default search action
Hiroyuki Torikai
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j50]Koki Sone, Hiroyuki Torikai:
A novel design of ergodic sequential logic cochlear single partition model: reproduction of nonlinear compression characteristics of mammalian cochlea and efficient implementation. IEICE Electron. Express 21(6): 20240036 (2024) - [j49]Yuta Shiomi, Hiroyuki Torikai:
Ergodic sequential logic spiking neural network: reproductions of biologically plausible spatio-temporal phenomena and low-power implementation towards neural prosthesis. IEICE Electron. Express 21(8): 20240095 (2024) - [j48]Itsuki Kubota, Kentaro Takeda, Hiroyuki Torikai:
A Novel Ergodic Discrete Difference Equation Cochlear Model: Theoretical Analyses, Reproduction of Mammalian Nonlinear Sound Processing, and Comparison of Implementation. IEEE Trans. Circuits Syst. II Express Briefs 71(2): 877-881 (2024) - [j47]Yuta Shiomi, Haruto Suzuki, Hiroyuki Torikai:
A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis. IEEE Trans. Circuits Syst. II Express Briefs 71(9): 4311-4315 (2024) - 2023
- [j46]Shogo Shirafuji, Hiroyuki Torikai:
A Novel Ergodic Cellular Automaton Model of Gene-Protein Network: Theoretical Nonlinear Analyses and Efficient FPGA Implementation. IEEE Access 11: 300-312 (2023) - [j45]Kazuhito Onodera, Hiroyuki Torikai:
A novel design method of simplified central nervous system model of C. elegans based on hybrid dynamics of sequential logic and numerical integration. IEICE Electron. Express 20(10): 20230110 (2023) - 2022
- [j44]Sho Komaki, Kentaro Takeda, Hiroyuki Torikai:
A Novel Ergodic Discrete Difference Equation Model of Central Pattern Generator: Theoretical Analysis and Efficient Implementation. IEEE Trans. Circuits Syst. II Express Briefs 69(3): 1767-1771 (2022) - 2021
- [j43]Kentaro Takeda, Hiroyuki Torikai:
Two-tone distortion products in hardware-efficient cochlea model based on asynchronous cellular automaton oscillator. IEICE Electron. Express 18(18): 20210310 (2021) - [j42]Kentaro Takeda, Hiroyuki Torikai:
A Novel Hardware-Oriented Recurrent Network of Asynchronous CA Neurons for a Neural Integrator. IEEE Trans. Circuits Syst. II Express Briefs 68(8): 2972-2976 (2021) - 2020
- [j41]Kentaro Takeda, Hiroyuki Torikai:
A Novel Hardware-Efficient Central Pattern Generator Model Based on Asynchronous Cellular Automaton Dynamics for Controlling Hexapod Robot. IEEE Access 8: 139609-139624 (2020) - [j40]Kentaro Takeda, Hiroyuki Torikai:
A Novel Asynchronous CA Neuron Model: Design of Neuron-Like Nonlinear Responses Based on Novel Bifurcation Theory of Asynchronous Sequential Logic Circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 67-I(6): 1989-2001 (2020) - 2019
- [j39]Taiki Naka, Hiroyuki Torikai:
A Novel Generalized Hardware-Efficient Neuron Model Based on Asynchronous CA Dynamics and Its Biologically Plausible On-FPGA Learnings. IEEE Trans. Circuits Syst. II Express Briefs 66-II(7): 1247-1251 (2019) - 2018
- [j38]Kentaro Takeda, Hiroyuki Torikai:
A novel hardware-efficient CPG model based on asynchronous cellular automaton. IEICE Electron. Express 15(11): 20180387 (2018) - [j37]Chiaki Matsuda, Hiroyuki Torikai:
A Novel Generalized PWC Neuron Model: Theoretical Analyses and Efficient Design of Bifurcation Mechanisms of Bursting. IEEE Trans. Circuits Syst. II Express Briefs 65-II(11): 1738-1742 (2018) - 2017
- [j36]Kentaro Takeda, Hiroyuki Torikai:
A Novel Hardware-Efficient Cochlea Model Based on Asynchronous Cellular Automaton Dynamics: Theoretical Analysis and FPGA Implementation. IEEE Trans. Circuits Syst. II Express Briefs 64-II(9): 1107-1111 (2017) - 2016
- [j35]Kanata Isobe, Hiroyuki Torikai:
A Novel Hardware-Efficient Asynchronous Cellular Automaton Model of Spike-Timing-Dependent Synaptic Plasticity. IEEE Trans. Circuits Syst. II Express Briefs 63-II(6): 603-607 (2016) - [j34]Takashi Matsubara, Hiroyuki Torikai:
An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE Trans. Neural Networks Learn. Syst. 27(4): 836-852 (2016) - 2015
- [j33]Masato Izawa, Hiroyuki Torikai:
Asynchronous Cellular Automaton Model of Spiral Ganglion Cell in the Mammalian Cochlea: Theoretical Analyses and FPGA Implementation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(2): 684-699 (2015) - [j32]Takashi Matsubara, Hiroyuki Torikai, Tetsuya Shimokawa, Kenji Leibnitz, Ferdinand Peper:
A Novel Double Oscillation Model for Prediction of fMRI BOLD Signals without Detrending. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(9): 1924-1936 (2015) - [j31]Naoki Shimada, Hiroyuki Torikai:
A Novel Asynchronous Cellular Automaton Multicompartment Neuron Model. IEEE Trans. Circuits Syst. II Express Briefs 62-II(8): 776-780 (2015) - 2014
- [j30]Yutaro Yamashita, Hiroyuki Torikai:
Theoretical Analysis for Efficient Design of a Piecewise Constant Spiking Neuron Model. IEEE Trans. Circuits Syst. II Express Briefs 61-II(1): 54-58 (2014) - 2013
- [j29]Takumi Uramoto, Hiroyuki Torikai:
A Calcium-Based Simple Model of Multiple Spike Interactions in Spike-Timing-Dependent Plasticity. Neural Comput. 25(7): 1853-1869 (2013) - [j28]Takuya Noguchi, Hiroyuki Torikai:
Ghost Stochastic Resonance From an Asynchronous Cellular Automaton Neuron Model. IEEE Trans. Circuits Syst. II Express Briefs 60-II(2): 111-115 (2013) - [j27]Takashi Matsubara, Hiroyuki Torikai:
Asynchronous Cellular Automaton-Based Neuron: Theoretical Analysis and On-FPGA Learning. IEEE Trans. Neural Networks Learn. Syst. 24(5): 736-748 (2013) - 2012
- [j26]Yutaro Yamashita, Hiroyuki Torikai:
A Generalized PWC Spiking Neuron Model and Its Neuron-Like Activities and Burst-Related Bifurcations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95-A(7): 1125-1135 (2012) - [j25]Takashi Matsubara, Hiroyuki Torikai:
Neuron-Like Responses and Bifurcations of a Generalized Asynchronous Sequential Logic Spiking Neuron Model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95-A(8): 1317-1328 (2012) - [j24]Yutaro Yamashita, Hiroyuki Torikai:
A Novel PWC Spiking Neuron Model: Neuron-Like Bifurcation Scenarios and Responses. IEEE Trans. Circuits Syst. I Regul. Pap. 59-I(11): 2678-2691 (2012) - 2011
- [j23]Kai Kinoshita, Hiroyuki Torikai:
A Self-Organizing Pulse-Coupled Network of Sub-Threshold Oscillating Spiking Neurons. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 94-A(1): 300-314 (2011) - [j22]Hirofumi Ijichi, Hiroyuki Torikai:
Analysis of m: n Lockings from Pulse-Coupled Asynchronous Sequential Logic Spiking Neurons. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 94-A(11): 2384-2393 (2011) - [j21]Takashi Matsubara, Hiroyuki Torikai, Tetsuya Hishiki:
A Generalized Rotate-and-Fire Digital Spiking Neuron Model and Its On-FPGA Learning. IEEE Trans. Circuits Syst. II Express Briefs 58-II(10): 677-681 (2011) - [j20]Tetsuya Hishiki, Hiroyuki Torikai:
A Novel Rotate-and-Fire Digital Spiking Neuron and its Neuron-Like Bifurcations and Responses. IEEE Trans. Neural Networks 22(5): 752-767 (2011) - 2010
- [j19]Tetsuro Iguchi, Akira Hirata, Hiroyuki Torikai:
Theoretical and Heuristic Synthesis of Digital Spiking Neurons for Spike-Pattern-Division Multiplexing. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(8): 1486-1496 (2010) - [j18]Sho Hashimoto, Hiroyuki Torikai:
A Novel Hybrid Spiking Neuron: Bifurcations, Responses, and On-Chip Learning. IEEE Trans. Circuits Syst. I Regul. Pap. 57-I(8): 2168-2181 (2010) - 2009
- [j17]Hiroyuki Torikai, Toru Nishigami:
Response of a Chaotic Spiking Neuron to Various Periodic Inputs and Its Potential Applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92-A(8): 2053-2060 (2009) - [j16]Hiroyuki Torikai, Toru Nishigami:
An artificial chaotic spiking neuron inspired by spiral ganglion cell: Paralleled spike encoding, theoretical analysis, and electronic circuit implementation. Neural Networks 22(5-6): 664-673 (2009) - 2008
- [j15]Hiroyuki Torikai, Aya Tanaka, Toshimichi Saito:
Artificial Spiking Neurons and Analog-to-Digital-to-Analog Conversion. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91-A(6): 1455-1462 (2008) - [j14]Hiroyuki Torikai, Atsuo Funew, Toshimichi Saito:
Digital spiking neuron and its learning for approximation of various spike-trains. Neural Networks 21(2-3): 140-149 (2008) - 2007
- [j13]Takahiro Kabe, Sukanya Parui, Hiroyuki Torikai, Soumitro Banerjee, Toshimichi Saito:
Analysis of Piecewise Constant Models of Current Mode Controlled DC-DC Converters. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90-A(2): 448-456 (2007) - [j12]Masaru Takanashi, Hiroyuki Torikai, Toshimichi Saito:
An Approach to Collaboration of Growing Self-Organizing Maps and Adaptive Resonance Theory Maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90-A(9): 2047-2050 (2007) - [j11]Hiroyuki Torikai:
Basic Characteristics and Learning Potential of a Digital Spiking Neuron. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90-A(10): 2093-2100 (2007) - [j10]Toshimichi Saito, Takahiro Kabe, Yuki Ishikawa, Yusuke Matsuoka, Hiroyuki Torikai:
Piecewise Constant Switched Dynamical Systems in Power Electronics. Int. J. Bifurc. Chaos 17(10): 3373-3386 (2007) - [j9]Satoshi Akatsu, Hiroyuki Torikai, Toshimichi Saito:
Zero-Cross Instantaneous State Setting for Control of a Bifurcating H-Bridge inverter. Int. J. Bifurc. Chaos 17(10): 3571-3575 (2007) - 2006
- [j8]Hiroyuki Torikai, Hiroshi Hamanaka, Toshimichi Saito:
Reconfigurable Digital Spiking Neuron and Its Pulse-Coupled Network: Basic Characteristics and Potential Applications. IEEE Trans. Circuits Syst. II Express Briefs 53-II(8): 734-738 (2006) - [j7]Hiroshi Hamanaka, Hiroyuki Torikai, Toshimichi Saito:
Quantized Spiking Neuron With A/D Conversion Functions. IEEE Trans. Circuits Syst. II Express Briefs 53-II(10): 1049-1053 (2006) - 2005
- [j6]Hiroshi Hamanaka, Hiroyuki Torikai, Toshimichi Saito:
Analysis of Composite Dynamics of Two Bifurcating Neurons. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88-A(2): 561-567 (2005) - [j5]Yoshio Kon'no, Toshimichi Saito, Hiroyuki Torikai:
Rich dynamics of pulse-coupled spiking neurons with a triangular base signal. Neural Networks 18(5-6): 523-531 (2005) - [j4]Toshimichi Saito, Shintaro Tasaki, Hiroyuki Torikai:
Interleaved Buck Converters Based on Winner-Take-All Switching. IEEE Trans. Circuits Syst. I Regul. Pap. 52-I(8): 1666-1672 (2005) - 2004
- [j3]Hiroyuki Torikai, Toshimichi Saito:
Synchronization phenomena in pulse-coupled networks driven by spike-train inputs. IEEE Trans. Neural Networks 15(2): 337-347 (2004) - 2002
- [j2]Toshimichi Saito, Fumitaka Komatsu, Hiroyuki Torikai:
Superstable Synchronous Phenomena of Switch-Coupled Relaxation Oscillators. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 85-A(10): 2318-2325 (2002) - [j1]Hiroyuki Torikai, Toshimichi Saito, Yoshinobu Kawasaki:
Analysis of a Quantized Chaotic System. Int. J. Bifurc. Chaos 12(5): 1207-1218 (2002)
Conference and Workshop Papers
- 2024
- [c87]Rikuto Nozu, Yunosuke Takemae, Hiroyuki Torikai:
A Novel Wireless CPG Based on Ergodic Sequential Logic Dynamics: Synchronization Analysis, Efficient FPGA Implementation, and Applications to Robot Control and Functional Electronic Stimulation. IJCNN 2024: 1-8 - [c86]Jiaying Lin, Ryuji Nagazawa, Koichi Tokunaga, Kien Nguyen, Hiroo Sekiya, Hiroyuki Torikai, Won-Joo Hwang:
SNN Modeling of Cricket Auditory Network with Izhikevich Model Optimized by PSO. ISCAS 2024: 1-5 - [c85]Koki Sone, Hiroyuki Torikai:
A Novel Design of Ergodic Sequential Logic Integrated Cochlear Model for Reproduction of Nonlinear Compression Characteristics of Mammalian Cochlea and Efficient Implementation. ISCAS 2024: 1-5 - [c84]Yunosuke Takemae, Hiroyuki Torikai, Masaya Kudo, Koki Sone:
A Novel Hardware-Efficient Wireless Functional Electrical Stimulation Device Based on Nonlinear Dynamics of Ergodic Cellular Automaton. ISCAS 2024: 1-5 - [c83]Isaki Yamamoto, Hiroyuki Torikai:
A Novel Ergodic Cellular Automaton Asthma Model: Reproductions of Nonlinear Dynamics of Asthma and Efficient FPGA Implementation. ISCAS 2024: 1-5 - 2023
- [c82]Manami Makihira, Hiroyuki Torikai:
A Novel Ergodic CA Cochlear Model for Reproductions of Nonlinear Frequency Response Characteristics of Mammalian Cochlear Partitions and Ultra-Low-Power Implementation. IECON 2023: 1-6 - [c81]Kento Nakamura, Hiroyuki Torikai:
A Novel Ergodic Sequential Logic CPG: Efficient FPGA Implementation and Realizations of Various Gaits and their Safe Transitions. IJCNN 2023: 1-8 - [c80]Yuta Shiomi, Hiroyuki Torikai:
A novel hardware-efficient ergodic sequential logic spiking neural network and reproductions of biologically plausible spatio-temporal phenomena towards development of neural prosthetic device. IJCNN 2023: 1-8 - [c79]Kentaro Takeda, Hiroyuki Torikai:
A novel hardware-efficient liquid state machine of non-simultaneous CA-based neurons for spatio-temporal pattern recognition. IJCNN 2023: 1-8 - [c78]Yui Kishimoto, Itsuki Kubota, Hiroyuki Torikai:
A Novel Integrated Cochlear Model based on Ergodic Sequential Logic Dynamics: Reproduction of Mammalian Nonlinear Sound Processing and Efficient FPGA Implementation. ISCAS 2023: 1-5 - [c77]Jiaying Lin, Ryuji Nagazawa, Kien Nguyen, Hiroo Sekiya, Hiroyuki Torikai, Mikio Hasegawa, Won-Joo Hwang:
Pavlovian Conditioning Modeling Using Wireless Spiking Neural Network. ISOCC 2023: 163-164 - [c76]Masaya Kudo, Hiroyuki Torikai:
A hardware-efficient wireless functional electrical stimulation system based on ergodic cellular automaton dynamics. ISOCC 2023: 169-170 - [c75]Shoma Sato, Hiroyuki Torikai:
Analyses of nonlinear transient phenomena of ergodic cellular automaton central pattern generator. ISOCC 2023: 227-228 - [c74]Jumpei Kamitoko, Hiroyuki Torikai:
A chopper-type mixed gait controller based on ergodic cellular automaton central pattern generator. ISOCC 2023: 231-232 - [c73]Yui Kishimoto, Hiroyuki Torikai:
A hardware-efficient FPGA cochlear model for next generation nonlinear cochlear implant. ISOCC 2023: 253-255 - [c72]Kengo Hosoi, Hiroyuki Torikai:
A learnable network of analog electronic neuron models for brain prosthetic implant. ISOCC 2023: 255-256 - 2022
- [c71]Shogo Shirafuji, Hiroyuki Torikai:
A novel ergodic cellular automaton gene network model towards efficient hardware-based genome simulator. EMBC 2022: 2232-2235 - [c70]Itsuki Kubota, Kentaro Takeda, Hiroyuki Torikai:
A novel ergodic cellular automaton cochlear model: reproduction of nonlinear sound processing functions of mammalian cochlea and efficient hardware implementation. IJCNN 2022: 1-8 - [c69]Haruto Suzuki, Hiroyuki Torikai:
A Novel Hardware-Efficient Network of Ergodic Cellular Automaton Neuron Models and its On-FPGA Learning. ISCAS 2022: 2266-2270 - [c68]Yui Kishimoto, Hiroyuki Torikai:
Pitch-Shift Effects of an Ergodic Sequential Logic Nonlinear Cochlear Model Induced by Three Tones. ISOCC 2022: 265-266 - [c67]Shogo Shirafuji, Hiroyuki Torikai:
A hardware-efficient sequential logic biochemical switch model toward biosystem simulator. ISOCC 2022: 275 - [c66]Yuta Shiomi, Hiroyuki Torikai:
A hardware-efficient ergodic sequential logic neuron network for brain prosthetic FPGA. ISOCC 2022: 276-277 - [c65]Ryuji Nagazawa, Kien Nguyen, Hiroo Sekiya, Hiroyuki Torikai:
Reduction of Processing Time for Wireless Spiking Neural Network Using Wireless Communication Devices for IoT. ISOCC 2022: 278-279 - 2021
- [c64]Sho Komaki, Kentaro Takeda, Hiroyuki Torikai:
A novel asynchronous sequential logic model of central pattern generator for quadruped robot: systematic design and efficient implementation. IJCNN 2021: 1-8 - 2020
- [c63]Masato Ishikawa, Hiroyuki Torikai:
A Novel Design Method of Multi-Compartment Soma-Dendrite-Spine Model having Nonlinear Asynchronous CA Dynamics and its Applications to STDP-based Learning and FPGA Implementation. IJCNN 2020: 1-8 - [c62]Kentaro Takeda, Hiroyuki Torikai:
A novel hardware-efficient CPG model based on asynchronous coupling of cellular automaton phase oscillators for a hexapod robot. IJCNN 2020: 1-8 - 2019
- [c61]Ryuya Hiraoka, Kazuki Matsumoto, Kien Nguyen, Hiroyuki Torikai, Hiroo Sekiya:
Implementation of Spiking Neural Network with Wireless Communications. ICONIP (5) 2019: 619-626 - [c60]Kentaro Takeda, Hiroyuki Torikai:
A novel hardware-efficient CPG model for a hexapod robot based on nonlinear dynamics of coupled asynchronous cellular automaton oscillators. IJCNN 2019: 1-8 - 2018
- [c59]Kazuki Matsumoto, Hiroyuki Torikai, Hiroo Sekiya:
XOR learning by spiking neural network with infrared communications. APSIPA 2018: 1289-1292 - [c58]Kentaro Takeda, Hiroyuki Torikai:
A novel hardware-efficient spiking neuron model based on asynchronous cellular automaton dynamics exhibiting various nonlinear response curves. IJCNN 2018: 1-8 - 2017
- [c57]Chiaki Matsuda, Hiroyuki Torikai:
A Novel Design Method of Burst Mechanisms of a Piece-Wise Constant Neuron Model Based on Bifurcation Analysis. ICONIP (6) 2017: 796-803 - [c56]Kentaro Takeda, Hiroyuki Torikai:
A Novel Hardware-Efficient CPG Model Based on Nonlinear Dynamics of Asynchronous Cellular Automaton. ICONIP (6) 2017: 812-820 - [c55]Ryota Araki, Hiroyuki Torikai, Takuya Yoshimoto:
A novel gene network model based on nonlinear dynamics of asynchronous cellular automaton. IJCNN 2017: 4488-4495 - 2016
- [c54]Narutoshi Jodai, Hiroyuki Torikai:
A hardware-efficient multi-compartment soma-dendrite model based on asynchronous cellular automaton dynamics. IJCNN 2016: 219-226 - 2015
- [c53]Masato Izawa, Hiroyuki Torikai:
A novel hardware-efficient cochlea model based on asynchronous cellular automaton. IJCNN 2015: 1-8 - [c52]Yasushi Iwatani, Hiroyuki Torikai:
Flame extinguishment by cooperation of two aerial extinguishers. SII 2015: 534-539 - 2014
- [c51]Masato Izawa, Hiroyuki Torikai:
Nonlinear responses of an asynchronous cellular automaton model of spiral ganglion cell. IJCNN 2014: 2483-2490 - [c50]Naoki Shimada, Hiroyuki Torikai:
Reproduction of forward and backward propagations on dendrites by multi-compartment asynchronous cell automaton neuron. IJCNN 2014: 2496-2503 - [c49]Takashi Matsubara, Hiroyuki Torikai, Tetsuya Shimokawa, Kenji Leibnitz, Ferdinand Peper:
A nonlinear model of fMRI BOLD signal including the trend component. IJCNN 2014: 2579-2586 - [c48]Satoshi Ogawa, Shinya Kudo, Masahiro Koide, Hiroyuki Torikai, Yasushi Iwatani:
Development and control of an aerial extinguisher with an inert gas capsule. ROBIO 2014: 1320-1325 - 2013
- [c47]Takashi Matsubara, Hiroyuki Torikai:
A novel reservoir network of asynchronous cellular automaton based neurons for MIMO neural system reproduction. IJCNN 2013: 1-7 - 2012
- [c46]Takashi Matsubara, Hiroyuki Torikai:
A Novel Bifurcation-Based Synthesis of Asynchronous Cellular Automaton Based Neuron. ICANN (1) 2012: 231-238 - [c45]Takashi Matsubara, Hiroyuki Torikai:
A generalized asynchronous digital spiking neuron: Theoretical analysis and compartmental model. IJCNN 2012: 1-8 - [c44]Yutaro Yamashita, Hiroyuki Torikai:
Bursting analysis and synapse mechanism of a piece-wise constant spiking neuron model. IJCNN 2012: 1-8 - [c43]Takumi Uramoto, Hiroyuki Torikai:
A calcium-based simplified model for a large diversity of spike-timing dependent plasticity. SCIS&ISIS 2012: 1447-1450 - 2011
- [c42]Takashi Matsubara, Hiroyuki Torikai:
Dynamic Response Behaviors of a Generalized Asynchronous Digital Spiking Neuron Model. ICONIP (3) 2011: 395-404 - [c41]Yutaro Yamashita, Hiroyuki Torikai:
Generalized PWC Analog Spiking Neuron Model and Reproduction of Fundamental Neurocomputational Properties. ICONIP (3) 2011: 405-415 - [c40]Yutaro Yamashita, Hiroyuki Torikai:
A novel piece-wise constant analog spiking neuron model and its neuron-like excitabilities. IJCNN 2011: 717-724 - [c39]Takashi Matsubara, Hiroyuki Torikai:
A novel asynchronous digital spiking neuron model and its various neuron-like bifurcations and responses. IJCNN 2011: 741-748 - 2010
- [c38]Hirofumi Ijichi, Hiroyuki Torikai:
Theoretical Analysis of Various Synchronizations in Pulse-Coupled Digital Spiking Neurons. ICONIP (1) 2010: 107-115 - [c37]Tetsuya Hishiki, Hiroyuki Torikai:
Neural behaviors and nonlinear dynamics of a rotate-and-fire digital spiking neuron. IJCNN 2010: 1-8 - [c36]Tetsuro Iguchi, Akira Hirata, Hiroyuki Torikai:
Integrate-and-fire-type digital spiking neuron and its learning for spike-pattern-division multiplex communication. IJCNN 2010: 1-8 - 2009
- [c35]Kai Kinoshita, Hiroyuki Torikai:
A Pulse-Coupled Network of SOM. ICONIP (2) 2009: 367-375 - [c34]Tetsuya Hishiki, Hiroyuki Torikai:
Bifurcation Analysis of a Resonate-and-Fire-Type Digital Spiking Neuron. ICONIP (2) 2009: 392-400 - [c33]Sho Hashimoto, Hiroyuki Torikai:
Bifurcation analysis of a reconfigurable hybrid spiking neuron and its novel online learning algorithm. IJCNN 2009: 1134-1141 - [c32]Hiroyuki Torikai, Toru Nishigami:
A novel chaotic spiking neuron and its paralleled spike encoding function. IJCNN 2009: 3132-3139 - 2008
- [c31]Sho Hashimoto, Hiroyuki Torikai:
A Novel Hybrid Spiking Neuron: Response Analysis and Learning Potential. ICONIP (1) 2008: 145-152 - [c30]Hiroyuki Torikai, Toru Nishigami:
A Novel Artificial Model of Spiral Ganglion Cell and Its Spike-Based Encoding Function. ICONIP (1) 2008: 208-215 - [c29]Hiroyuki Torikai, Sho Hashimoto:
A hardware-oriented learning algorithm for a digital spiking neuron. IJCNN 2008: 2472-2479 - 2007
- [c28]Hiroyuki Torikai:
Fundamental Analysis of a Digital Spiking Neuron for Its Spike-Based Coding. ICONIP (2) 2007: 87-96 - [c27]Hiroyuki Torikai, Atsuo Funew, Toshimichi Saito:
Approximation of Spike-trains by Digital Spiking Neuron. IJCNN 2007: 2677-2682 - [c26]Tomohiro Inagaki, Toshimichi Saito, Hiroyuki Torikai:
Response of chaotic spiking circuit to periodic/nonperiodic inputs. IJCNN 2007: 2718-2722 - 2006
- [c25]Takashi Yamamich, Toshimichi Saito, Hiroyuki Torikai:
Genetic Learning of Digital Three-Layer Perceptrons for Implementation of Binary Cellular Automata. IEEE Congress on Evolutionary Computation 2006: 2952-2957 - [c24]Tetsunari Oshime, Toshimichi Saito, Hiroyuki Torikai:
ART-Based Parallel Learning of Growing SOMs and Its Application to TSP. ICONIP (1) 2006: 1004-1011 - [c23]Takahiro Kabe, Hiroyuki Torikai, Toshimichi Saito:
Synchronization Via Multiplex Spike-Trains in Digital Pulse Coupled Networks. ICONIP (3) 2006: 1141-1149 - [c22]Hiroyuki Torikai, Yoshiaki Shimizu, Toshimichi Saito:
Various spike-trains from a digital spiking neuron: analysis of inter-spike intervals and their modulation. IJCNN 2006: 3860-3867 - [c21]Satoshi Akatsu, Hiroyuki Torikai, Toshimichi Saito:
Current-mode instantaneous state setting method and its application to an H-bridge inverter. ISCAS 2006 - [c20]Yusuke Matsuoka, Toshimichi Saito, Hiroyuki Torikai:
Complicated superstable behavior in a piecewise constant circuit with impulsive switching. ISCAS 2006 - [c19]Aya Tanaka, Hiroyuki Torikai, Toshimichi Saito:
A/D and D/A converters by spike-interval modulation of simple spiking neurons. ISCAS 2006 - 2005
- [c18]Yoshio Kon'no, Toshimichi Saito, Hiroyuki Torikai:
Rich spike-synchronization phenomena of pulse-coupled bifurcating neurons. ISCAS (3) 2005: 1927-1931 - [c17]Yusuke Matsuoka, Toshimichi Saito, Hiroyuki Torikai:
A piecewise constant switched chaotic circuit with rect-rippling return maps. ISCAS (4) 2005: 3411-3414 - 2004
- [c16]Hiroshi Hamanaka, Hiroyuki Torikai, Toshimichi Saito:
A Spiking Oscillator with Quantized State and Its Pulse Coding Characteristics. ICONIP 2004: 1123-1128 - [c15]Hiroshi Hamanaka, Hiroyuki Torikai, Toshimichi Saito:
Spike position map with quantized state and its application to algorithmic A/D converter. ISCAS (4) 2004: 673-676 - [c14]Hiroyuki Torikai, Hiroshi Hamanaka, Toshimichi Saito:
Pulse Codings of a Spiking Neuron Having Quantized State. KES 2004: 1002-1009 - 2002
- [c13]Toshimichi Saito, M. Yoshizawa, Hiroyuki Torikai, Shintaro Tazaki:
Analysis of interleaved converters with WTA-based switching. ISCAS (3) 2002: 405-408 - [c12]Hiroshi Imamura, Toshimichi Saito, Hiroyuki Torikai:
An analog-to-digital converter with time-variant window. ISCAS (1) 2002: 505-508 - 2001
- [c11]Yoshinobu Kawasaki, Toshimichi Saito, Hiroyuki Torikai:
Quantized chaotic dynamics and communications systems. ISCAS (3) 2001: 133-136 - [c10]Fumitaka Komatsu, Hiroyuki Torikai, Toshimichi Saito:
Various superstable synchronous phenomena in switch-coupled relaxation oscillators. ISCAS (3) 2001: 696-699 - 2000
- [c9]Hiroyuki Torikai, Toshimichi Saito:
Pulse-Coupled Networks of Non-Autonomous Integrate-and-Fire Oscillators and Classification Functions. IJCNN (3) 2000: 291-295 - [c8]Fumitaka Komatsu, Hiroyuki Torikai, Toshimichi Saito:
A network of relaxation oscillators based on intermittently coupled capacitors. ISCAS 2000: 487-490 - [c7]Toshimichi Saito, Hiroyuki Torikai, Yoshikazu Nomoto:
A buck-boost converter controlled by periodic inputs. ISCAS 2000: 507-510 - [c6]Gousuke Izawa, Toshimichi Saito, Hiroyuki Torikai:
A dependent switched capacitor A/D converter for Farey series approximation. ISCAS 2000: 681-684 - 1999
- [c5]Hiroyuki Torikai, Toshimichi Saito:
Integrate-and-fire model with periodic inputs. IJCNN 1999: 717-720 - [c4]F. Komatsu, Hiroyuki Torikai, Toshimichi Saito:
A chaotic network based on intermittently coupled capacitors. ISCAS (5) 1999: 414-417 - 1998
- [c3]Hiroyuki Torikai, Toshimichi Saito:
Chaotic pulse-train separation and multiplex communication. ICECS 1998: 115-118 - 1995
- [c2]Hiroyuki Torikai, Toshimichi Saito:
Spatiotemporal pattern generation by control and synchronization of chaos. ICNN 1995: 1574-1577 - [c1]Toshimichi Saito, Hiroyuki Torikai, Kenya Jin'no:
Synchronization and Control of Chaos by Occasional Linear Connection. ISCAS 1995: 1013-1016
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-04 20:04 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint