
Stefanie Jegelka
Stefanie Sabrina Jegelka
Person information
- affiliation: Massachusetts Institute of Technology (MIT), CSAIL, Cambridge, MA, USA
- affiliation: University of California, Berkeley, Department of EECS, Berkeley, CA, USA
- affiliation (PhD 2012): ETH Zurich, Department of Computer Science, Switzerland
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation: University of Tübingen, Wilhelm Schickard Institute for Computer Sciences, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j6]Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore, Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, Elsa Olivetti:
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. J. Chem. Inf. Model. 60(3): 1194-1201 (2020) - [c66]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. AISTATS 2020: 2174-2184 - [c65]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
What Can Neural Networks Reason About? ICLR 2020 - [c64]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations. ICML 2020: 1984-1994 - [c63]Vikas K. Garg, Stefanie Jegelka, Tommi S. Jaakkola:
Generalization and Representational Limits of Graph Neural Networks. ICML 2020: 3419-3430 - [c62]Marwa El Halabi, Stefanie Jegelka:
Optimal approximation for unconstrained non-submodular minimization. ICML 2020: 3961-3972 - [c61]Joshua Robinson, Stefanie Jegelka, Suvrit Sra:
Strength from Weakness: Fast Learning Using Weak Supervision. ICML 2020: 8127-8136 - [c60]Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, Ali Jadbabaie:
Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions. ICML 2020: 11173-11182 - [c59]Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin:
IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method. NeurIPS 2020 - [c58]Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, Stefanie Jegelka:
Debiased Contrastive Learning. NeurIPS 2020 - [c57]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. NeurIPS 2020 - [c56]Khashayar Gatmiry, Maryam Aliakbarpour, Stefanie Jegelka:
Testing Determinantal Point Processes. NeurIPS 2020 - [i59]Yossi Arjevani, Amit Daniely, Stefanie Jegelka, Hongzhou Lin:
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions. CoRR abs/2002.03273 (2020) - [i58]Vikas K. Garg, Stefanie Jegelka, Tommi S. Jaakkola:
Generalization and Representational Limits of Graph Neural Networks. CoRR abs/2002.06157 (2020) - [i57]Joshua Robinson, Stefanie Jegelka, Suvrit Sra:
Strength from Weakness: Fast Learning Using Weak Supervision. CoRR abs/2002.08483 (2020) - [i56]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. CoRR abs/2002.09038 (2020) - [i55]Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin:
IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method. CoRR abs/2006.06733 (2020) - [i54]Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, Stefanie Jegelka:
Debiased Contrastive Learning. CoRR abs/2007.00224 (2020) - [i53]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations. CoRR abs/2007.03511 (2020) - [i52]Khashayar Gatmiry, Maryam Aliakbarpour, Stefanie Jegelka:
Testing Determinantal Point Processes. CoRR abs/2008.03650 (2020) - [i51]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. CoRR abs/2009.11848 (2020) - [i50]Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoffrey J. Gordon, Stefanie Jegelka, Ruslan Salakhutdinov:
Graph Adversarial Networks: Protecting Information against Adversarial Attacks. CoRR abs/2009.13504 (2020) - [i49]Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, Stefanie Jegelka:
Contrastive Learning with Hard Negative Samples. CoRR abs/2010.04592 (2020) - [i48]Behrooz Tahmasebi, Stefanie Jegelka:
Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results. CoRR abs/2012.03174 (2020)
2010 – 2019
- 2019
- [j5]Gal Shulkind
, Stefanie Jegelka, Gregory W. Wornell
:
Sensor Array Design Through Submodular Optimization. IEEE Trans. Inf. Theory 65(1): 664-675 (2019) - [c55]Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, Jordan L. Boyd-Graber:
Are Girls Neko or Shōjo? Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization. ACL (1) 2019: 3180-3189 - [c54]Matthew Staib, Bryan Wilder, Stefanie Jegelka:
Distributionally Robust Submodular Maximization. AISTATS 2019: 506-516 - [c53]David Alvarez-Melis, Stefanie Jegelka, Tommi S. Jaakkola:
Towards Optimal Transport with Global Invariances. AISTATS 2019: 1870-1879 - [c52]Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka:
How Powerful are Graph Neural Networks? ICLR 2019 - [c51]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. ICML 2019: 851-861 - [c50]Matthew Staib, Stefanie Jegelka:
Distributionally Robust Optimization and Generalization in Kernel Methods. NeurIPS 2019: 9131-9141 - [c49]Joshua Robinson, Suvrit Sra, Stefanie Jegelka:
Flexible Modeling of Diversity with Strongly Log-Concave Distributions. NeurIPS 2019: 15199-15209 - [i47]Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore, Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, Elsa Olivetti:
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. CoRR abs/1901.00032 (2019) - [i46]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. CoRR abs/1905.05461 (2019) - [i45]Matthew Staib, Stefanie Jegelka:
Distributionally Robust Optimization and Generalization in Kernel Methods. CoRR abs/1905.10943 (2019) - [i44]Marwa El Halabi, Stefanie Jegelka:
Minimizing approximately submodular functions. CoRR abs/1905.12145 (2019) - [i43]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
What Can Neural Networks Reason About? CoRR abs/1905.13211 (2019) - [i42]Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, Jordan L. Boyd-Graber:
Are Girls Neko or Shōjo? Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization. CoRR abs/1906.01622 (2019) - [i41]Joshua Robinson, Suvrit Sra, Stefanie Jegelka:
Flexible Modeling of Diversity with Strongly Log-Concave Distributions. CoRR abs/1906.05413 (2019) - [i40]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
The Role of Embedding Complexity in Domain-invariant Representations. CoRR abs/1910.05804 (2019) - [i39]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. CoRR abs/1910.12511 (2019) - 2018
- [c48]Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause:
Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly. AAAI 2018: 1379-1386 - [c47]Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka:
Batched Large-scale Bayesian Optimization in High-dimensional Spaces. AISTATS 2018: 745-754 - [c46]David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka:
Structured Optimal Transport. AISTATS 2018: 1771-1780 - [c45]Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra:
Distributional Adversarial Networks. ICLR (Workshop) 2018 - [c44]Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka:
Representation Learning on Graphs with Jumping Knowledge Networks. ICML 2018: 5449-5458 - [c43]Josip Djolonga, Stefanie Jegelka, Andreas Krause:
Provable Variational Inference for Constrained Log-Submodular Models. NeurIPS 2018: 2702-2712 - [c42]Zelda E. Mariet, Suvrit Sra, Stefanie Jegelka:
Exponentiated Strongly Rayleigh Distributions. NeurIPS 2018: 4464-4474 - [c41]Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher:
Adversarially Robust Optimization with Gaussian Processes. NeurIPS 2018: 5765-5775 - [c40]Hongzhou Lin, Stefanie Jegelka:
ResNet with one-neuron hidden layers is a Universal Approximator. NeurIPS 2018: 6172-6181 - [c39]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. UAI 2018: 229-237 - [i38]Matthew Staib, Bryan Wilder, Stefanie Jegelka:
Distributionally Robust Submodular Maximization. CoRR abs/1802.05249 (2018) - [i37]Zhi Xu, Chengtao Li, Stefanie Jegelka:
Robust GANs against Dishonest Adversaries. CoRR abs/1802.09700 (2018) - [i36]Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka:
Representation Learning on Graphs with Jumping Knowledge Networks. CoRR abs/1806.03536 (2018) - [i35]David Alvarez-Melis, Stefanie Jegelka, Tommi S. Jaakkola:
Towards Optimal Transport with Global Invariances. CoRR abs/1806.09277 (2018) - [i34]Hongzhou Lin, Stefanie Jegelka:
ResNet with one-neuron hidden layers is a Universal Approximator. CoRR abs/1806.10909 (2018) - [i33]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. CoRR abs/1807.01808 (2018) - [i32]Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka:
How Powerful are Graph Neural Networks? CoRR abs/1810.00826 (2018) - [i31]Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher:
Adversarially Robust Optimization with Gaussian Processes. CoRR abs/1810.10775 (2018) - 2017
- [j4]Stefanie Jegelka, Jeff A. Bilmes:
Graph cuts with interacting edge weights: examples, approximations, and algorithms. Math. Program. 162(1-2): 241-282 (2017) - [c38]Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, Kevin Murphy:
Deep Metric Learning via Facility Location. CVPR 2017: 2206-2214 - [c37]Gal Shulkind, Stefanie Jegelka, Gregory W. Wornell:
Multiple wavelength sensing array design. ICASSP 2017: 3424-3428 - [c36]Matthew Staib, Stefanie Jegelka:
Robust Budget Allocation via Continuous Submodular Functions. ICML 2017: 3230-3240 - [c35]Zi Wang, Stefanie Jegelka:
Max-value Entropy Search for Efficient Bayesian Optimization. ICML 2017: 3627-3635 - [c34]Zi Wang, Chengtao Li, Stefanie Jegelka, Pushmeet Kohli:
Batched High-dimensional Bayesian Optimization via Structural Kernel Learning. ICML 2017: 3656-3664 - [c33]Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, Tomás Lozano-Pérez:
Focused model-learning and planning for non-Gaussian continuous state-action systems. ICRA 2017: 3754-3761 - [c32]Matthew Staib, Sebastian Claici, Justin Solomon, Stefanie Jegelka:
Parallel Streaming Wasserstein Barycenters. NIPS 2017: 2647-2658 - [c31]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Polynomial time algorithms for dual volume sampling. NIPS 2017: 5038-5047 - [i30]Matthew Staib, Stefanie Jegelka:
Robust Budget Allocation via Continuous Submodular Functions. CoRR abs/1702.08791 (2017) - [i29]Zi Wang, Stefanie Jegelka:
Max-value Entropy Search for Efficient Bayesian Optimization. CoRR abs/1703.01968 (2017) - [i28]Zi Wang, Chengtao Li, Stefanie Jegelka, Pushmeet Kohli:
Batched High-dimensional Bayesian Optimization via Structural Kernel Learning. CoRR abs/1703.01973 (2017) - [i27]Gal Shulkind, Stefanie Jegelka, Gregory W. Wornell:
Sensor Array Design Through Submodular Optimization. CoRR abs/1705.06616 (2017) - [i26]Matthew Staib, Sebastian Claici, Justin Solomon, Stefanie Jegelka:
Parallel Streaming Wasserstein Barycenters. CoRR abs/1705.07443 (2017) - [i25]Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka:
Batched Large-scale Bayesian Optimization in High-dimensional Spaces. CoRR abs/1706.01445 (2017) - [i24]Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause:
Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly. CoRR abs/1706.03583 (2017) - [i23]Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra:
Distributional Adversarial Networks. CoRR abs/1706.09549 (2017) - [i22]Alexander LeNail, Ludwig Schmidt, Johnathan Li, Tobias Ehrenberger, Karen Sachs, Stefanie Jegelka, Ernest Fraenkel:
Graph-Sparse Logistic Regression. CoRR abs/1712.05510 (2017) - [i21]David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka:
Structured Optimal Transport. CoRR abs/1712.06199 (2017) - 2016
- [c30]Zi Wang, Bolei Zhou, Stefanie Jegelka:
Optimization as Estimation with Gaussian Processes in Bandit Settings. AISTATS 2016: 1022-1031 - [c29]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Efficient Sampling for k-Determinantal Point Processes. AISTATS 2016: 1328-1337 - [c28]Hyun Oh Song, Yu Xiang, Stefanie Jegelka, Silvio Savarese:
Deep Metric Learning via Lifted Structured Feature Embedding. CVPR 2016: 4004-4012 - [c27]Chengtao Li, Suvrit Sra, Stefanie Jegelka:
Gaussian quadrature for matrix inverse forms with applications. ICML 2016: 1766-1775 - [c26]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Fast DPP Sampling for Nystrom with Application to Kernel Methods. ICML 2016: 2061-2070 - [c25]Josip Djolonga, Stefanie Jegelka, Sebastian Tschiatschek, Andreas Krause:
Cooperative Graphical Models. NIPS 2016: 262-270 - [c24]Chengtao Li, Suvrit Sra, Stefanie Jegelka:
Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling. NIPS 2016: 4188-4196 - [c23]Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell:
Auxiliary Image Regularization for Deep CNNs with Noisy Labels. ICLR (Poster) 2016 - [i20]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Fast DPP Sampling for Nyström with Application to Kernel Methods. CoRR abs/1603.06052 (2016) - [i19]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Fast Sampling for Strongly Rayleigh Measures with Application to Determinantal Point Processes. CoRR abs/1607.03559 (2016) - [i18]Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, Tomás Lozano-Pérez:
Focused Model-Learning and Planning for Non-Gaussian Continuous State-Action Systems. CoRR abs/1607.07762 (2016) - [i17]Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, Kevin Murphy:
Learnable Structured Clustering Framework for Deep Metric Learning. CoRR abs/1612.01213 (2016) - 2015
- [i16]Ashish Kapoor, Edward Paxon Frady, Stefanie Jegelka, William B. Kristan Jr., Eric Horvitz:
Inferring and Learning from Neuronal Correspondences. CoRR abs/1501.05973 (2015) - [i15]K. S. Sesh Kumar, Álvaro Barbero Jiménez, Stefanie Jegelka, Suvrit Sra, Francis R. Bach:
Convex Optimization for Parallel Energy Minimization. CoRR abs/1503.01563 (2015) - [i14]Chengtao Li, Stefanie Jegelka, Suvrit Sra:
Efficient Sampling for k-Determinantal Point Processes. CoRR abs/1509.01618 (2015) - [i13]Zi Wang, Bolei Zhou, Stefanie Jegelka:
Optimization as Estimation with Gaussian Processes in Bandit Settings. CoRR abs/1510.06423 (2015) - [i12]Hyun Oh Song, Yu Xiang, Stefanie Jegelka, Silvio Savarese:
Deep Metric Learning via Lifted Structured Feature Embedding. CoRR abs/1511.06452 (2015) - [i11]Chengtao Li, Suvrit Sra, Stefanie Jegelka:
Bounds on bilinear inverse forms via Gaussian quadrature with applications. CoRR abs/1512.01904 (2015) - 2014
- [j3]Stefanie Jegelka, Ashish Kapoor, Eric Horvitz:
An Interactive Approach to Solving Correspondence Problems. Int. J. Comput. Vis. 108(1-2): 49-58 (2014) - [c22]Veronika Strnadova, Aydin Buluç, Jarrod Chapman, John R. Gilbert, Joseph Gonzalez, Stefanie Jegelka, Daniel Rokhsar
, Leonid Oliker:
Efficient and accurate clustering for large-scale genetic mapping. BIBM 2014: 3-10 - [c21]Jiashi Feng, Stefanie Jegelka, Shuicheng Yan, Trevor Darrell:
Learning Scalable Discriminative Dictionary with Sample Relatedness. CVPR 2014: 1645-1652 - [c20]Hyun Oh Song, Ross B. Girshick, Stefanie Jegelka, Julien Mairal, Zaïd Harchaoui, Trevor Darrell:
On learning to localize objects with minimal supervision. ICML 2014: 1611-1619 - [c19]Xinghao Pan, Stefanie Jegelka, Joseph E. Gonzalez, Joseph K. Bradley, Michael I. Jordan:
Parallel Double Greedy Submodular Maximization. NIPS 2014: 118-126 - [c18]Robert Nishihara, Stefanie Jegelka, Michael I. Jordan:
On the Convergence Rate of Decomposable Submodular Function Minimization. NIPS 2014: 640-648 - [c17]Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, Trevor Darrell:
Weakly-supervised Discovery of Visual Pattern Configurations. NIPS 2014: 1637-1645 - [c16]Adarsh Prasad, Stefanie Jegelka, Dhruv Batra:
Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets. NIPS 2014: 2645-2653 - [c15]Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:
Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization. UAI 2014: 360-369 - [i10]Stefanie Jegelka, Jeff A. Bilmes:
Graph Cuts with Interacting Edge Costs - Examples, Approximations, and Algorithms. CoRR abs/1402.0240 (2014) - [i9]Hyun Oh Song, Ross B. Girshick, Stefanie Jegelka, Julien Mairal, Zaïd Harchaoui, Trevor Darrell:
One-Bit Object Detection: On learning to localize objects with minimal supervision. CoRR abs/1403.1024 (2014) - [i8]Robert Nishihara, Stefanie Jegelka, Michael I. Jordan:
On the Convergence Rate of Decomposable Submodular Function Minimization. CoRR abs/1406.6474 (2014) - [i7]Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, Trevor Darrell:
Weakly-supervised Discovery of Visual Pattern Configurations. CoRR abs/1406.6507 (2014) - [i6]Adarsh Prasad, Stefanie Jegelka, Dhruv Batra:
Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets. CoRR abs/1411.1752 (2014) - 2013
- [c14]Pushmeet Kohli, Anton Osokin
, Stefanie Jegelka:
A Principled Deep Random Field Model for Image Segmentation. CVPR 2013: 1971-1978 - [c13]Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:
Fast Semidifferential-based Submodular Function Optimization. ICML (3) 2013: 855-863 - [c12]Stefanie Jegelka, Francis R. Bach, Suvrit Sra:
Reflection methods for user-friendly submodular optimization. NIPS 2013: 1313-1321 - [c11]Xinghao Pan, Joseph E. Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan:
Optimistic Concurrency Control for Distributed Unsupervised Learning. NIPS 2013: 1403-1411 - [c10]Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:
Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions. NIPS 2013: 2742-2750 - [i5]Xinghao Pan, Joseph E. Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan:
Optimistic Concurrency Control for Distributed Unsupervised Learning. CoRR abs/1307.8049 (2013) - [i4]Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:
Fast Semidifferential-based Submodular Function Optimization. CoRR abs/1308.1006 (2013) - [i3]Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:
Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions. CoRR abs/1311.2110 (2013) - [i2]Stefanie Jegelka, Francis R. Bach, Suvrit Sra:
Reflection methods for user-friendly submodular optimization. CoRR abs/1311.4296 (2013) - 2012
- [b1]Stefanie Sabrina Jegelka:
Combinatorial problems with submodular coupling in machine learning and computer vision. ETH Zurich, 2012, pp. I-XVI, 1-202 - 2011
- [c9]Stefanie Jegelka, Jeff A. Bilmes:
Submodularity beyond submodular energies: Coupling edges in graph cuts. CVPR 2011: 1897-1904 - [c8]Stefanie Jegelka, Jeff A. Bilmes:
Online Submodular Minimization for Combinatorial Structures. ICML 2011: 345-352 - [c7]Stefanie Jegelka, Jeff A. Bilmes:
Approximation Bounds for Inference using Cooperative Cuts. ICML 2011: 577-584 - [c6]Stefanie Jegelka, Hui Lin, Jeff A. Bilmes:
On fast approximate submodular minimization. NIPS 2011: 460-468
2000 – 2009
- 2009
- [j2]Hao Shen, Stefanie Jegelka, Arthur Gretton
:
Fast kernel-based independent component analysis. IEEE Trans. Signal Process. 57(9): 3498-3511 (2009) - [c5]Stefanie Jegelka, Suvrit Sra
, Arindam Banerjee:
Approximation Algorithms for Tensor Clustering. ALT 2009: 368-383 - [c4]Sebastian Nowozin, Stefanie Jegelka:
Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. ICML 2009: 769-776 - [c3]Stefanie Jegelka, Arthur Gretton
, Bernhard Schölkopf, Bharath K. Sriperumbudur, Ulrike von Luxburg:
Generalized Clustering via Kernel Embeddings. KI 2009: 144-152 - 2008
- [i1]Stefanie Jegelka, Suvrit Sra, Arindam Banerjee:
Approximation Algorithms for Bregman Co-clustering and Tensor Clustering. CoRR abs/0812.0389 (2008) - 2007
- [c2]Ulrike von Luxburg, Sébastien Bubeck, Stefanie Jegelka, Michael Kaufmann:
Consistent Minimization of Clustering Objective Functions. NIPS 2007: 961-968 - [c1]Hao Shen, Stefanie Jegelka, Arthur Gretton:
Fast Kernel ICA using an Approximate Newton Method. AISTATS 2007: 476-483 - 2006
- [j1]Stefanie Jegelka, James A. Bednar, Risto Miikkulainen:
Prenatal development of ocular dominance and orientation maps in a self-organizing model of V1. Neurocomputing 69(10-12): 1291-1296 (2006)