Tommi S. Jaakkola, David A. Sontag:
Dual Decomposition for Parsing with Non-Projective Head Automata. EMNLP 2010: 1288-1298 - [c11]Ofer Meshi, David A. Sontag, Tommi S. Jaakkola, Amir Globerson:
Learning Efficiently with Approximate Inference via Dual Losses. ICML 2010: 783-790 - [c10]David A. Sontag, Ofer Meshi, Tommi S. Jaakkola, Amir Globerson:
More data means less inference: A pseudo-max approach to structured learning. NIPS 2010: 2181-2189 - [c9]Tommi S. Jaakkola, David A. Sontag, Amir Globerson, Marina Meila:
Learning Bayesian Network Structure using LP Relaxations. AISTATS 2010: 358-365
2000 – 2009
- 2009
- [c8]David A. Sontag, Yang Zhang, Amar Phanishayee, David G. Andersen, David R. Karger
:
Scaling all-pairs overlay routing. CoNEXT 2009: 145-156 - [c7]David A. Sontag, Tommi S. Jaakkola:
Tree Block Coordinate Descent for MAP in Graphical Models. AISTATS 2009: 544-551 - 2008
- [c6]David A. Sontag, Amir Globerson, Tommi S. Jaakkola:
Clusters and Coarse Partitions in LP Relaxations. NIPS 2008: 1537-1544 - [c5]David A. Sontag, Talya Meltzer, Amir Globerson, Tommi S. Jaakkola, Yair Weiss:
Tightening LP Relaxations for MAP using Message Passing. UAI 2008: 503-510 - 2007
- [c4]David A. Sontag, Tommi S. Jaakkola:
New Outer Bounds on the Marginal Polytope. NIPS 2007: 1393-1400 - [c3]David A. Sontag, Rohit Singh, Bonnie Berger:
Probabilistic Modeling of Systematic Errors in Two-Hybrid Experiments. Pacific Symposium on Biocomputing 2007: 445-457 - 2005
- [c2]Brian Milch, Bhaskara Marthi, David A. Sontag, Stuart Russell, Daniel L. Ong, Andrey Kolobov:
Approximate Inference for Infinite Contingent Bayesian Networks. AISTATS 2005: 238-245 - [c1]Brian Milch, Bhaskara Marthi, Stuart Russell, David A. Sontag, Daniel L. Ong, Andrey Kolobov:
BLOG: Probabilistic Models with Unknown Objects. IJCAI 2005: 1352-1359 - [i1]Brian Milch, Bhaskara Marthi, Stuart Russell, David A. Sontag, Daniel L. Ong, Andrey Kolobov:
BLOG: Probabilistic Models with Unknown Objects. Probabilistic, Logical and Relational Learning 2005
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-04-29 22:20 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint