default search action
Matt J. Kusner
Person information
- affiliation: University College London, Department of Computer Science, UK
- affiliation: Alan Turing Institute, London, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c41]Katherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton:
Proxy Methods for Domain Adaptation. AISTATS 2024: 3961-3969 - [i39]Gbètondji J.-S. Dovonon, Michael M. Bronstein, Matt J. Kusner:
Setting the Record Straight on Transformer Oversmoothing. CoRR abs/2401.04301 (2024) - [i38]Katherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton:
Proxy Methods for Domain Adaptation. CoRR abs/2403.07442 (2024) - [i37]Leo Richter, Xuanli He, Pasquale Minervini, Matt J. Kusner:
An Auditing Test To Detect Behavioral Shift in Language Models. CoRR abs/2410.19406 (2024) - 2023
- [c40]Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai:
Adapting to Latent Subgroup Shifts via Concepts and Proxies. AISTATS 2023: 9637-9661 - [c39]Kirtan Padh, Jakob Zeitler, David S. Watson, Matt J. Kusner, Ricardo Silva, Niki Kilbertus:
Stochastic Causal Programming for Bounding Treatment Effects. CLeaR 2023: 142-176 - [c38]Valentina Zantedeschi, Luca Franceschi, Jean Kaddour, Matt J. Kusner, Vlad Niculae:
DAG Learning on the Permutahedron. ICLR 2023 - [c37]Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, Matt J. Kusner:
No Train No Gain: Revisiting Efficient Training Algorithms For Transformer-based Language Models. NeurIPS 2023 - [i36]Valentina Zantedeschi, Luca Franceschi, Jean Kaddour, Matt J. Kusner, Vlad Niculae:
DAG Learning on the Permutahedron. CoRR abs/2301.11898 (2023) - [i35]Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, Matt J. Kusner:
No Train No Gain: Revisiting Efficient Training Algorithms For Transformer-based Language Models. CoRR abs/2307.06440 (2023) - 2022
- [c36]Awa Dieng, Miriam Rateike, Golnoosh Farnadi, Ferdinando Fioretto, Matt J. Kusner, Jessica Schrouff:
Algorithmic Fairness through the Lens of Causality and Privacy (AFCP) 2022. AFCP 2022: 1-6 - [c35]Jean Kaddour, Linqing Liu, Ricardo Silva, Matt J. Kusner:
When Do Flat Minima Optimizers Work? NeurIPS 2022 - [c34]Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, Jacob R. Gardner:
Local Latent Space Bayesian Optimization over Structured Inputs. NeurIPS 2022 - [c33]Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva:
Causal inference with treatment measurement error: a nonparametric instrumental variable approach. UAI 2022: 2414-2424 - [e1]Awa Dieng, Miriam Rateike, Golnoosh Farnadi, Ferdinando Fioretto, Matt J. Kusner, Jessica Schrouff:
Algorithmic Fairness through the Lens of Causality and Privacy Workshop, AFCP 2022, New Orleans, LA, USA (hybrid), 03 December 2022. Proceedings of Machine Learning Research 214, PMLR 2022 [contents] - [i34]Natalie Maus, Haydn T. Jones, Juston S. Moore, Matt J. Kusner, John Bradshaw, Jacob R. Gardner:
Local Latent Space Bayesian Optimization over Structured Inputs. CoRR abs/2201.11872 (2022) - [i33]Jean Kaddour, Linqing Liu, Ricardo Silva, Matt J. Kusner:
Questions for Flat-Minima Optimization of Modern Neural Networks. CoRR abs/2202.00661 (2022) - [i32]Kirtan Padh, Jakob Zeitler, David S. Watson, Matt J. Kusner, Ricardo Silva, Niki Kilbertus:
Stochastic Causal Programming for Bounding Treatment Effects. CoRR abs/2202.10806 (2022) - [i31]Hanchen Wang, Jean Kaddour, Shengchao Liu, Jian Tang, Matt J. Kusner, Joan Lasenby, Qi Liu:
Evaluating Self-Supervised Learning for Molecular Graph Embeddings. CoRR abs/2206.08005 (2022) - [i30]Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva:
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach. CoRR abs/2206.09186 (2022) - [i29]Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, Ricardo Silva:
Causal Machine Learning: A Survey and Open Problems. CoRR abs/2206.15475 (2022) - [i28]Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai:
Adapting to Latent Subgroup Shifts via Concepts and Proxies. CoRR abs/2212.11254 (2022) - [i27]Nitin Agrawal, James Bell, Adrià Gascón, Matt J. Kusner:
MPC-Friendly Commitments for Publicly Verifiable Covert Security. IACR Cryptol. ePrint Arch. 2022: 102 (2022) - 2021
- [c32]Nitin Agrawal, James Bell, Adrià Gascón, Matt J. Kusner:
MPC-Friendly Commitments for Publicly Verifiable Covert Security. CCS 2021: 2685-2704 - [c31]Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, Matt J. Kusner:
Unsupervised Point Cloud Pre-training via Occlusion Completion. ICCV 2021: 9762-9772 - [c30]Limor Gultchin, David S. Watson, Matt J. Kusner, Ricardo Silva:
Operationalizing Complex Causes: A Pragmatic View of Mediation. ICML 2021: 3875-3885 - [c29]Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet:
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction. ICML 2021: 7512-7523 - [c28]Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae:
Learning Binary Decision Trees by Argmin Differentiation. ICML 2021: 12298-12309 - [c27]Qi Liu, Matt J. Kusner, Phil Blunsom:
Counterfactual Data Augmentation for Neural Machine Translation. NAACL-HLT 2021: 187-197 - [c26]Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J. Kusner, Ricardo Silva:
Causal Effect Inference for Structured Treatments. NeurIPS 2021: 24841-24854 - [i26]Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet:
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction. CoRR abs/2105.04544 (2021) - [i25]Jean Kaddour, Qi Liu, Yuchen Zhu, Matt J. Kusner, Ricardo Silva:
Graph Intervention Networks for Causal Effect Estimation. CoRR abs/2106.01939 (2021) - [i24]Limor Gultchin, David S. Watson, Matt J. Kusner, Ricardo Silva:
Operationalizing Complex Causes: A Pragmatic View of Mediation. CoRR abs/2106.05074 (2021) - [i23]Nitin Agrawal, James Bell, Adrià Gascón, Matt J. Kusner:
MPC-Friendly Commitments for Publicly Verifiable Covert Security. CoRR abs/2109.07461 (2021) - 2020
- [c25]Limor Gultchin, Matt J. Kusner, Varun Kanade, Ricardo Silva:
Differentiable Causal Backdoor Discovery. AISTATS 2020: 3970-3979 - [c24]John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, José Miguel Hernández-Lobato:
Barking up the right tree: an approach to search over molecule synthesis DAGs. NeurIPS 2020 - [c23]Niki Kilbertus, Matt J. Kusner, Ricardo Silva:
A Class of Algorithms for General Instrumental Variable Models. NeurIPS 2020 - [i22]Limor Gultchin, Matt J. Kusner, Varun Kanade, Ricardo Silva:
Differentiable Causal Backdoor Discovery. CoRR abs/2003.01461 (2020) - [i21]Qi Liu, Matt J. Kusner, Phil Blunsom:
A Survey on Contextual Embeddings. CoRR abs/2003.07278 (2020) - [i20]Niki Kilbertus, Matt J. Kusner, Ricardo Silva:
A Class of Algorithms for General Instrumental Variable Models. CoRR abs/2006.06366 (2020) - [i19]Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, Matthew J. Kusner:
Pre-Training by Completing Point Clouds. CoRR abs/2010.01089 (2020) - [i18]Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae:
Learning Binary Trees via Sparse Relaxation. CoRR abs/2010.04627 (2020) - [i17]John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, José Miguel Hernández-Lobato:
Barking up the right tree: an approach to search over molecule synthesis DAGs. CoRR abs/2012.11522 (2020)
2010 – 2019
- 2019
- [c22]Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, Adrià Gascón:
QUOTIENT: Two-Party Secure Neural Network Training and Prediction. CCS 2019: 1231-1247 - [c21]John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato:
A Generative Model For Electron Paths. ICLR (Poster) 2019 - [c20]John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato:
Generating Molecules via Chemical Reactions. DGS@ICLR 2019 - [c19]Matt J. Kusner, Chris Russell, Joshua R. Loftus, Ricardo Silva:
Making Decisions that Reduce Discriminatory Impacts. ICML 2019: 3591-3600 - [c18]John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, José Miguel Hernández-Lobato:
A Model to Search for Synthesizable Molecules. NeurIPS 2019: 7935-7947 - [c17]Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva:
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding. UAI 2019: 616-626 - [i16]Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Alice X. Zheng:
Gradient Regularized Budgeted Boosting. CoRR abs/1901.04065 (2019) - [i15]John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, José Miguel Hernández-Lobato:
A Model to Search for Synthesizable Molecules. CoRR abs/1906.05221 (2019) - [i14]Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva:
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding. CoRR abs/1907.01040 (2019) - [i13]Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, Adrià Gascón:
QUOTIENT: Two-Party Secure Neural Network Training and Prediction. CoRR abs/1907.03372 (2019) - [i12]Valentina Zantedeschi, Fabrizio Falasca, Alyson Douglas, Richard Strange, Matt J. Kusner, Duncan Watson-Parris:
Cumulo: A Dataset for Learning Cloud Classes. CoRR abs/1911.04227 (2019) - 2018
- [c16]David Janz, Jos van der Westhuizen, Brooks Paige, Matt J. Kusner, José Miguel Hernández-Lobato:
Learning a Generative Model for Validity in Complex Discrete Structures. ICLR (Poster) 2018 - [c15]Niki Kilbertus, Adrià Gascón, Matt J. Kusner, Michael Veale, Krishna P. Gummadi, Adrian Weller:
Blind Justice: Fairness with Encrypted Sensitive Attributes. ICML 2018: 2635-2644 - [c14]Amartya Sanyal, Matt J. Kusner, Adrià Gascón, Varun Kanade:
TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service. ICML 2018: 4497-4506 - [i11]Joshua R. Loftus, Chris Russell, Matt J. Kusner, Ricardo Silva:
Causal Reasoning for Algorithmic Fairness. CoRR abs/1805.05859 (2018) - [i10]John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato:
Predicting Electron Paths. CoRR abs/1805.10970 (2018) - [i9]Matt J. Kusner, Chris Russell, Joshua R. Loftus, Ricardo Silva:
Causal Interventions for Fairness. CoRR abs/1806.02380 (2018) - [i8]Niki Kilbertus, Adrià Gascón, Matt J. Kusner, Michael Veale, Krishna P. Gummadi, Adrian Weller:
Blind Justice: Fairness with Encrypted Sensitive Attributes. CoRR abs/1806.03281 (2018) - [i7]Amartya Sanyal, Matt J. Kusner, Adrià Gascón, Varun Kanade:
TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service. CoRR abs/1806.03461 (2018) - 2017
- [c13]Matt J. Kusner, Brooks Paige, José Miguel Hernández-Lobato:
Grammar Variational Autoencoder. ICML 2017: 1945-1954 - [c12]Matt J. Kusner, Joshua R. Loftus, Chris Russell, Ricardo Silva:
Counterfactual Fairness. NIPS 2017: 4066-4076 - [c11]Chris Russell, Matt J. Kusner, Joshua R. Loftus, Ricardo Silva:
When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness. NIPS 2017: 6414-6423 - [i6]Matt J. Kusner, Joshua R. Loftus, Chris Russell, Ricardo Silva:
Counterfactual Fairness. CoRR abs/1703.06856 (2017) - [i5]David Janz, Jos van der Westhuizen, Brooks Paige, Matt J. Kusner, José Miguel Hernández-Lobato:
Learning a Generative Model for Validity in Complex Discrete Structures. CoRR abs/1712.01664 (2017) - 2016
- [c10]Matt J. Kusner, Yu Sun, Karthik Sridharan, Kilian Q. Weinberger:
Private Causal Inference. AISTATS 2016: 1308-1317 - [c9]Gao Huang, Chuan Guo, Matt J. Kusner, Yu Sun, Fei Sha, Kilian Q. Weinberger:
Supervised Word Mover's Distance. NIPS 2016: 4862-4870 - [i4]Matt J. Kusner, José Miguel Hernández-Lobato:
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution. CoRR abs/1611.04051 (2016) - 2015
- [c8]Matt J. Kusner, Jacob R. Gardner, Roman Garnett, Kilian Q. Weinberger:
Differentially Private Bayesian Optimization. ICML 2015: 918-927 - [c7]Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger:
From Word Embeddings To Document Distances. ICML 2015: 957-966 - [c6]Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, Benjamin Moseley:
Fast Distributed k-Center Clustering with Outliers on Massive Data. NIPS 2015: 1063-1071 - [i3]Jacob R. Gardner, Matt J. Kusner, Yixuan Li, Paul Upchurch, Kilian Q. Weinberger, John E. Hopcroft:
Deep Manifold Traversal: Changing Labels with Convolutional Features. CoRR abs/1511.06421 (2015) - 2014
- [j1]Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, Olivier Chapelle:
Classifier cascades and trees for minimizing feature evaluation cost. J. Mach. Learn. Res. 15(1): 2113-2144 (2014) - [c5]Matt J. Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q. Weinberger, Yixin Chen:
Feature-Cost Sensitive Learning with Submodular Trees of Classifiers. AAAI 2014: 1939-1945 - [c4]Matt J. Kusner, Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal:
Stochastic Neighbor Compression. ICML 2014: 622-630 - [c3]Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, John P. Cunningham:
Bayesian Optimization with Inequality Constraints. ICML 2014: 937-945 - [i2]Matt J. Kusner, Nicholas I. Kolkin, Stephen Tyree, Kilian Q. Weinberger:
Stochastic Covariance Compression. CoRR abs/1412.1740 (2014) - 2013
- [c2]Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen:
Cost-Sensitive Tree of Classifiers. ICML (1) 2013: 133-141 - [c1]Zhixiang Eddie Xu, Matt J. Kusner, Gao Huang, Kilian Q. Weinberger:
Anytime Representation Learning. ICML (3) 2013: 1076-1084 - 2012
- [i1]Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen:
Cost-Sensitive Tree of Classifiers. CoRR abs/1210.2771 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint