default search action
Kaiming He
Person information
- unicode name: 何恺明
- affiliation: Facebook, Menlo Park, CA, USA
- affiliation: Microsoft Research Asia, Beijing, China
- affiliation: Chinese University of Hong Kong (CUHK), Department of Information Engineering, Shatin, Hong Kong
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i63]Xinlei Chen, Zhuang Liu, Saining Xie, Kaiming He:
Deconstructing Denoising Diffusion Models for Self-Supervised Learning. CoRR abs/2401.14404 (2024) - [i62]Zhuang Liu, Kaiming He:
A Decade's Battle on Dataset Bias: Are We There Yet? CoRR abs/2403.08632 (2024) - [i61]Linsen Li, Pratyush Anand, Kaiming He, Dirk R. Englund:
Dynamic Inhomogeneous Quantum Resource Scheduling with Reinforcement Learning. CoRR abs/2405.16380 (2024) - [i60]Minghao Guo, Bohan Wang, Kaiming He, Wojciech Matusik:
TetSphere Splatting: Representing High-Quality Geometry with Lagrangian Volumetric Meshes. CoRR abs/2405.20283 (2024) - [i59]Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine Owens, Chuang Gan, Joshua B. Tenenbaum, Kaiming He, Wojciech Matusik:
Physically Compatible 3D Object Modeling from a Single Image. CoRR abs/2405.20510 (2024) - [i58]Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, Kaiming He:
Autoregressive Image Generation without Vector Quantization. CoRR abs/2406.11838 (2024) - [i57]Lirui Wang, Xinlei Chen, Jialiang Zhao, Kaiming He:
Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers. CoRR abs/2409.20537 (2024) - 2023
- [c64]Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, Kaiming He:
Scaling Language-Image Pre-Training via Masking. CVPR 2023: 23390-23400 - [i56]Tianhong Li, Dina Katabi, Kaiming He:
Self-conditioned Image Generation via Generating Representations. CoRR abs/2312.03701 (2023) - 2022
- [j14]Chen Lang, Ze Wang, Kaiming He, Shimin Sun:
POI recommendation based on a multiple bipartite graph network model. J. Supercomput. 78(7): 9782-9816 (2022) - [c63]Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross B. Girshick:
Masked Autoencoders Are Scalable Vision Learners. CVPR 2022: 15979-15988 - [c62]Yanghao Li, Hanzi Mao, Ross B. Girshick, Kaiming He:
Exploring Plain Vision Transformer Backbones for Object Detection. ECCV (9) 2022: 280-296 - [c61]Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, Kaiming He:
Masked Autoencoders As Spatiotemporal Learners. NeurIPS 2022 - [i55]Yanghao Li, Hanzi Mao, Ross B. Girshick, Kaiming He:
Exploring Plain Vision Transformer Backbones for Object Detection. CoRR abs/2203.16527 (2022) - [i54]Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, Kaiming He:
Masked Autoencoders As Spatiotemporal Learners. CoRR abs/2205.09113 (2022) - [i53]Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, Kaiming He:
Scaling Language-Image Pre-training via Masking. CoRR abs/2212.00794 (2022) - 2021
- [c60]Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross B. Girshick, Kaiming He:
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning. CVPR 2021: 3299-3309 - [c59]Xinlei Chen, Kaiming He:
Exploring Simple Siamese Representation Learning. CVPR 2021: 15750-15758 - [c58]Xinlei Chen, Saining Xie, Kaiming He:
An Empirical Study of Training Self-Supervised Vision Transformers. ICCV 2021: 9620-9629 - [i52]Xinlei Chen, Saining Xie, Kaiming He:
An Empirical Study of Training Self-Supervised Vision Transformers. CoRR abs/2104.02057 (2021) - [i51]Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross B. Girshick, Kaiming He:
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning. CoRR abs/2104.14558 (2021) - [i50]Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross B. Girshick:
Masked Autoencoders Are Scalable Vision Learners. CoRR abs/2111.06377 (2021) - [i49]Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollár, Kaiming He, Ross B. Girshick:
Benchmarking Detection Transfer Learning with Vision Transformers. CoRR abs/2111.11429 (2021) - 2020
- [j13]Yuxin Wu, Kaiming He:
Group Normalization. Int. J. Comput. Vis. 128(3): 742-755 (2020) - [j12]Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, Piotr Dollár:
Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2): 318-327 (2020) - [j11]Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross B. Girshick:
Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2): 386-397 (2020) - [c57]Chao-Yuan Wu, Ross B. Girshick, Kaiming He, Christoph Feichtenhofer, Philipp Krähenbühl:
A Multigrid Method for Efficiently Training Video Models. CVPR 2020: 150-159 - [c56]Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross B. Girshick:
Momentum Contrast for Unsupervised Visual Representation Learning. CVPR 2020: 9726-9735 - [c55]Alexander Kirillov, Yuxin Wu, Kaiming He, Ross B. Girshick:
PointRend: Image Segmentation As Rendering. CVPR 2020: 9796-9805 - [c54]Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, Piotr Dollár:
Designing Network Design Spaces. CVPR 2020: 10425-10433 - [c53]Chenxi Liu, Piotr Dollár, Kaiming He, Ross B. Girshick, Alan L. Yuille, Saining Xie:
Are Labels Necessary for Neural Architecture Search? ECCV (4) 2020: 798-813 - [c52]Jiaxuan You, Jure Leskovec, Kaiming He, Saining Xie:
Graph Structure of Neural Networks. ICML 2020: 10881-10891 - [i48]Xinlei Chen, Haoqi Fan, Ross B. Girshick, Kaiming He:
Improved Baselines with Momentum Contrastive Learning. CoRR abs/2003.04297 (2020) - [i47]Chenxi Liu, Piotr Dollár, Kaiming He, Ross B. Girshick, Alan L. Yuille, Saining Xie:
Are Labels Necessary for Neural Architecture Search? CoRR abs/2003.12056 (2020) - [i46]Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, Piotr Dollár:
Designing Network Design Spaces. CoRR abs/2003.13678 (2020) - [i45]Jiaxuan You, Jure Leskovec, Kaiming He, Saining Xie:
Graph Structure of Neural Networks. CoRR abs/2007.06559 (2020) - [i44]Xinlei Chen, Kaiming He:
Exploring Simple Siamese Representation Learning. CoRR abs/2011.10566 (2020)
2010 – 2019
- 2019
- [c51]Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krähenbühl, Ross B. Girshick:
Long-Term Feature Banks for Detailed Video Understanding. CVPR 2019: 284-293 - [c50]Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, Kaiming He:
Feature Denoising for Improving Adversarial Robustness. CVPR 2019: 501-509 - [c49]Alexander Kirillov, Ross B. Girshick, Kaiming He, Piotr Dollár:
Panoptic Feature Pyramid Networks. CVPR 2019: 6399-6408 - [c48]Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother, Piotr Dollár:
Panoptic Segmentation. CVPR 2019: 9404-9413 - [c47]Saining Xie, Alexander Kirillov, Ross B. Girshick, Kaiming He:
Exploring Randomly Wired Neural Networks for Image Recognition. ICCV 2019: 1284-1293 - [c46]Xinlei Chen, Ross B. Girshick, Kaiming He, Piotr Dollár:
TensorMask: A Foundation for Dense Object Segmentation. ICCV 2019: 2061-2069 - [c45]Kaiming He, Ross B. Girshick, Piotr Dollár:
Rethinking ImageNet Pre-Training. ICCV 2019: 4917-4926 - [c44]Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, Kaiming He:
SlowFast Networks for Video Recognition. ICCV 2019: 6201-6210 - [c43]Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas:
Deep Hough Voting for 3D Object Detection in Point Clouds. ICCV 2019: 9276-9285 - [i43]Alexander Kirillov, Ross B. Girshick, Kaiming He, Piotr Dollár:
Panoptic Feature Pyramid Networks. CoRR abs/1901.02446 (2019) - [i42]Xinlei Chen, Ross B. Girshick, Kaiming He, Piotr Dollár:
TensorMask: A Foundation for Dense Object Segmentation. CoRR abs/1903.12174 (2019) - [i41]Saining Xie, Alexander Kirillov, Ross B. Girshick, Kaiming He:
Exploring Randomly Wired Neural Networks for Image Recognition. CoRR abs/1904.01569 (2019) - [i40]Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas:
Deep Hough Voting for 3D Object Detection in Point Clouds. CoRR abs/1904.09664 (2019) - [i39]Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross B. Girshick:
Momentum Contrast for Unsupervised Visual Representation Learning. CoRR abs/1911.05722 (2019) - [i38]Chao-Yuan Wu, Ross B. Girshick, Kaiming He, Christoph Feichtenhofer, Philipp Krähenbühl:
A Multigrid Method for Efficiently Training Video Models. CoRR abs/1912.00998 (2019) - [i37]Alexander Kirillov, Yuxin Wu, Kaiming He, Ross B. Girshick:
PointRend: Image Segmentation as Rendering. CoRR abs/1912.08193 (2019) - 2018
- [c42]Ilija Radosavovic, Piotr Dollár, Ross B. Girshick, Georgia Gkioxari, Kaiming He:
Data Distillation: Towards Omni-Supervised Learning. CVPR 2018: 4119-4128 - [c41]Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, Ross B. Girshick:
Learning to Segment Every Thing. CVPR 2018: 4233-4241 - [c40]Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, Kaiming He:
Non-Local Neural Networks. CVPR 2018: 7794-7803 - [c39]Georgia Gkioxari, Ross B. Girshick, Piotr Dollár, Kaiming He:
Detecting and Recognizing Human-Object Interactions. CVPR 2018: 8359-8367 - [c38]Yuxin Wu, Kaiming He:
Group Normalization. ECCV (13) 2018: 3-19 - [c37]Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten:
Exploring the Limits of Weakly Supervised Pretraining. ECCV (2) 2018: 185-201 - [c36]Zhilin Yang, Junbo Jake Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun:
GLoMo: Unsupervised Learning of Transferable Relational Graphs. NeurIPS 2018: 8964-8975 - [i36]Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother, Piotr Dollár:
Panoptic Segmentation. CoRR abs/1801.00868 (2018) - [i35]Yuxin Wu, Kaiming He:
Group Normalization. CoRR abs/1803.08494 (2018) - [i34]Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten:
Exploring the Limits of Weakly Supervised Pretraining. CoRR abs/1805.00932 (2018) - [i33]Zhilin Yang, Junbo Jake Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun:
GLoMo: Unsupervisedly Learned Relational Graphs as Transferable Representations. CoRR abs/1806.05662 (2018) - [i32]Kaiming He, Ross B. Girshick, Piotr Dollár:
Rethinking ImageNet Pre-training. CoRR abs/1811.08883 (2018) - [i31]Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, Kaiming He:
Feature Denoising for Improving Adversarial Robustness. CoRR abs/1812.03411 (2018) - [i30]Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, Kaiming He:
SlowFast Networks for Video Recognition. CoRR abs/1812.03982 (2018) - [i29]Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krähenbühl, Ross B. Girshick:
Long-Term Feature Banks for Detailed Video Understanding. CoRR abs/1812.05038 (2018) - 2017
- [j10]Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun:
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6): 1137-1149 (2017) - [j9]Shaoqing Ren, Kaiming He, Ross B. Girshick, Xiangyu Zhang, Jian Sun:
Object Detection Networks on Convolutional Feature Maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7): 1476-1481 (2017) - [c35]Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, Serge J. Belongie:
Feature Pyramid Networks for Object Detection. CVPR 2017: 936-944 - [c34]Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He:
Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017: 5987-5995 - [c33]Xiaolong Wang, Kaiming He, Abhinav Gupta:
Transitive Invariance for Self-Supervised Visual Representation Learning. ICCV 2017: 1338-1347 - [c32]Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross B. Girshick:
Mask R-CNN. ICCV 2017: 2980-2988 - [c31]Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, Piotr Dollár:
Focal Loss for Dense Object Detection. ICCV 2017: 2999-3007 - [i28]Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross B. Girshick:
Mask R-CNN. CoRR abs/1703.06870 (2017) - [i27]Georgia Gkioxari, Ross B. Girshick, Piotr Dollár, Kaiming He:
Detecting and Recognizing Human-Object Interactions. CoRR abs/1704.07333 (2017) - [i26]Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, Kaiming He:
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677 (2017) - [i25]Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, Piotr Dollár:
Focal Loss for Dense Object Detection. CoRR abs/1708.02002 (2017) - [i24]Xiaolong Wang, Kaiming He, Abhinav Gupta:
Transitive Invariance for Self-supervised Visual Representation Learning. CoRR abs/1708.02901 (2017) - [i23]Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, Kaiming He:
Non-local Neural Networks. CoRR abs/1711.07971 (2017) - [i22]Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, Ross B. Girshick:
Learning to Segment Every Thing. CoRR abs/1711.10370 (2017) - [i21]Ilija Radosavovic, Piotr Dollár, Ross B. Girshick, Georgia Gkioxari, Kaiming He:
Data Distillation: Towards Omni-Supervised Learning. CoRR abs/1712.04440 (2017) - 2016
- [j8]Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang:
Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2): 295-307 (2016) - [j7]Xiangyu Zhang, Jianhua Zou, Kaiming He, Jian Sun:
Accelerating Very Deep Convolutional Networks for Classification and Detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10): 1943-1955 (2016) - [c30]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Deep Residual Learning for Image Recognition. CVPR 2016: 770-778 - [c29]Jifeng Dai, Kaiming He, Jian Sun:
Instance-Aware Semantic Segmentation via Multi-task Network Cascades. CVPR 2016: 3150-3158 - [c28]Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, Jian Sun:
ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation. CVPR 2016: 3159-3167 - [c27]Liliang Zhang, Liang Lin, Xiaodan Liang, Kaiming He:
Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV (2) 2016: 443-457 - [c26]Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, Jian Sun:
Instance-Sensitive Fully Convolutional Networks. ECCV (6) 2016: 534-549 - [c25]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Identity Mappings in Deep Residual Networks. ECCV (4) 2016: 630-645 - [c24]Jifeng Dai, Yi Li, Kaiming He, Jian Sun:
R-FCN: Object Detection via Region-based Fully Convolutional Networks. NIPS 2016: 379-387 - [i20]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Identity Mappings in Deep Residual Networks. CoRR abs/1603.05027 (2016) - [i19]Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, Jian Sun:
Instance-sensitive Fully Convolutional Networks. CoRR abs/1603.08678 (2016) - [i18]Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, Jian Sun:
ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation. CoRR abs/1604.05144 (2016) - [i17]Jifeng Dai, Yi Li, Kaiming He, Jian Sun:
R-FCN: Object Detection via Region-based Fully Convolutional Networks. CoRR abs/1605.06409 (2016) - [i16]Liliang Zhang, Liang Lin, Xiaodan Liang, Kaiming He:
Is Faster R-CNN Doing Well for Pedestrian Detection? CoRR abs/1607.07032 (2016) - [i15]Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He:
Aggregated Residual Transformations for Deep Neural Networks. CoRR abs/1611.05431 (2016) - [i14]Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, Serge J. Belongie:
Feature Pyramid Networks for Object Detection. CoRR abs/1612.03144 (2016) - 2015
- [j6]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9): 1904-1916 (2015) - [c23]Dongping Li, Kaiming He, Jian Sun, Kun Zhou:
A geodesic-preserving method for image warping. CVPR 2015: 213-221 - [c22]Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, Jian Sun:
Efficient and accurate approximations of nonlinear convolutional networks. CVPR 2015: 1984-1992 - [c21]Yan Xia, Kaiming He, Pushmeet Kohli, Jian Sun:
Sparse projections for high-dimensional binary codes. CVPR 2015: 3332-3339 - [c20]Jifeng Dai, Kaiming He, Jian Sun:
Convolutional feature masking for joint object and stuff segmentation. CVPR 2015: 3992-4000 - [c19]Kaiming He, Jian Sun:
Convolutional neural networks at constrained time cost. CVPR 2015: 5353-5360 - [c18]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ICCV 2015: 1026-1034 - [c17]Jifeng Dai, Kaiming He, Jian Sun:
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. ICCV 2015: 1635-1643 - [c16]Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun:
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015: 91-99 - [i13]Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang:
Image Super-Resolution Using Deep Convolutional Networks. CoRR abs/1501.00092 (2015) - [i12]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. CoRR abs/1502.01852 (2015) - [i11]Jifeng Dai, Kaiming He, Jian Sun:
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. CoRR abs/1503.01640 (2015) - [i10]Shaoqing Ren, Kaiming He, Ross B. Girshick, Xiangyu Zhang, Jian Sun:
Object Detection Networks on Convolutional Feature Maps. CoRR abs/1504.06066 (2015) - [i9]Kaiming He, Jian Sun:
Fast Guided Filter. CoRR abs/1505.00996 (2015) - [i8]Xiangyu Zhang, Jianhua Zou, Kaiming He, Jian Sun:
Accelerating Very Deep Convolutional Networks for Classification and Detection. CoRR abs/1505.06798 (2015) - [i7]Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun:
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. CoRR abs/1506.01497 (2015) - [i6]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Deep Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015) - [i5]Jifeng Dai, Kaiming He, Jian Sun:
Instance-aware Semantic Segmentation via Multi-task Network Cascades. CoRR abs/1512.04412 (2015) - 2014
- [j5]Tiezheng Ge, Kaiming He, Qifa Ke, Jian Sun:
Optimized Product Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 36(4): 744-755 (2014) - [j4]Kaiming He, Jian Sun:
Image Completion Approaches Using the Statistics of Similar Patches. IEEE Trans. Pattern Anal. Mach. Intell. 36(12): 2423-2435 (2014) - [c15]Tiezheng Ge, Kaiming He, Jian Sun:
Product Sparse Coding. CVPR 2014: 939-946 - [c14]Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang:
Learning a Deep Convolutional Network for Image Super-Resolution. ECCV (4) 2014: 184-199 - [c13]Tiezheng Ge, Kaiming He, Jian Sun:
Graph Cuts for Supervised Binary Coding. ECCV (7) 2014: 250-264 - [c12]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. ECCV (3) 2014: 346-361 - [i4]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. CoRR abs/1406.4729 (2014) - [i3]Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, Jian Sun:
Efficient and Accurate Approximations of Nonlinear Convolutional Networks. CoRR abs/1411.4229 (2014) - [i2]Jifeng Dai, Kaiming He, Jian Sun:
Convolutional Feature Masking for Joint Object and Stuff Segmentation. CoRR abs/1412.1283 (2014) - [i1]Kaiming He, Jian Sun:
Convolutional Neural Networks at Constrained Time Cost. CoRR abs/1412.1710 (2014) - 2013
- [j3]Kaiming He, Jian Sun, Xiaoou Tang:
Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6): 1397-1409 (2013) - [j2]Kaiming He, Huiwen Chang, Jian Sun:
Rectangling panoramic images via warping. ACM Trans. Graph. 32(4): 79:1-79:10 (2013) - [c11]Kaiming He, Fang Wen, Jian Sun:
K-Means Hashing: An Affinity-Preserving Quantization Method for Learning Binary Compact Codes. CVPR 2013: 2938-2945 - [c10]Tiezheng Ge, Kaiming He, Qifa Ke, Jian Sun:
Optimized Product Quantization for Approximate Nearest Neighbor Search. CVPR 2013: 2946-2953 - [c9]Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, Enhua Wu:
Constant Time Weighted Median Filtering for Stereo Matching and Beyond. ICCV 2013: 49-56 - [c8]Kaiming He, Huiwen Chang, Jian Sun:
Content-Aware Rotation. ICCV 2013: 553-560 - [c7]Yan Xia, Kaiming He, Fang Wen, Jian Sun:
Joint Inverted Indexing. ICCV 2013: 3416-3423 - 2012
- [c6]Kaiming He, Jian Sun:
Computing nearest-neighbor fields via Propagation-Assisted KD-Trees. CVPR 2012: 111-118 - [c5]Kaiming He, Jian Sun:
Statistics of Patch Offsets for Image Completion. ECCV (2) 2012: 16-29 - 2011
- [j1]Kaiming He, Jian Sun, Xiaoou Tang:
Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12): 2341-2353 (2011) - [c4]Kaiming He, Christoph Rhemann, Carsten Rother, Xiaoou Tang, Jian Sun:
A global sampling method for alpha matting. CVPR 2011: 2049-2056 - 2010
- [c3]Kaiming He, Jian Sun, Xiaoou Tang:
Fast matting using large kernel matting Laplacian matrices. CVPR 2010: 2165-2172 - [c2]Kaiming He, Jian Sun, Xiaoou Tang:
Guided Image Filtering. ECCV (1) 2010: 1-14
2000 – 2009
- 2009
- [c1]Kaiming He, Jian Sun, Xiaoou Tang:
Single image haze removal using dark channel prior. CVPR 2009: 1956-1963
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 20:14 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint