default search action
Aaron C. Courville
Person information
- affiliation: Université de Montréal, Department of Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j16]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. Trans. Mach. Learn. Res. 2024 (2024) - [c155]Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, Aaron C. Courville:
LOQA: Learning with Opponent Q-Learning Awareness. ICLR 2024 - [c154]Zhixuan Lin, Pierluca D'Oro, Evgenii Nikishin, Aaron C. Courville:
The Curse of Diversity in Ensemble-Based Exploration. ICLR 2024 - [c153]Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. ICLR 2024 - [c152]Samuel Lavoie, Polina Kirichenko, Mark Ibrahim, Mido Assran, Andrew Gordon Wilson, Aaron C. Courville, Nicolas Ballas:
Modeling Caption Diversity in Contrastive Vision-Language Pretraining. ICML 2024 - [c151]Johan Samir Obando-Ceron, Aaron C. Courville, Pablo Samuel Castro:
In value-based deep reinforcement learning, a pruned network is a good network. ICML 2024 - [c150]Yusong Wu, Tim Cooijmans, Kyle Kastner, Adam Roberts, Ian Simon, Alexander Scarlatos, Chris Donahue, Cassie Tarakajian, Shayegan Omidshafiei, Aaron C. Courville, Pablo Samuel Castro, Natasha Jaques, Cheng-Zhi Anna Huang:
Adaptive Accompaniment with ReaLchords. ICML 2024 - [i179]Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C. Courville, Alessandro Sordoni, Rishabh Agarwal:
V-STaR: Training Verifiers for Self-Taught Reasoners. CoRR abs/2402.06457 (2024) - [i178]Johan S. Obando-Ceron, Aaron C. Courville, Pablo Samuel Castro:
In deep reinforcement learning, a pruned network is a good network. CoRR abs/2402.12479 (2024) - [i177]Shawn Tan, Yikang Shen, Rameswar Panda, Aaron C. Courville:
Scattered Mixture-of-Experts Implementation. CoRR abs/2403.08245 (2024) - [i176]Milad Aghajohari, Tim Cooijmans, Juan Agustin Duque, Shunichi Akatsuka, Aaron C. Courville:
Best Response Shaping. CoRR abs/2404.06519 (2024) - [i175]Ankit Vani, Bac Nguyen, Samuel Lavoie, Ranjay Krishna, Aaron C. Courville:
SPARO: Selective Attention for Robust and Compositional Transformer Encodings for Vision. CoRR abs/2404.15721 (2024) - [i174]Samuel Lavoie, Polina Kirichenko, Mark Ibrahim, Mahmoud Assran, Andrew Gordon Wilson, Aaron C. Courville, Nicolas Ballas:
Modeling Caption Diversity in Contrastive Vision-Language Pretraining. CoRR abs/2405.00740 (2024) - [i173]Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, Aaron C. Courville:
LOQA: Learning with Opponent Q-Learning Awareness. CoRR abs/2405.01035 (2024) - [i172]Zhixuan Lin, Pierluca D'Oro, Evgenii Nikishin, Aaron C. Courville:
The Curse of Diversity in Ensemble-Based Exploration. CoRR abs/2405.04342 (2024) - [i171]Juan Agustin Duque, Milad Aghajohari, Tim Cooijmans, Tianyu Zhang, Aaron C. Courville:
Advantage Alignment Algorithms. CoRR abs/2406.14662 (2024) - [i170]Johan S. Obando-Ceron, João G. M. Araújo, Aaron C. Courville, Pablo Samuel Castro:
On the consistency of hyper-parameter selection in value-based deep reinforcement learning. CoRR abs/2406.17523 (2024) - [i169]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Aaron C. Courville, Sai Rajeswar:
Multimodal foundation world models for generalist embodied agents. CoRR abs/2406.18043 (2024) - [i168]Bac Nguyen, Stefan Uhlich, Fabien Cardinaux, Lukas Mauch, Marzieh Edraki, Aaron C. Courville:
SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning. CoRR abs/2407.03036 (2024) - 2023
- [j15]Yuchen Lu, Zhen Liu, Aristide Baratin, Romain Laroche, Aaron C. Courville, Alessandro Sordoni:
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods. Trans. Mach. Learn. Res. 2023 (2023) - [c149]Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron C. Courville, Chuang Gan:
Sparse Universal Transformer. EMNLP 2023: 169-179 - [c148]Kyle Kastner, Tim Cooijmans, Yusong Wu, Aaron C. Courville:
SUNMASK: Mask Enhanced Control in Step Unrolled Denoising Autoencoders. EvoMUSART@EvoStar 2023: 148-163 - [c147]Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, Aaron C. Courville:
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. ICLR 2023 - [c146]Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji Kawaguchi, Aaron C. Courville:
Simplicial Embeddings in Self-Supervised Learning and Downstream Classification. ICLR 2023 - [c145]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. ICLR 2023 - [c144]Adrien Ali Taïga, Rishabh Agarwal, Jesse Farebrother, Aaron C. Courville, Marc G. Bellemare:
Investigating Multi-task Pretraining and Generalization in Reinforcement Learning. ICLR 2023 - [c143]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. ICLR 2023 - [c142]Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville, Alexandre Lacoste:
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels. ICML 2023: 28598-28617 - [c141]Max Schwarzer, Johan Samir Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agarwal, Pablo Samuel Castro:
Bigger, Better, Faster: Human-level Atari with human-level efficiency. ICML 2023: 30365-30380 - [c140]Taoli Cheng, Aaron C. Courville:
Versatile Energy-Based Probabilistic Models for High Energy Physics. NeurIPS 2023 - [c139]David Yu-Tung Hui, Aaron C. Courville, Pierre-Luc Bacon:
Double Gumbel Q-Learning. NeurIPS 2023 - [c138]Michael Noukhovitch, Samuel Lavoie, Florian Strub, Aaron C. Courville:
Language Model Alignment with Elastic Reset. NeurIPS 2023 - [c137]Yi Ren, Samuel Lavoie, Michael Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization using Iterated Learning and Simplicial Embeddings. NeurIPS 2023 - [c136]Christos Tsirigotis, João Monteiro, Pau Rodríguez, David Vázquez, Aaron C. Courville:
Group Robust Classification Without Any Group Information. NeurIPS 2023 - [c135]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets. NeurIPS 2023 - [i167]Taoli Cheng, Aaron C. Courville:
Versatile Energy-Based Models for High Energy Physics. CoRR abs/2302.00695 (2023) - [i166]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. CoRR abs/2302.05793 (2023) - [i165]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. CoRR abs/2305.17010 (2023) - [i164]Max Schwarzer, Johan S. Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agarwal, Pablo Samuel Castro:
Bigger, Better, Faster: Human-level Atari with human-level efficiency. CoRR abs/2305.19452 (2023) - [i163]Tim Cooijmans, Milad Aghajohari, Aaron C. Courville:
Meta-Value Learning: a General Framework for Learning with Learning Awareness. CoRR abs/2307.08863 (2023) - [i162]Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. CoRR abs/2310.02679 (2023) - [i161]Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron C. Courville, Chuang Gan:
Sparse Universal Transformer. CoRR abs/2310.07096 (2023) - [i160]Christos Tsirigotis, João Monteiro, Pau Rodríguez, David Vázquez, Aaron C. Courville:
Group Robust Classification Without Any Group Information. CoRR abs/2310.18555 (2023) - [i159]Yi Ren, Samuel Lavoie, Mikhail Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings. CoRR abs/2310.18777 (2023) - [i158]Max Schwarzer, Jesse Farebrother, Joshua Greaves, Ekin Dogus Cubuk, Rishabh Agarwal, Aaron C. Courville, Marc G. Bellemare, Sergei V. Kalinin, Igor Mordatch, Pablo Samuel Castro, Kevin M. Roccapriore:
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy. CoRR abs/2311.17894 (2023) - [i157]Michael Noukhovitch, Samuel Lavoie, Florian Strub, Aaron C. Courville:
Language Model Alignment with Elastic Reset. CoRR abs/2312.07551 (2023) - 2022
- [c134]Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng Li, Jie Zhou, Aaron C. Courville:
Unsupervised Dependency Graph Network. ACL (1) 2022: 4767-4784 - [c133]Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, Aaron C. Courville:
On the Compositional Generalization Gap of In-Context Learning. BlackboxNLP@EMNLP 2022: 272-280 - [c132]Sai Rajeswar, Issam Hadj Laradji, Pau Rodríguez, David Vázquez, Aaron C. Courville:
Consistency-CAM: Towards Improved Weakly Supervised Semantic Segmentation. BMVC 2022: 644 - [c131]Rim Assouel, Lluís Castrejón, Aaron C. Courville, Nicolas Ballas, Yoshua Bengio:
VIM: Variational Independent Modules for Video Prediction. CLeaR 2022: 70-89 - [c130]Sai Rajeswar, Pau Rodríguez, Soumye Singhal, David Vázquez, Aaron C. Courville:
Multi-label Iterated Learning for Image Classification with Label Ambiguity. CVPR 2022: 4773-4783 - [c129]Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron C. Courville, George Tucker, Sergey Levine:
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. ICLR 2022 - [c128]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. ICLR 2022 - [c127]Shawn Tan, Chin-Wei Huang, Alessandro Sordoni, Aaron C. Courville:
Learning to Dequantise with Truncated Flows. ICLR 2022 - [c126]Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans, Aaron C. Courville, Cheng-Zhi Anna Huang, Jesse H. Engel:
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. ICLR 2022 - [c125]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Optimization and Beyond. ICLR 2022 - [c124]Hattie Zhou, Ankit Vani, Hugo Larochelle, Aaron C. Courville:
Fortuitous Forgetting in Connectionist Networks. ICLR 2022 - [c123]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. ICML 2022: 16828-16847 - [c122]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. ICML 2022: 26412-26428 - [c121]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [c120]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Cascaded Video Generation for Videos In-the-Wild. ICPR 2022: 2385-2392 - [c119]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress. NeurIPS 2022 - [c118]Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, Aaron C. Courville:
Riemannian Diffusion Models. NeurIPS 2022 - [i156]Taoli Cheng, Aaron C. Courville:
Invariant Representation Driven Neural Classifier for Anti-QCD Jet Tagging. CoRR abs/2201.07199 (2022) - [i155]Hattie Zhou, Ankit Vani, Hugo Larochelle, Aaron C. Courville:
Fortuitous Forgetting in Connectionist Networks. CoRR abs/2202.00155 (2022) - [i154]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. CoRR abs/2202.01361 (2022) - [i153]Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Kenji Kawaguchi, Ankit Vani, Aaron C. Courville:
Simplicial Embeddings in Self-Supervised Learning and Downstream Classification. CoRR abs/2204.00616 (2022) - [i152]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. CoRR abs/2205.07802 (2022) - [i151]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Cascaded Video Generation for Videos In-the-Wild. CoRR abs/2206.00735 (2022) - [i150]Yuchen Lu, Zhen Liu, Aristide Baratin, Romain Laroche, Aaron C. Courville, Alessandro Sordoni:
Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning. CoRR abs/2206.01251 (2022) - [i149]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Beyond Tabula Rasa: Reincarnating Reinforcement Learning. CoRR abs/2206.01626 (2022) - [i148]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. CoRR abs/2206.03362 (2022) - [i147]Kyle Kastner, Aaron C. Courville:
R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS. CoRR abs/2206.15276 (2022) - [i146]Chin-Wei Huang, Milad Aghajohari, Avishek Joey Bose, Prakash Panangaden, Aaron C. Courville:
Riemannian Diffusion Models. CoRR abs/2208.07949 (2022) - [i145]Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville, Alexandre Lacoste:
Unsupervised Model-based Pre-training for Data-efficient Control from Pixels. CoRR abs/2209.12016 (2022) - [i144]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. CoRR abs/2210.00999 (2022) - [i143]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. CoRR abs/2210.03308 (2022) - [i142]Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, Aaron C. Courville:
On the Compositional Generalization Gap of In-Context Learning. CoRR abs/2211.08473 (2022) - [i141]Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron C. Courville, Behnam Neyshabur, Hanie Sedghi:
Teaching Algorithmic Reasoning via In-context Learning. CoRR abs/2211.09066 (2022) - 2021
- [c117]Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, Aaron C. Courville:
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling. ACL/IJCNLP (1) 2021: 7196-7209 - [c116]Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron C. Courville:
Emergent Communication under Competition. AAMAS 2021: 974-982 - [c115]Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vázquez, Aaron C. Courville, Pedro O. Pinheiro:
Haptics-based Curiosity for Sparse-reward Tasks. CoRL 2021: 395-405 - [c114]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Generative Compositional Augmentations for Scene Graph Prediction. ICCV 2021: 15807-15817 - [c113]Faruk Ahmed, Yoshua Bengio, Harm van Seijen, Aaron C. Courville:
Systematic generalisation with group invariant predictions. ICLR 2021 - [c112]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. ICLR 2021 - [c111]Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron C. Courville:
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization. ICLR 2021 - [c110]Samuel Lavoie-Marchildon, Faruk Ahmed, Aaron C. Courville:
Integrating Categorical Semantics into Unsupervised Domain Translation. ICLR 2021 - [c109]Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron C. Courville, Joshua B. Tenenbaum, Chuang Gan:
Learning Task Decomposition with Ordered Memory Policy Network. ICLR 2021 - [c108]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Self-Predictive Representations. ICLR 2021 - [c107]Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron C. Courville:
Iterated learning for emergent systematicity in VQA. ICLR 2021 - [c106]David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Rémi Le Priol, Aaron C. Courville:
Out-of-Distribution Generalization via Risk Extrapolation (REx). ICML 2021: 5815-5826 - [c105]Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, Sarath Chandar:
Continuous Coordination As a Realistic Scenario for Lifelong Learning. ICML 2021: 8016-8024 - [c104]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? ICML 2021: 12356-12367 - [c103]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. NAACL-HLT 2021: 1301-1312 - [c102]Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva Reddy, Aaron C. Courville:
Explicitly Modeling Syntax in Language Models with Incremental Parsing and a Dynamic Oracle. NAACL-HLT 2021: 1660-1672 - [c101]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. NeurIPS 2021: 1256-1272 - [c100]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. NeurIPS 2021: 12686-12699 - [c99]Chin-Wei Huang, Jae Hyun Lim, Aaron C. Courville:
A Variational Perspective on Diffusion-Based Generative Models and Score Matching. NeurIPS 2021: 22863-22876 - [c98]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. NeurIPS 2021: 29304-29320 - [i140]Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, Aaron C. Courville:
Emergent Communication under Competition. CoRR abs/2101.10276 (2021) - [i139]Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, Sarath Chandar:
Continuous Coordination As a Realistic Scenario for Lifelong Learning. CoRR abs/2103.03216 (2021) - [i138]Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron C. Courville, Joshua B. Tenenbaum, Chuang Gan:
Learning Task Decomposition with Ordered Memory Policy Network. CoRR abs/2103.10972 (2021) - [i137]Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vázquez, Aaron C. Courville, Pedro O. Pinheiro:
Touch-based Curiosity for Sparse-Reward Tasks. CoRR abs/2104.00442 (2021) - [i136]Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron C. Courville:
Iterated learning for emergent systematicity in VQA. CoRR abs/2105.01119 (2021) - [i135]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. CoRR abs/2105.03519 (2021) - [i134]Lluís Castrejón, Nicolas Ballas, Aaron C. Courville:
Hierarchical Video Generation for Complex Data. CoRR abs/2106.02719 (2021) - [i133]Chin-Wei Huang, Jae Hyun Lim, Aaron C. Courville:
A Variational Perspective on Diffusion-Based Generative Models and Score Matching. CoRR abs/2106.02808 (2021) - [i132]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? CoRR abs/2106.02890 (2021) - [i131]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. CoRR abs/2106.04799 (2021) - [i130]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. CoRR abs/2108.13264 (2021) - [i129]Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, Marc G. Bellemare:
On Bonus-Based Exploration Methods in the Arcade Learning Environment. CoRR abs/2109.11052 (2021) - [i128]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond. CoRR abs/2110.03372 (2021) - [i127]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. CoRR abs/2110.10139 (2021) - [i126]Sai Rajeswar, Pau Rodríguez, Soumye Singhal, David Vázquez, Aaron C. Courville:
Multi-label Iterated Learning for Image Classification with Label Ambiguity. CoRR abs/2111.12172 (2021) - [i125]Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron C. Courville, George Tucker, Sergey Levine:
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. CoRR abs/2112.04716 (2021) - [i124]Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans, Aaron C. Courville, Cheng-Zhi Anna Huang, Jesse H. Engel:
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. CoRR abs/2112.09312 (2021) - 2020
- [j14]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative adversarial networks. Commun. ACM 63(11): 139-144 (2020) - [j13]Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vázquez, Derek Nowrouzezahrai, Aaron C. Courville:
Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images Using a View-Based Representation. Int. J. Comput. Vis. 128(10): 2478-2493 (2020) - [c97]Faruk Ahmed, Aaron C. Courville:
Detecting Semantic Anomalies. AAAI 2020: 3154-3162 - [c96]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. AIED (2) 2020: 387-392 - [c95]Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste, Aaron C. Courville:
Stochastic Neural Network with Kronecker Flow. AISTATS 2020: 4184-4194 - [c94]Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron C. Courville, Eugene Belilovsky:
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation. BMVC 2020 - [c93]