default search action
Sebastian Tschiatschek
Person information
- affiliation: University of Vienna, Austria
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]Wolfgang Roth, Günther Schindler, Bernhard Klein, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf, Zoubin Ghahramani:
Resource-Efficient Neural Networks for Embedded Systems. J. Mach. Learn. Res. 25: 50:1-50:51 (2024) - [c51]David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Learning Safety Constraints from Demonstrations with Unknown Rewards. AISTATS 2024: 2386-2394 - [i37]Timothée Schmude, Laura Koesten, Torsten Möller, Sebastian Tschiatschek:
Information That Matters: Exploring Information Needs of People Affected by Algorithmic Decisions. CoRR abs/2401.13324 (2024) - [i36]Sebastian Tschiatschek, Eugenia Stamboliev, Timothée Schmude, Mark Coeckelbergh, Laura Koesten:
Challenging the Human-in-the-loop in Algorithmic Decision-making. CoRR abs/2405.10706 (2024) - 2023
- [j4]Dongge Han, Michael J. Wooldridge, Alex Rogers, Olga Ohrimenko, Sebastian Tschiatschek:
Replication Robust Payoff Allocation in Submodular Cooperative Games. IEEE Trans. Artif. Intell. 4(5): 1114-1128 (2023) - [c50]Silvia Poletti, Alberto Testolin, Sebastian Tschiatschek:
Learning Constraints From Human Stop-Feedback in Reinforcement Learning. AAMAS 2023: 2328-2330 - [c49]Simon Rittel, Sebastian Tschiatschek:
Specifying Prior Beliefs over DAGs in Deep Bayesian Causal Structure Learning. ECAI 2023: 1962-1969 - [c48]Timothée Schmude, Laura Koesten, Torsten Möller, Sebastian Tschiatschek:
On the Impact of Explanations on Understanding of Algorithmic Decision-Making. FAccT 2023: 959-970 - [c47]Timur Sudak, Sebastian Tschiatschek:
Posterior Consistency for Missing Data in Variational Autoencoders. ECML/PKDD (2) 2023: 508-524 - [e1]Gabriel Pedroza, Xiaowei Huang, Xin Cynthia Chen, Andreas Theodorou, Huáscar Espinoza, Nikolaos Matragkas, José Hernández-Orallo, Mauricio Castillo-Effen, Richard Mallah, John A. McDermid, David M. Bossens, Bettina Könighofer, Sebastian Tschiatschek, Anqi Liu:
Proceedings of the IJCAI-23 Joint Workshop on Artificial Intelligence Safety and Safe Reinforcement Learning (AISafety-SafeRL 2023) co-located with the 32nd International Joint Conference on Artificial Intelligence(IJCAI2023), Macau, China, August 21-22, 2023. CEUR Workshop Proceedings 3505, CEUR-WS.org 2023 [contents] - [i35]Timothée Schmude, Laura Koesten, Torsten Möller, Sebastian Tschiatschek:
On the Impact of Explanations on Understanding of Algorithmic Decision-Making. CoRR abs/2302.08264 (2023) - [i34]Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, Adish Singla:
Adaptive Scaffolding in Block-Based Programming via Synthesizing New Tasks as Pop Quizzes. CoRR abs/2303.16359 (2023) - [i33]David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Learning Safety Constraints from Demonstrations with Unknown Rewards. CoRR abs/2305.16147 (2023) - [i32]Timothée Schmude, Laura Koesten, Torsten Möller, Sebastian Tschiatschek:
Applying Interdisciplinary Frameworks to Understand Algorithmic Decision-Making. CoRR abs/2305.16700 (2023) - [i31]Manh Hung Nguyen, Sebastian Tschiatschek, Adish Singla:
Large Language Models for In-Context Student Modeling: Synthesizing Student's Behavior in Visual Programming from One-Shot Observation. CoRR abs/2310.10690 (2023) - [i30]Timur Sudak, Sebastian Tschiatschek:
Posterior Consistency for Missing Data in Variational Autoencoders. CoRR abs/2310.16648 (2023) - [i29]Timo Klein, Susanna Weinberger, Adish Singla, Sebastian Tschiatschek:
Active Third-Person Imitation Learning. CoRR abs/2312.16365 (2023) - 2022
- [c46]Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, Adish Singla:
Adaptive Scaffolding in Block-Based Programming via Synthesizing New Tasks as Pop Quizzes. AIED (1) 2022: 28-40 - [c45]Sebastian Tschiatschek, Maria Knobelsdorf, Adish Singla:
Equity and Fairness of Bayesian Knowledge Tracing. EDM 2022 - [c44]David Lindner, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Interactively Learning Preference Constraints in Linear Bandits. ICML 2022: 13505-13527 - [c43]Dongge Han, Sebastian Tschiatschek:
Option Transfer and SMDP Abstraction with Successor Features. IJCAI 2022: 3036-3042 - [i28]Sebastian Tschiatschek, Maria Knobelsdorf, Adish Singla:
Equity and Fairness of Bayesian Knowledge Tracing. CoRR abs/2205.02333 (2022) - [i27]David Lindner, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Interactively Learning Preference Constraints in Linear Bandits. CoRR abs/2206.05255 (2022) - 2021
- [c42]Haiyan Yin, Jianda Chen, Sinno Jialin Pan, Sebastian Tschiatschek:
Sequential Generative Exploration Model for Partially Observable Reinforcement Learning. AAAI 2021: 10700-10708 - [c41]Zichao Wang, Sebastian Tschiatschek, Simon Woodhead, José Miguel Hernández-Lobato, Simon Peyton Jones, Richard G. Baraniuk, Cheng Zhang:
Educational Question Mining At Scale: Prediction, Analysis and Personalization. AAAI 2021: 15669-15677 - [c40]Cecily Morrison, Edward Cutrell, Martin Grayson, Anja Thieme, Alex S. Taylor, Geert Roumen, Camilla Longden, Sebastian Tschiatschek, Rita Faia Marques, Abigail Sellen:
Social Sensemaking with AI: Designing an Open-ended AI Experience with a Blind Child. CHI 2021: 396:1-396:14 - [c39]Lukas Miklautz, Lena G. M. Bauer, Dominik Mautz, Sebastian Tschiatschek, Christian Böhm, Claudia Plant:
Details (Don't) Matter: Isolating Cluster Information in Deep Embedded Spaces. IJCAI 2021: 2826-2832 - [c38]David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause:
Information Directed Reward Learning for Reinforcement Learning. NeurIPS 2021: 3850-3862 - [i26]David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause:
Information Directed Reward Learning for Reinforcement Learning. CoRR abs/2102.12466 (2021) - [i25]Angus Lamb, Evgeny Saveliev, Yingzhen Li, Sebastian Tschiatschek, Camilla Longden, Simon Woodhead, José Miguel Hernández-Lobato, Richard E. Turner, Pashmina Cameron, Cheng Zhang:
Contextual HyperNetworks for Novel Feature Adaptation. CoRR abs/2104.05860 (2021) - [i24]Dongge Han, Michael J. Wooldridge, Sebastian Tschiatschek:
MDP Abstraction with Successor Features. CoRR abs/2110.09196 (2021) - 2020
- [c37]Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi, Adish Singla:
Towards Deployment of Robust Cooperative AI Agents: An Algorithmic Framework for Learning Adaptive Policies. AAMAS 2020: 447-455 - [c36]Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, Katja Hofmann:
AMRL: Aggregated Memory For Reinforcement Learning. ICLR 2020 - [c35]Chao Ma, Sebastian Tschiatschek, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. NeurIPS 2020 - [i23]Wolfgang Roth, Günther Schindler, Matthias Zöhrer, Lukas Pfeifenberger, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf, Zoubin Ghahramani:
Resource-Efficient Neural Networks for Embedded Systems. CoRR abs/2001.03048 (2020) - [i22]Zichao Wang, Sebastian Tschiatschek, Simon Woodhead, José Miguel Hernández-Lobato, Simon Peyton Jones, Cheng Zhang:
Large-Scale Educational Question Analysis with Partial Variational Auto-encoders. CoRR abs/2003.05980 (2020) - [i21]Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard E. Turner, Cheng Zhang:
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. CoRR abs/2006.11941 (2020) - [i20]Dongge Han, Shruti Tople, Alex Rogers, Michael J. Wooldridge, Olga Ohrimenko, Sebastian Tschiatschek:
Replication-Robust Payoff-Allocation with Applications in Machine Learning Marketplaces. CoRR abs/2006.14583 (2020) - [i19]Haiyan Yin, Yingzhen Li, Sinno Jialin Pan, Cheng Zhang, Sebastian Tschiatschek:
Reinforcement Learning with Efficient Active Feature Acquisition. CoRR abs/2011.00825 (2020)
2010 – 2019
- 2019
- [c34]Chao Ma, Sebastian Tschiatschek, Yingzhen Li, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals. AABI 2019: 1-8 - [c33]Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, Cheng Zhang:
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. ICML 2019: 4234-4243 - [c32]Ruixue Liu, Advait Sarkar, Erin Solovey, Sebastian Tschiatschek:
Evaluating Rule-based Programming and ReinforcementLearning for Personalising an Intelligent System. IUI Workshops 2019 - [c31]Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, Adish Singla:
Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints. NeurIPS 2019: 4147-4157 - [c30]David Janz, Jiri Hron, Przemyslaw Mazur, Katja Hofmann, José Miguel Hernández-Lobato, Sebastian Tschiatschek:
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning. NeurIPS 2019: 4509-4518 - [c29]Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann:
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck. NeurIPS 2019: 13956-13968 - [c28]Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model. NeurIPS 2019: 14791-14802 - [i18]Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, Adish Singla:
Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints. CoRR abs/1906.00429 (2019) - [i17]Wenbo Gong, Sebastian Tschiatschek, Richard E. Turner, Sebastian Nowozin, José Miguel Hernández-Lobato, Cheng Zhang:
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. CoRR abs/1908.04537 (2019) - [i16]Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi, Adish Singla:
Towards Deployment of Robust AI Agents for Human-Machine Partnerships. CoRR abs/1910.02330 (2019) - [i15]Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann:
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck. CoRR abs/1910.12911 (2019) - [i14]Olga Ohrimenko, Shruti Tople, Sebastian Tschiatschek:
Collaborative Machine Learning Markets with Data-Replication-Robust Payments. CoRR abs/1911.09052 (2019) - 2018
- [j3]Wolfgang Roth, Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf:
Hybrid generative-discriminative training of Gaussian mixture models. Pattern Recognit. Lett. 112: 131-137 (2018) - [c27]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Learning User Preferences to Incentivize Exploration in the Sharing Economy. AAAI 2018: 2248-2256 - [c26]Sebastian Tschiatschek, Aytunc Sahin, Andreas Krause:
Differentiable Submodular Maximization. IJCAI 2018: 2731-2738 - [c25]Luis Haug, Sebastian Tschiatschek, Adish Singla:
Teaching Inverse Reinforcement Learners via Features and Demonstrations. NeurIPS 2018: 8473-8482 - [c24]Sebastian Tschiatschek, Adish Singla, Manuel Gomez-Rodriguez, Arpit Merchant, Andreas Krause:
Fake News Detection in Social Networks via Crowd Signals. WWW (Companion Volume) 2018: 517-524 - [i13]Sebastian Tschiatschek, Aytunc Sahin, Andreas Krause:
Differentiable Submodular Maximization. CoRR abs/1803.01785 (2018) - [i12]Sebastian Tschiatschek, Kai Arulkumaran, Jan Stühmer, Katja Hofmann:
Variational Inference for Data-Efficient Model Learning in POMDPs. CoRR abs/1805.09281 (2018) - [i11]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Sum-Product Networks for Sequence Labeling. CoRR abs/1807.02324 (2018) - [i10]Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, Cheng Zhang:
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. CoRR abs/1809.11142 (2018) - [i9]David Janz, Jiri Hron, José Miguel Hernández-Lobato, Katja Hofmann, Sebastian Tschiatschek:
Successor Uncertainties: exploration and uncertainty in temporal difference learning. CoRR abs/1810.06530 (2018) - [i8]Luis Haug, Sebastian Tschiatschek, Adish Singla:
Teaching Inverse Reinforcement Learners via Features and Demonstrations. CoRR abs/1810.08926 (2018) - [i7]Franz Pernkopf, Wolfgang Roth, Matthias Zöhrer, Lukas Pfeifenberger, Günther Schindler, Holger Fröning, Sebastian Tschiatschek, Robert Peharz, Matthew Mattina, Zoubin Ghahramani:
Efficient and Robust Machine Learning for Real-World Systems. CoRR abs/1812.02240 (2018) - 2017
- [c23]Sebastian Tschiatschek, Adish Singla, Andreas Krause:
Selecting Sequences of Items via Submodular Maximization. AAAI 2017: 2667-2673 - [c22]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. ICML 2017: 498-507 - [c21]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Frame and Segment Level Recurrent Neural Networks for Phone Classification. INTERSPEECH 2017: 1318-1322 - [c20]Junyao Zhao, Josip Djolonga, Sebastian Tschiatschek, Andreas Krause:
Improving Optimization-Based Approximate Inference by Clamping Variables. UAI 2017 - [i6]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Coordinated Online Learning With Applications to Learning User Preferences. CoRR abs/1702.02849 (2017) - [i5]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. CoRR abs/1703.02100 (2017) - [i4]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Learning User Preferences to Incentivize Exploration in the Sharing Economy. CoRR abs/1711.08331 (2017) - [i3]Sebastian Tschiatschek, Adish Singla, Manuel Gomez-Rodriguez, Arpit Merchant, Andreas Krause:
Detecting Fake News in Social Networks via Crowdsourcing. CoRR abs/1711.09025 (2017) - 2016
- [c19]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization. AAAI 2016: 2037-2043 - [c18]Sebastian Tschiatschek, Josip Djolonga, Andreas Krause:
Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation. AISTATS 2016: 770-779 - [c17]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Actively Learning Hemimetrics with Applications to Eliciting User Preferences. ICML 2016: 412-420 - [c16]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Virtual Adversarial Training Applied to Neural Higher-Order Factors for Phone Classification. INTERSPEECH 2016: 2756-2760 - [c15]Josip Djolonga, Stefanie Jegelka, Sebastian Tschiatschek, Andreas Krause:
Cooperative Graphical Models. NIPS 2016: 262-270 - [c14]Josip Djolonga, Sebastian Tschiatschek, Andreas Krause:
Variational Inference in Mixed Probabilistic Submodular Models. NIPS 2016: 1759-1767 - [i2]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Actively Learning Hemimetrics with Applications to Eliciting User Preferences. CoRR abs/1605.07144 (2016) - 2015
- [j2]Sebastian Tschiatschek, Franz Pernkopf:
On Bayesian Network Classifiers with Reduced Precision Parameters. IEEE Trans. Pattern Anal. Mach. Intell. 37(4): 774-785 (2015) - [c13]Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro M. Domingos:
On Theoretical Properties of Sum-Product Networks. AISTATS 2015 - [c12]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Neural higher-order factors in conditional random fields for phoneme classification. INTERSPEECH 2015: 2137-2141 - [c11]Sebastian Tschiatschek, Franz Pernkopf:
Parameter Learning of Bayesian Network Classifiers Under Computational Constraints. ECML/PKDD (1) 2015: 86-101 - [c10]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Structured Regularizer for Neural Higher-Order Sequence Models. ECML/PKDD (1) 2015: 168-183 - [c9]Christian Knoll, Michael Rath, Sebastian Tschiatschek, Franz Pernkopf:
Message Scheduling Methods for Belief Propagation. ECML/PKDD (2) 2015: 295-310 - [i1]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization. CoRR abs/1511.07211 (2015) - 2014
- [c8]Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, Jeff A. Bilmes:
Learning Mixtures of Submodular Functions for Image Collection Summarization. NIPS 2014: 1413-1421 - [c7]Sebastian Tschiatschek, Karin Paul, Franz Pernkopf:
Integer Bayesian Network Classifiers. ECML/PKDD (3) 2014: 209-224 - 2013
- [c6]Sebastian Tschiatschek, Franz Pernkopf:
On the Asymptotic Optimality of Maximum Margin Bayesian Networks. AISTATS 2013: 590-598 - [c5]Sebastian Tschiatschek, Carlos Eduardo Cancino Chacón, Franz Pernkopf:
Bounds for Bayesian network classifiers with reduced precision parameters. ICASSP 2013: 3357-3361 - [c4]Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf:
The Most Generative Maximum Margin Bayesian Networks. ICML (3) 2013: 235-243 - 2012
- [j1]Franz Pernkopf, Michael Wohlmayr, Sebastian Tschiatschek:
Maximum Margin Bayesian Network Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 34(3): 521-532 (2012) - [c3]Sebastian Tschiatschek, Franz Pernkopf:
Convex Combinations of Maximum Margin Bayesian Network Classifiers. ICPRAM (1) 2012: 69-77 - [c2]Sebastian Tschiatschek, Nikolaus Mutsam, Franz Pernkopf:
Handling missing features in maximum margin Bayesian network classifiers. MLSP 2012: 1-6 - [c1]Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, Franz Pernkopf:
Bayesian Network Classifiers with Reduced Precision Parameters. ECML/PKDD (1) 2012: 74-89
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-18 00:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint