
Franz Pernkopf
Person information
- affiliation: Graz University of Technology, Signal Processing and Speech Communication Laboratory, Austria
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j33]Philipp Aichinger
, Franz Pernkopf
:
Synthesis and Analysis-By-Synthesis of Modulated Diplophonic Glottal Area Waveforms. IEEE ACM Trans. Audio Speech Lang. Process. 29: 914-926 (2021) - [i23]Lukas Pfeifenberger, Franz Pernkopf:
Blind Speech Separation and Dereverberation using Neural Beamforming. CoRR abs/2103.13443 (2021) - 2020
- [j32]Elmar Messner
, Melanie Fediuk, Paul Swatek, Stefan Scheidl, Freyja-Maria Smolle-Jüttner, Horst Olschewski, Franz Pernkopf:
Multi-channel lung sound classification with convolutional recurrent neural networks. Comput. Biol. Medicine 122: 103831 (2020) - [j31]Wolfgang Roth
, Franz Pernkopf
:
Bayesian Neural Networks with Weight Sharing Using Dirichlet Processes. IEEE Trans. Pattern Anal. Mach. Intell. 42(1): 246-252 (2020) - [j30]Nikolaus Mutsam
, Franz Pernkopf
:
Tracking of a Gunning Jet Using Particle Filtering in Infrared Image Sequences. IEEE Trans. Instrum. Meas. 69(9): 6101-6111 (2020) - [c96]Martin Trapp, Robert Peharz, Franz Pernkopf, Carl Edward Rasmussen:
Deep Structured Mixtures of Gaussian Processes. AISTATS 2020: 2251-2261 - [c95]Truc Nguyen, Franz Pernkopf:
Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks. EMBC 2020: 760-763 - [c94]Truc Nguyen, Franz Pernkopf, Michal Kosmider:
Acoustic Scene Classification for Mismatched Recording Devices Using Heated-Up Softmax and Spectrum Correction. ICASSP 2020: 126-130 - [c93]Markus Huber, Günther Schindler, Christian Schörkhuber, Wolfgang Roth, Franz Pernkopf, Holger Fröning:
Towards Real-Time Single-Channel Singing-Voice Separation with Pruned Multi-Scaled Densenets. ICASSP 2020: 806-810 - [c92]Lukas Pfeifenberger, Franz Pernkopf:
Nonlinear Residual Echo Suppression Using a Recurrent Neural Network. INTERSPEECH 2020: 3950-3954 - [c91]Günther Schindler, Wolfgang Roth, Franz Pernkopf, Holger Fröning:
Parameterized Structured Pruning for Deep Neural Networks. LOD (2) 2020: 16-27 - [e1]João Gama
, Sepideh Pashami
, Albert Bifet
, Moamar Sayed Mouchaweh
, Holger Fröning
, Franz Pernkopf
, Gregor Schiele
, Michaela Blott
:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised Selected Papers. Communications in Computer and Information Science 1325, Springer 2020, ISBN 978-3-030-66769-6 [contents] - [i22]Wolfgang Roth, Günther Schindler, Matthias Zöhrer, Lukas Pfeifenberger, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf, Zoubin Ghahramani:
Resource-Efficient Neural Networks for Embedded Systems. CoRR abs/2001.03048 (2020) - [i21]Alexander Fuchs, Franz Pernkopf:
Wasserstein Routed Capsule Networks. CoRR abs/2007.11465 (2020) - [i20]Lukas Pfeifenberger, Matthias Zöhrer, Günther Schindler, Wolfgang Roth, Holger Fröning, Franz Pernkopf:
Resource-Efficient Speech Mask Estimation for Multi-Channel Speech Enhancement. CoRR abs/2007.11477 (2020) - [i19]Wolfgang Roth, Franz Pernkopf:
Differentiable TAN Structure Learning for Bayesian Network Classifiers. CoRR abs/2008.09566 (2020) - [i18]Wolfgang Roth, Günther Schindler, Holger Fröning, Franz Pernkopf:
On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks. CoRR abs/2010.11773 (2020) - [i17]Johanna Rock, Wolfgang Roth, Máté Tóth, Paul Meissner, Franz Pernkopf:
Quantized Neural Networks for Radar Interference Mitigation. CoRR abs/2011.12706 (2020) - [i16]Johanna Rock, Máté Tóth, Paul Meissner, Franz Pernkopf:
Deep Interference Mitigation and Denoising of Real-World FMCW Radar Signals. CoRR abs/2012.02529 (2020) - [i15]David Peter, Wolfgang Roth, Franz Pernkopf:
Resource-efficient DNNs for Keyword Spotting using Neural Architecture Search and Quantization. CoRR abs/2012.10138 (2020)
2010 – 2019
- 2019
- [j29]Philipp Aichinger
, Franz Pernkopf, Jean Schoentgen:
Detection of extra pulses in synthesized glottal area waveforms of dysphonic voices. Biomed. Signal Process. Control. 50: 158-167 (2019) - [j28]Lukas Pfeifenberger
, Matthias Zöhrer
, Franz Pernkopf
:
Eigenvector-Based Speech Mask Estimation for Multi-Channel Speech Enhancement. IEEE ACM Trans. Audio Speech Lang. Process. 27(12): 2162-2172 (2019) - [c90]Johanna Rock, Máté Tóth, Elmar Messner, Paul Meissner, Franz Pernkopf:
Complex Signal Denoising and Interference Mitigation for Automotive Radar Using Convolutional Neural Networks. FUSION 2019: 1-8 - [c89]Lukas Pfeifenberger, Matthias Zöhrer, Franz Pernkopf:
Deep Complex-valued Neural Beamformers. ICASSP 2019: 2902-2906 - [c88]Truc Nguyen, Franz Pernkopf:
Acoustic Scene Classification with Mismatched Recording Devices Using Mixture of Experts Layer. ICME 2019: 1666-1671 - [c87]Alexander Fuchs, Robin Priewald, Franz Pernkopf:
Recurrent Dilated DenseNets for a Time-Series Segmentation Task. ICMLA 2019: 75-80 - [c86]Truc Nguyen, Alexander Fuchs, Franz Pernkopf:
Acoustic Scene Classification Using Deep Mixtures of Pre-trained Convolutional Neural Networks. ICMLA 2019: 871-875 - [c85]Truc Nguyen, Franz Pernkopf:
Acoustic Scene Classification with Mismatched Devices Using CliqueNets and Mixup Data Augmentation. INTERSPEECH 2019: 2330-2334 - [c84]Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, Zoubin Ghahramani:
Bayesian Learning of Sum-Product Networks. NeurIPS 2019: 6344-6355 - [c83]Wolfgang Roth, Günther Schindler, Holger Fröning, Franz Pernkopf:
Training Discrete-Valued Neural Networks with Sign Activations Using Weight Distributions. ECML/PKDD (2) 2019: 382-398 - [c82]Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz Pernkopf, Wolfgang Roth, Astrid Rupp, Martin Tappler
, Markus Tranninger:
Learning a Behavior Model of Hybrid Systems Through Combining Model-Based Testing and Machine Learning. ICTSS 2019: 3-21 - [c81]Bernhard K. Aichernig, Franz Pernkopf, Richard Schumi, Andreas Wurm:
Predicting and Testing Latencies with Deep Learning: An IoT Case Study. TAP@FM 2019: 93-111 - [c80]Christian Knoll, Franz Pernkopf:
Belief Propagation: Accurate Marginals or Accurate Partition Function - Where is the Difference? UAI 2019: 627-636 - [i14]Martin Trapp, Robert Peharz, Franz Pernkopf:
Optimisation of Overparametrized Sum-Product Networks. CoRR abs/1905.08196 (2019) - [i13]Martin Trapp, Robert Peharz
, Hong Ge, Franz Pernkopf, Zoubin Ghahramani:
Bayesian Learning of Sum-Product Networks. CoRR abs/1905.10884 (2019) - [i12]Günther Schindler, Wolfgang Roth, Franz Pernkopf, Holger Fröning:
Parameterized Structured Pruning for Deep Neural Networks. CoRR abs/1906.05180 (2019) - [i11]Johanna Rock, Máté Tóth, Elmar Messner, Paul Meissner, Franz Pernkopf:
Complex Signal Denoising and Interference Mitigation for Automotive Radar Using Convolutional Neural Networks. CoRR abs/1906.10044 (2019) - [i10]Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz Pernkopf, Wolfgang Roth, Astrid Rupp, Martin Tappler, Markus Tranninger:
Learning a Behavior Model of Hybrid Systems Through Combining Model-Based Testing and Machine Learning (Full Version). CoRR abs/1907.04708 (2019) - [i9]Martin Trapp, Robert Peharz, Franz Pernkopf, Carl E. Rasmussen:
Deep Structured Mixtures of Gaussian Processes. CoRR abs/1910.04536 (2019) - 2018
- [j27]Christian Knoll
, Dhagash Mehta, Tianran Chen, Franz Pernkopf
:
Fixed Points of Belief Propagation - An Analysis via Polynomial Homotopy Continuation. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2124-2136 (2018) - [j26]Wolfgang Roth, Robert Peharz
, Sebastian Tschiatschek, Franz Pernkopf:
Hybrid generative-discriminative training of Gaussian mixture models. Pattern Recognit. Lett. 112: 131-137 (2018) - [j25]Philipp Aichinger
, Martin Hagmüller
, Berit Schneider-Stickler, Jean Schoentgen, Franz Pernkopf:
Tracking of Multiple Fundamental Frequencies in Diplophonic Voices. IEEE ACM Trans. Audio Speech Lang. Process. 26(2): 330-341 (2018) - [j24]Elmar Messner
, Matthias Zöhrer, Franz Pernkopf
:
Heart Sound Segmentation - An Event Detection Approach Using Deep Recurrent Neural Networks. IEEE Trans. Biomed. Eng. 65(9): 1964-1974 (2018) - [c79]Elmar Messner, Melanie Fediuk, Paul Swatek, Stefan Scheidl, Freyja-Maria Smolle-Jüttner, Horst Olschewski, Franz Pernkopf:
Crackle and Breathing Phase Detection in Lung Sounds with Deep Bidirectional Gated Recurrent Neural Networks. EMBC 2018: 356-359 - [c78]Günther Schindler, Matthias Zöhrer, Franz Pernkopf, Holger Fröning:
Towards Efficient Forward Propagation on Resource-Constrained Systems. ECML/PKDD (1) 2018: 426-442 - [i8]Tobias Schrank, Franz Pernkopf:
Automatic Clustering of a Network Protocol with Weakly-Supervised Clustering. CoRR abs/1806.00981 (2018) - [i7]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Sum-Product Networks for Sequence Labeling. CoRR abs/1807.02324 (2018) - [i6]Martin Trapp, Robert Peharz, Carl E. Rasmussen, Franz Pernkopf:
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks. CoRR abs/1809.04400 (2018) - [i5]Robert Harb, Franz Pernkopf:
Sound event detection using weakly-labeled semi-supervised data with GCRNNS, VAT and Self-Adaptive Label Refinement. CoRR abs/1810.06897 (2018) - [i4]Christian Knoll, Florian Kulmer, Franz Pernkopf:
Self-Guided Belief Propagation - A Homotopy Continuation Method. CoRR abs/1812.01339 (2018) - [i3]Franz Pernkopf, Wolfgang Roth, Matthias Zöhrer, Lukas Pfeifenberger, Günther Schindler, Holger Fröning, Sebastian Tschiatschek, Robert Peharz, Matthew Mattina, Zoubin Ghahramani:
Efficient and Robust Machine Learning for Real-World Systems. CoRR abs/1812.02240 (2018) - 2017
- [j23]Philipp Aichinger
, Martin Hagmüller
, Imme Roesner, Berit Schneider-Stickler, Jean Schoentgen, Franz Pernkopf:
Fundamental frequency tracking in diplophonic voices. Biomed. Signal Process. Control. 37: 69-81 (2017) - [j22]Robert Peharz
, Robert Gens, Franz Pernkopf, Pedro M. Domingos:
On the Latent Variable Interpretation in Sum-Product Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(10): 2030-2044 (2017) - [c77]Elmar Messner, Martin Hagmüller
, Paul Swatek, Freyja-Maria Smolle-Jüttner, Franz Pernkopf:
Impact of Airflow Rate on Amplitude and Regional Distribution of Normal Lung Sounds. BIOSIGNALS 2017: 49-53 - [c76]Lukas Pfeifenberger, Matthias Zöhrer, Franz Pernkopf:
DNN-based speech mask estimation for eigenvector beamforming. ICASSP 2017: 66-70 - [c75]Elmar Messner, Martin Hagmüller
, Paul Swatek, Freyja-Maria Smolle-Jüttner, Franz Pernkopf:
Respiratory airflow estimation from lung sounds based on regression. ICASSP 2017: 1123-1127 - [c74]Matthias Zöhrer, Franz Pernkopf:
Virtual Adversarial Training and Data Augmentation for Acoustic Event Detection with Gated Recurrent Neural Networks. INTERSPEECH 2017: 493-497 - [c73]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Frame and Segment Level Recurrent Neural Networks for Phone Classification. INTERSPEECH 2017: 1318-1322 - [c72]Lukas Pfeifenberger, Matthias Zöhrer, Franz Pernkopf:
Eigenvector-Based Speech Mask Estimation Using Logistic Regression. INTERSPEECH 2017: 2660-2664 - [c71]Christian Knoll, Franz Pernkopf:
On Loopy Belief Propagation - Local Stability Analysis for Non-Vanishing Fields. UAI 2017 - [c70]Martin Trapp, Tamas Madl, Robert Peharz, Franz Pernkopf, Robert Trappl:
Safe Semi-Supervised Learning of Sum-Product Networks. UAI 2017 - [i2]Martin Trapp, Tamas Madl, Robert Peharz, Franz Pernkopf, Robert Trappl:
Safe Semi-Supervised Learning of Sum-Product Networks. CoRR abs/1710.03444 (2017) - 2016
- [j21]Nikolaus Mutsam, Franz Pernkopf:
Maximum margin hidden Markov models for sequence classification. Pattern Recognit. Lett. 77: 14-20 (2016) - [c69]Elmar Messner, Martin Hagmüller
, Paul Swatek, Franz Pernkopf:
A Robust Multichannel Lung Sound Recording Device. BIODEVICES 2016: 34-39 - [c68]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Virtual Adversarial Training Applied to Neural Higher-Order Factors for Phone Classification. INTERSPEECH 2016: 2756-2760 - [c67]Florian B. Pokorny, Robert Peharz
, Wolfgang Roth, Matthias Zöhrer, Franz Pernkopf, Peter B. Marschik, Björn W. Schuller
:
Manual versus Automated: The Challenging Routine of Infant Vocalisation Segmentation in Home Videos to Study Neuro(mal)development. INTERSPEECH 2016: 2997-3001 - [c66]Johannes Fahringer, Tobias Schrank, Johannes Stahl, Pejman Mowlaee
, Franz Pernkopf:
Phase-Aware Signal Processing for Automatic Speech Recognition. INTERSPEECH 2016: 3374-3378 - [i1]Robert Peharz, Robert Gens, Franz Pernkopf, Pedro M. Domingos:
On the Latent Variable Interpretation in Sum-Product Networks. CoRR abs/1601.06180 (2016) - 2015
- [j20]Sebastian Tschiatschek, Franz Pernkopf:
On Bayesian Network Classifiers with Reduced Precision Parameters. IEEE Trans. Pattern Anal. Mach. Intell. 37(4): 774-785 (2015) - [j19]Matthias Zöhrer, Robert Peharz
, Franz Pernkopf:
Representation Learning for Single-Channel Source Separation and Bandwidth Extension. IEEE ACM Trans. Audio Speech Lang. Process. 23(12): 2398-2409 (2015) - [c65]Florian B. Pokorny, Franz Graf, Franz Pernkopf, Björn W. Schuller
:
Detection of negative emotions in speech signals using bags-of-audio-words. ACII 2015: 879-884 - [c64]Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro M. Domingos:
On Theoretical Properties of Sum-Product Networks. AISTATS 2015 - [c63]Lukas Pfeifenberger, Tobias Schrank, Matthias Zöhrer, Martin Hagmüller
, Franz Pernkopf:
Multi-channel speech processing architectures for noise robust speech recognition: 3rd CHiME challenge results. ASRU 2015: 452-459 - [c62]Matthias Zöhrer, Franz Pernkopf:
Representation models in single channel source separation. ICASSP 2015: 713-717 - [c61]Matthias Zöhrer, Robert Peharz, Franz Pernkopf:
On representation learning for artificial bandwidth extension. INTERSPEECH 2015: 791-795 - [c60]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Neural higher-order factors in conditional random fields for phoneme classification. INTERSPEECH 2015: 2137-2141 - [c59]Sebastian Tschiatschek, Franz Pernkopf:
Parameter Learning of Bayesian Network Classifiers Under Computational Constraints. ECML/PKDD (1) 2015: 86-101 - [c58]Martin Ratajczak, Sebastian Tschiatschek, Franz Pernkopf:
Structured Regularizer for Neural Higher-Order Sequence Models. ECML/PKDD (1) 2015: 168-183 - [c57]Christian Knoll, Michael Rath, Sebastian Tschiatschek, Franz Pernkopf:
Message Scheduling Methods for Belief Propagation. ECML/PKDD (2) 2015: 295-310 - 2014
- [c56]Lukas Pfeifenberger, Franz Pernkopf:
A multi-channel postfilter based on the diffuse noise sound field. EUSIPCO 2014: 686-690 - [c55]A. Zehetner, Martin Hagmüller, Franz Pernkopf:
Wake-up-word spotting for mobile systems. EUSIPCO 2014: 1472-1476 - [c54]Christina Leitner, Juan Andres Morales-Cordovilla, Franz Pernkopf:
Evaluation of speech enhancement based on pre-image iterations using automatic speech recognition. EUSIPCO 2014: 1801-1805 - [c53]Robert Peharz
, Georg Kapeller, Pejman Mowlaee
, Franz Pernkopf:
Modeling speech with sum-product networks: Application to bandwidth extension. ICASSP 2014: 3699-3703 - [c52]Matthias Zöhrer, Franz Pernkopf:
Single channel source separation with general stochastic networks. INTERSPEECH 2014: 978-982 - [c51]Michael Wohlmayr, Ludwig Mohr, Franz Pernkopf:
Self-adaption in single-channel source separation. INTERSPEECH 2014: 1003-1007 - [c50]Lukas Pfeifenberger, Franz Pernkopf:
Blind source extraction based on a direction-dependent a-priori SNR. INTERSPEECH 2014: 2700-2704 - [c49]Matthias Zöhrer, Franz Pernkopf:
General Stochastic Networks for Classification. NIPS 2014: 2015-2023 - [c48]Sebastian Tschiatschek, Karin Paul, Franz Pernkopf:
Integer Bayesian Network Classifiers. ECML/PKDD (3) 2014: 209-224 - 2013
- [j18]Franz Pernkopf, Michael Wohlmayr:
Stochastic margin-based structure learning of Bayesian network classifiers. Pattern Recognit. 46(2): 464-471 (2013) - [j17]Michael Wohlmayr, Franz Pernkopf:
Model-Based Multiple Pitch Tracking Using Factorial HMMs: Model Adaptation and Inference. IEEE Trans. Speech Audio Process. 21(8): 1742-1754 (2013) - [c47]Sebastian Tschiatschek, Franz Pernkopf:
On the Asymptotic Optimality of Maximum Margin Bayesian Networks. AISTATS 2013: 590-598 - [c46]Sebastian Tschiatschek, Carlos Eduardo Cancino Chacón
, Franz Pernkopf:
Bounds for Bayesian network classifiers with reduced precision parameters. ICASSP 2013: 3357-3361 - [c45]Michael Wohlmayr, Franz Pernkopf:
Model adaptation of factorial HMMS for multipitch tracking. ICASSP 2013: 6792-6796 - [c44]Christina Leitner, Franz Pernkopf:
Generalization of pre-image iterations for speech enhancement. ICASSP 2013: 7010-7014 - [c43]Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf:
The Most Generative Maximum Margin Bayesian Networks. ICML (3) 2013: 235-243 - [c42]Robert Peharz
, Bernhard C. Geiger
, Franz Pernkopf:
Greedy Part-Wise Learning of Sum-Product Networks. ECML/PKDD (2) 2013: 612-627 - 2012
- [j16]Robert Peharz
, Franz Pernkopf:
Sparse nonnegative matrix factorization with ℓ0-constraints. Neurocomputing 80: 38-46 (2012) - [j15]Franz Pernkopf, Michael Wohlmayr, Sebastian Tschiatschek:
Maximum Margin Bayesian Network Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 34(3): 521-532 (2012) - [c41]Christina Leitner, Franz Pernkopf:
Suppression of musical noise in enhanced speech using pre-image iterations. EUSIPCO 2012: 345-349 - [c40]Robert Peharz
, Franz Pernkopf:
On linear and mixmax interaction models for single channel source separation. ICASSP 2012: 249-252 - [c39]Christina Leitner, Franz Pernkopf:
Speech enhancement using pre-image iterations. ICASSP 2012: 4665-4668 - [c38]Robert Peharz, Franz Pernkopf:
Exact Maximum Margin Structure Learning of Bayesian Networks. ICML 2012 - [c37]Sebastian Tschiatschek, Franz Pernkopf:
Convex Combinations of Maximum Margin Bayesian Network Classifiers. ICPRAM (1) 2012: 69-77 - [c36]Christina Leitner, Franz Pernkopf:
Extension of Pre-Image Speech De-Noising by Voice Activity Detection Using a Bone Conductive Microphone. IWAENC 2012 - [c35]Sebastian Tschiatschek, Nikolaus Mutsam, Franz Pernkopf:
Handling missing features in maximum margin Bayesian network classifiers. MLSP 2012: 1-6 - [c34]Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, Franz Pernkopf:
Bayesian Network Classifiers with Reduced Precision Parameters. ECML/PKDD (1) 2012: 74-89 - 2011
- [j14]Stefan Petrik, Christina Drexel, Leo Fessler, Jeremy Jancsary, Alexandra Klein, Gernot Kubin, Johannes Matiasek, Franz Pernkopf, Harald Trost:
Semantic and phonetic automatic reconstruction of medical dictations. Comput. Speech Lang. 25(2): 363-385 (2011) - [j13]Michael Stark, Michael Wohlmayr, Franz Pernkopf:
Source-Filter-Based Single-Channel Speech Separation Using Pitch Information. IEEE Trans. Speech Audio Process. 19(2): 242-255 (2011) - [j12]Michael Wohlmayr, Michael Stark, Franz Pernkopf:
A Probabilistic Interaction Model for Multipitch Tracking With Factorial Hidden Markov Models. IEEE Trans. Speech Audio Process. 19(4): 799-810 (2011) - [c33]Franz Pernkopf, Michael Wohlmayr, Manfred Mücke:
Maximum margin structure learning of Bayesian network classifiers. ICASSP 2011: 2076-2079 - [c32]Michael Wohlmayr, Robert Peharz
, Franz Pernkopf:
Efficient implementation of probabilistic multi-pitch tracking. ICASSP 2011: 5412-5415 - [c31]Robert Peharz
, Michael Wohlmayr, Franz Pernkopf:
Gain-robust multi-pitch tracking using sparse nonnegative matrix factorization. ICASSP 2011: 5416-5419 - [c30]Christina Leitner, Franz Pernkopf, Gernot Kubin:
Kernel PCA for Speech Enhancement. INTERSPEECH 2011: 1221-1224 - [c29]Gregor Pirker, Michael Wohlmayr, Stefan Petrik, Franz Pernkopf:
A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. INTERSPEECH 2011: 1509-1512 - [c28]Michael Wohlmayr, Franz Pernkopf:
EM-Based Gain Adaptation for Probabilistic Multipitch Tracking. INTERSPEECH 2011: 1969-1972 - [c27]Christina Leitner, Franz Pernkopf:
The Pre-image Problem and Kernel PCA for Speech Enhancement. NOLISP 2011: 199-206 - 2010
- [j11]Franz Pernkopf, Jeff A. Bilmes:
Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers. J. Mach. Learn. Res. 11: 2323-2360 (2010) - [j10]Charturong Tantibundhit, Franz Pernkopf, Gernot Kubin:
Joint Time-Frequency Segmentation Algorithm for Transient Speech Decomposition and Speech Enhancement. IEEE Trans. Speech Audio Process. 18(6): 1417-1428 (2010) - [c26]Michael Stark, Franz Pernkopf:
On optimizing the computational complexity for VQ-based single channel source separation. ICASSP 2010: 237-240 - [c25]Michael Wohlmayr, Michael Stark, Franz Pernkopf:
A mixture maximization approach to multipitch tracking with factorial hidden Markov models. ICASSP 2010: 5070-5073 - [c24]Michael Stark, Michael Wohlmayr, Franz Pernkopf:
Single Channel Speech Separation Using Source-Filter Representation. ICPR 2010: 826-829 - [c23]Robert Peharz, Michael Stark, Franz Pernkopf, Yannis Stylianou:
A factorial sparse coder model for single channel source separation. INTERSPEECH 2010: 386-389 - [c22]Franz Pernkopf, Michael Wohlmayr:
Large Margin Learning of Bayesian Classifiers Based on Gaussian Mixture Models. ECML/PKDD (3) 2010: 50-66
2000 – 2009
- 2009
- [j9]Franz Pernkopf, Tuan Van Pham, Jeff A. Bilmes:
Broad phonetic classification using discriminative Bayesian networks. Speech Commun. 51(2): 151-166 (2009) - [c21]Michael Stark, Franz Pernkopf:
Towards source-filter based single sensor speech separation. ICASSP 2009: 97-100 - [c20]Christoph Böhm, Franz Pernkopf:
Effective metric-based speaker segmentation in the frequency domain. ICASSP 2009: 4081-4084 - [c19]Charturong Tantibundhit, Franz Pernkopf, Gernot Kubin:
Speech enhancement based on joint time-frequency segmentation. ICASSP 2009: 4673-4676 - [c18]Michael Wiesenegger, Franz Pernkopf:
Wavelet-based speaker change detection in single channel speech data. INTERSPEECH 2009: 836-839 - [c17]Michael Wohlmayr, Franz Pernkopf:
Finite mixture spectrogram modeling for multipitch tracking using a factorial hidden Markov model. INTERSPEECH 2009: 1079-1082 - [c16]Franz Pernkopf, Michael Wohlmayr:
On Discriminative Parameter Learning of Bayesian Network Classifiers. ECML/PKDD (2) 2009: 221-237 - 2008
- [j8]