


Остановите войну!
for scientists:


default search action
Olivier Pietquin
Person information

- affiliation: Google DeepMind
- affiliation: University Lille 1, France
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i71]Chris Donahue, Antoine Caillon, Adam Roberts, Ethan Manilow, Philippe Esling, Andrea Agostinelli, Mauro Verzetti, Ian Simon, Olivier Pietquin, Neil Zeghidour, Jesse H. Engel:
SingSong: Generating musical accompaniments from singing. CoRR abs/2301.12662 (2023) - 2022
- [c142]Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier Pietquin, Matthieu Geist:
Offline Reinforcement Learning as Anti-exploration. AAAI 2022: 8106-8114 - [c141]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, Olivier Pietquin:
Generalization in Mean Field Games by Learning Master Policies. AAAI 2022: 9413-9421 - [c140]Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, Matthieu Geist:
Implicitly Regularized RL with Implicit Q-values. AISTATS 2022: 1380-1402 - [c139]Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, Olivier Pietquin:
Concave Utility Reinforcement Learning: The Mean-field Game Viewpoint. AAMAS 2022: 489-497 - [c138]Alexis Jacq, Johan Ferret, Olivier Pietquin, Matthieu Geist:
Lazy-MDPs: Towards Interpretable RL by Learning When to Act. AAMAS 2022: 669-677 - [c137]Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Pérolat, Mathieu Laurière, Raphaël Marinier, Olivier Pietquin, Karl Tuyls:
Learning Equilibria in Mean-Field Games: Introducing Mean-Field PSRO. AAMAS 2022: 926-934 - [c136]Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras, Matthieu Geist, Karl Tuyls, Olivier Pietquin:
Scaling Mean Field Games by Online Mirror Descent. AAMAS 2022: 1028-1037 - [c135]Theophile Cabannes, Mathieu Laurière, Julien Pérolat, Raphaël Marinier, Sertan Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M. Bayen, Eric Goubault, Romuald Elie:
Solving N-Player Dynamic Routing Games with Congestion: A Mean-Field Approach. AAMAS 2022: 1557-1559 - [c134]Mathieu Rita, Florian Strub, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux:
On the role of population heterogeneity in emergent communication. ICLR 2022 - [c133]Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu Geist, Olivier Pietquin:
Continuous Control with Action Quantization from Demonstrations. ICML 2022: 4537-4557 - [c132]Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Elie, Olivier Pietquin, Matthieu Geist:
Scalable Deep Reinforcement Learning Algorithms for Mean Field Games. ICML 2022: 12078-12095 - [c131]Alice Martin, Guillaume Quispe, Charles Ollion, Sylvain Le Corff, Florian Strub, Olivier Pietquin:
Learning Natural Language Generation with Truncated Reinforcement Learning. NAACL-HLT 2022: 12-37 - [i70]Alexis Jacq, Johan Ferret, Olivier Pietquin, Matthieu Geist:
Lazy-MDPs: Towards Interpretable Reinforcement Learning by Learning When to Act. CoRR abs/2203.08542 (2022) - [i69]Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Élie, Olivier Pietquin, Matthieu Geist:
Scalable Deep Reinforcement Learning Algorithms for Mean Field Games. CoRR abs/2203.11973 (2022) - [i68]Mathieu Rita, Florian Strub, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux:
On the role of population heterogeneity in emergent communication. CoRR abs/2204.12982 (2022) - [i67]Mathieu Laurière, Sarah Perrin, Matthieu Geist, Olivier Pietquin:
Learning Mean Field Games: A Survey. CoRR abs/2205.12944 (2022) - [i66]Tadashi Kozuno, Wenhao Yang, Nino Vieillard, Toshinori Kitamura, Yunhao Tang, Jincheng Mei, Pierre Ménard, Mohammad Gheshlaghi Azar, Michal Valko, Rémi Munos, Olivier Pietquin, Matthieu Geist, Csaba Szepesvári:
KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal. CoRR abs/2205.14211 (2022) - [i65]Paul Muller, Romuald Elie, Mark Rowland, Mathieu Laurière, Julien Pérolat, Sarah Perrin, Matthieu Geist, Georgios Piliouras, Olivier Pietquin, Karl Tuyls:
Learning Correlated Equilibria in Mean-Field Games. CoRR abs/2208.10138 (2022) - [i64]Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matthew Sharifi, Olivier Teboul, David Grangier, Marco Tagliasacchi, Neil Zeghidour:
AudioLM: a Language Modeling Approach to Audio Generation. CoRR abs/2209.03143 (2022) - [i63]Geoffrey Cideron, Sertan Girgin, Anton Raichuk, Olivier Pietquin, Olivier Bachem, Léonard Hussenot:
vec2text with Round-Trip Translations. CoRR abs/2209.06792 (2022) - [i62]Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux, Florian Strub:
Emergent Communication: Generalization and Overfitting in Lewis Games. CoRR abs/2209.15342 (2022) - [i61]Alexis Jacq, Manu Orsini, Gabriel Dulac-Arnold, Olivier Pietquin, Matthieu Geist, Olivier Bachem:
C3PO: Learning to Achieve Arbitrary Goals via Massively Entropic Pretraining. CoRR abs/2211.03521 (2022) - 2021
- [c130]Johan Ferret, Olivier Pietquin, Matthieu Geist:
Self-Imitation Advantage Learning. AAMAS 2021: 501-509 - [c129]Léonard Hussenot, Robert Dadashi, Matthieu Geist, Olivier Pietquin:
Show Me the Way: Intrinsic Motivation from Demonstrations. AAMAS 2021: 620-628 - [c128]Aaqib Saeed, David Grangier, Olivier Pietquin, Neil Zeghidour:
Learning From Heterogeneous Eeg Signals with Differentiable Channel Reordering. ICASSP 2021: 1255-1259 - [c127]Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem:
What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study. ICLR 2021 - [c126]Robert Dadashi, Léonard Hussenot, Matthieu Geist, Olivier Pietquin:
Primal Wasserstein Imitation Learning. ICLR 2021 - [c125]Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist:
Adversarially Guided Actor-Critic. ICLR 2021 - [c124]Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, Matthieu Geist:
Offline Reinforcement Learning with Pseudometric Learning. ICML 2021: 2307-2318 - [c123]Léonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Sabela Ramos, Nikola Momchev, Sertan Girgin, Raphaël Marinier, Lukasz Stafiniak, Manu Orsini, Olivier Bachem, Matthieu Geist, Olivier Pietquin:
Hyperparameter Selection for Imitation Learning. ICML 2021: 4511-4522 - [c122]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, Olivier Pietquin:
Mean Field Games Flock! The Reinforcement Learning Way. IJCAI 2021: 356-362 - [c121]Mathieu Seurin, Florian Strub, Philippe Preux, Olivier Pietquin:
Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness. IJCAI 2021: 2950-2956 - [c120]Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist:
There Is No Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning. NeurIPS 2021: 1898-1911 - [c119]Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, Marcin Andrychowicz:
What Matters for Adversarial Imitation Learning? NeurIPS 2021: 14656-14668 - [i60]Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist:
Adversarially Guided Actor-Critic. CoRR abs/2102.04376 (2021) - [i59]Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras, Matthieu Geist, Karl Tuyls, Olivier Pietquin:
Scaling up Mean Field Games with Online Mirror Descent. CoRR abs/2103.00623 (2021) - [i58]Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, Matthieu Geist:
Offline Reinforcement Learning with Pseudometric Learning. CoRR abs/2103.01948 (2021) - [i57]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, Olivier Pietquin:
Mean Field Games Flock! The Reinforcement Learning Way. CoRR abs/2105.07933 (2021) - [i56]Mathieu Seurin, Florian Strub, Philippe Preux, Olivier Pietquin:
Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness. CoRR abs/2105.09992 (2021) - [i55]Léonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Lukasz Stafiniak, Sertan Girgin, Raphaël Marinier, Nikola Momchev, Sabela Ramos, Manu Orsini, Olivier Bachem, Matthieu Geist, Olivier Pietquin:
Hyperparameter Selection for Imitation Learning. CoRR abs/2105.12034 (2021) - [i54]Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, Marcin Andrychowicz:
What Matters for Adversarial Imitation Learning? CoRR abs/2106.00672 (2021) - [i53]Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, Olivier Pietquin:
Concave Utility Reinforcement Learning: the Mean-field Game viewpoint. CoRR abs/2106.03787 (2021) - [i52]Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist:
There Is No Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning. CoRR abs/2106.04480 (2021) - [i51]Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier Pietquin, Matthieu Geist:
Offline Reinforcement Learning as Anti-Exploration. CoRR abs/2106.06431 (2021) - [i50]Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, Matthieu Geist:
Implicitly Regularized RL with Implicit Q-Values. CoRR abs/2108.07041 (2021) - [i49]Alice Martin Donati, Guillaume Quispe, Charles Ollion, Sylvain Le Corff, Florian Strub, Olivier Pietquin:
Learning Natural Language Generation from Scratch. CoRR abs/2109.09371 (2021) - [i48]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, Olivier Pietquin:
Generalization in Mean Field Games by Learning Master Policies. CoRR abs/2109.09717 (2021) - [i47]Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu Geist, Olivier Pietquin:
Continuous Control with Action Quantization from Demonstrations. CoRR abs/2110.10149 (2021) - [i46]Theophile Cabannes
, Mathieu Laurière, Julien Pérolat, Raphaël Marinier, Sertan Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M. Bayen, Éric Goubault, Romuald Elie:
Solving N-player dynamic routing games with congestion: a mean field approach. CoRR abs/2110.11943 (2021) - [i45]Sabela Ramos, Sertan Girgin, Léonard Hussenot, Damien Vincent, Hanna Yakubovich, Daniel Toyama, Anita Gergely, Piotr Stanczyk, Raphaël Marinier, Jeremiah Harmsen, Olivier Pietquin, Nikola Momchev:
RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement Learning. CoRR abs/2111.02767 (2021) - [i44]Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Pérolat, Mathieu Laurière, Raphaël Marinier, Olivier Pietquin, Karl Tuyls:
Learning Equilibria in Mean-Field Games: Introducing Mean-Field PSRO. CoRR abs/2111.08350 (2021) - 2020
- [c118]Nino Vieillard, Olivier Pietquin, Matthieu Geist:
Deep Conservative Policy Iteration. AAAI 2020: 6070-6077 - [c117]Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Olivier Pietquin:
On the Convergence of Model Free Learning in Mean Field Games. AAAI 2020: 7143-7150 - [c116]Alexis Jacq, Julien Pérolat, Matthieu Geist, Olivier Pietquin:
Foolproof Cooperative Learning. ACML 2020: 401-416 - [c115]Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist:
Momentum in Reinforcement Learning. AISTATS 2020: 2529-2538 - [c114]Léonard Hussenot, Matthieu Geist, Olivier Pietquin:
CopyCAT: : Taking Control of Neural Policies with Constant Attacks. AAMAS 2020: 548-556 - [c113]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. EMNLP (1) 2020: 3962-3970 - [c112]Yuchen Lu, Soumye Singhal, Florian Strub, Aaron C. Courville, Olivier Pietquin:
Countering Language Drift with Seeded Iterated Learning. ICML 2020: 6437-6447 - [c111]Johan Ferret, Raphaël Marinier, Matthieu Geist, Olivier Pietquin:
Self-Attentional Credit Assignment for Transfer in Reinforcement Learning. IJCAI 2020: 2655-2661 - [c110]Mathieu Seurin, Philippe Preux, Olivier Pietquin:
"I'm Sorry Dave, I'm Afraid I Can't Do That" Deep Q-Learning from Forbidden Actions. IJCNN 2020: 1-8 - [c109]Mathieu Seurin, Florian Strub, Philippe Preux, Olivier Pietquin:
A Machine of Few Words: Interactive Speaker Recognition with Reinforcement Learning. INTERSPEECH 2020: 4323-4327 - [c108]Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, Olivier Pietquin:
Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications. NeurIPS 2020 - [c107]Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, Matthieu Geist:
Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning. NeurIPS 2020 - [c106]Nino Vieillard, Olivier Pietquin, Matthieu Geist:
Munchausen Reinforcement Learning. NeurIPS 2020 - [c105]Geoffrey Cideron, Mathieu Seurin, Florian Strub, Olivier Pietquin:
HIGhER: Improving instruction following with Hindsight Generation for Experience Replay. SSCI 2020: 225-232 - [e1]Olivier Pietquin, Smaranda Muresan, Vivian Chen, Casey Kennington, David Vandyke, Nina Dethlefs, Koji Inoue, Erik Ekstedt, Stefan Ultes:
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGdial 2020, 1st virtual meeting, July 1-3, 2020. Association for Computational Linguistics 2020, ISBN 978-1-952148-02-6 [contents] - [i43]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Countering Language Drift with Seeded Iterated Learning. CoRR abs/2003.12694 (2020) - [i42]Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, Matthieu Geist:
Leverage the Average: an Analysis of Regularization in RL. CoRR abs/2003.14089 (2020) - [i41]Olivier Buffer, Olivier Pietquin, Paul Weng:
Reinforcement Learning. CoRR abs/2005.14419 (2020) - [i40]Robert Dadashi, Léonard Hussenot, Matthieu Geist, Olivier Pietquin:
Primal Wasserstein Imitation Learning. CoRR abs/2006.04678 (2020) - [i39]Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem:
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study. CoRR abs/2006.05990 (2020) - [i38]Léonard Hussenot, Robert Dadashi, Matthieu Geist, Olivier Pietquin:
Show me the Way: Intrinsic Motivation from Demonstrations. CoRR abs/2006.12917 (2020) - [i37]Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, Olivier Pietquin:
Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications. CoRR abs/2007.03458 (2020) - [i36]Alice Martin, Charles Ollion, Florian Strub, Sylvain Le Corff, Olivier Pietquin:
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction. CoRR abs/2007.08620 (2020) - [i35]Nino Vieillard, Olivier Pietquin, Matthieu Geist:
Munchausen Reinforcement Learning. CoRR abs/2007.14430 (2020) - [i34]Mathieu Seurin, Florian Strub, Philippe Preux, Olivier Pietquin:
A Machine of Few Words - Interactive Speaker Recognition with Reinforcement Learning. CoRR abs/2008.03127 (2020) - [i33]Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron C. Courville:
Supervised Seeded Iterated Learning for Interactive Language Learning. CoRR abs/2010.02975 (2020) - [i32]Aaqib Saeed, David Grangier, Olivier Pietquin, Neil Zeghidour:
Learning from Heterogeneous EEG Signals with Differentiable Channel Reordering. CoRR abs/2010.13694 (2020) - [i31]Johan Ferret, Olivier Pietquin, Matthieu Geist:
Self-Imitation Advantage Learning. CoRR abs/2012.11989 (2020)
2010 – 2019
- 2019
- [c104]Diana Borsa, Nicolas Heess, Bilal Piot, Siqi Liu, Leonard Hasenclever, Rémi Munos, Olivier Pietquin:
Observational Learning by Reinforcement Learning. AAMAS 2019: 1117-1124 - [c103]Matthieu Geist, Bruno Scherrer, Olivier Pietquin:
A Theory of Regularized Markov Decision Processes. ICML 2019: 2160-2169 - [c102]Alexis Jacq, Matthieu Geist, Ana Paiva, Olivier Pietquin:
Learning from a Learner. ICML 2019: 2990-2999 - [c101]Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, Olivier Pietquin:
Budgeted Reinforcement Learning in Continuous State Space. NeurIPS 2019: 9295-9305 - [i30]Geoffrey Cideron, Mathieu Seurin, Florian Strub, Olivier Pietquin:
Self-Educated Language Agent with Hindsight Experience Replay for Instruction Following. ViGIL@NeurIPS 2019 - [i29]Matthieu Geist, Bruno Scherrer, Olivier Pietquin:
A Theory of Regularized Markov Decision Processes. CoRR abs/1901.11275 (2019) - [i28]Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, Olivier Pietquin:
Scaling up budgeted reinforcement learning. CoRR abs/1903.01004 (2019) - [i27]Léonard Hussenot, Matthieu Geist, Olivier Pietquin:
Targeted Attacks on Deep Reinforcement Learning Agents through Adversarial Observations. CoRR abs/1905.12282 (2019) - [i26]Nino Vieillard, Olivier Pietquin, Matthieu Geist:
Deep Conservative Policy Iteration. CoRR abs/1906.09784 (2019) - [i25]Alexis Jacq, Julien Pérolat, Matthieu Geist, Olivier Pietquin:
Foolproof Cooperative Learning. CoRR abs/1906.09831 (2019) - [i24]Lucas Beyer, Damien Vincent, Olivier Teboul, Sylvain Gelly, Matthieu Geist, Olivier Pietquin:
MULEX: Disentangling Exploitation from Exploration in Deep RL. CoRR abs/1907.00868 (2019) - [i23]Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Olivier Pietquin:
Approximate Fictitious Play for Mean Field Games. CoRR abs/1907.02633 (2019) - [i22]Johan Ferret, Raphaël Marinier, Matthieu Geist, Olivier Pietquin:
Credit Assignment as a Proxy for Transfer in Reinforcement Learning. CoRR abs/1907.08027 (2019) - [i21]Mathieu Seurin, Philippe Preux, Olivier Pietquin:
"I'm sorry Dave, I'm afraid I can't do that" Deep Q-learning from forbidden action. CoRR abs/1910.02078 (2019) - [i20]Nino Vieillard, Olivier Pietquin, Matthieu Geist:
On Connections between Constrained Optimization and Reinforcement Learning. CoRR abs/1910.08476 (2019) - [i19]Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist:
Momentum in Reinforcement Learning. CoRR abs/1910.09322 (2019) - [i18]Geoffrey Cideron, Mathieu Seurin, Florian Strub, Olivier Pietquin:
Self-Educated Language Agent With Hindsight Experience Replay For Instruction Following. CoRR abs/1910.09451 (2019) - 2018
- [c100]Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z. Leibo, Audrunas Gruslys:
Deep Q-learning From Demonstrations. AAAI 2018: 3223-3230 - [c99]Julien Pérolat, Bilal Piot, Olivier Pietquin:
Actor-Critic Fictitious Play in Simultaneous Move Multistage Games. AISTATS 2018: 919-928 - [c98]Merwan Barlier, Romain Laroche, Olivier Pietquin:
Training Dialogue Systems With Human Advice. AAMAS 2018: 999-1007 - [c97]Florian Strub, Mathieu Seurin, Ethan Perez, Harm de Vries, Jérémie Mary, Philippe Preux, Aaron C. Courville, Olivier Pietquin:
Visual Reasoning with Multi-hop Feature Modulation. ECCV (5) 2018: 808-831 - [c96]Alexandre Berard, Laurent Besacier, Ali Can Kocabiyikoglu, Olivier Pietquin:
End-to-End Automatic Speech Translation of Audiobooks. ICASSP 2018: 6224-6228 - [c95]Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg:
Noisy Networks For Exploration. ICLR (Poster) 2018 - [p2]Gil Keren, Amr El-Desoky Mousa, Olivier Pietquin, Stefanos Zafeiriou, Björn W. Schuller:
Deep learning for multisensorial and multimodal interaction. The Handbook of Multimodal-Multisensor Interfaces, Volume 2 (2) 2018: 99-128 - [i17]Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu, Olivier Pietquin:
End-to-End Automatic Speech Translation of Audiobooks. CoRR abs/1802.04200 (2018) - [i16]Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Vecerík, Matteo Hessel, Rémi Munos, Olivier Pietquin:
Observe and Look Further: Achieving Consistent Performance on Atari. CoRR abs/1805.11593 (2018) - [i15]Florian Strub, Mathieu Seurin, Ethan Perez, Harm de Vries, Jérémie Mary, Philippe Preux, Aaron C. Courville, Olivier Pietquin:
Visual Reasoning with Multi-hop Feature Modulation. CoRR abs/1808.04446 (2018) - [i14]Julien Pérolat, Mateusz Malinowski, Bilal Piot, Olivier Pietquin:
Playing the Game of Universal Adversarial Perturbations. CoRR abs/1809.07802 (2018) - 2017
- [j14]Bilal Piot
, Matthieu Geist, Olivier Pietquin:
Bridging the Gap Between Imitation Learning and Inverse Reinforcement Learning. IEEE Trans. Neural Networks Learn. Syst. 28(8): 1814-1826 (2017) - [c94]Julien Pérolat, Florian Strub, Bilal Piot, Olivier Pietquin:
Learning Nash Equilibrium for General-Sum Markov Games from Batch Data. AISTATS 2017: 232-241 - [c93]Harm de Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, Aaron C. Courville:
GuessWhat?! Visual Object Discovery through Multi-modal Dialogue. CVPR 2017: 4466-4475 - [c92]Florian Strub, Harm de Vries, Jérémie Mary, Bilal Piot, Aaron C. Courville, Olivier Pietquin:
End-to-end optimization of goal-driven and visually grounded dialogue systems. IJCAI 2017: 2765-2771 - [c91]Matthieu Geist, Bilal Piot, Olivier Pietquin:
Is the Bellman residual a bad proxy? NIPS 2017: 3205-3214 - [c90]Harm de Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C. Courville:
Modulating early visual processing by language. NIPS 2017: 6594-6604 - [c89]Alexandre Berard, Laurent Besacier, Olivier Pietquin:
LIG-CRIStAL Submission for the WMT 2017 Automatic Post-Editing Task. WMT 2017: 623-629 - [i13]Florian Strub, Harm de Vries, Jérémie Mary, Bilal Piot, Aaron C. Courville, Olivier Pietquin:
End-to-end optimization of goal-driven and visually grounded dialogue systems. CoRR abs/1703.05423 (2017) - [i12]Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, Audrunas Gruslys:
Learning from Demonstrations for Real World Reinforcement Learning. CoRR abs/1704.03732 (2017) - [i11]Diana Borsa, Bilal Piot, Rémi Munos, Olivier Pietquin:
Observational Learning by Reinforcement Learning. CoRR abs/1706.06617 (2017) - [i10]Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg:
Noisy Networks for Exploration. CoRR abs/1706.10295 (2017) - [i9]Harm de Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C. Courville:
Modulating early visual processing by language. CoRR abs/1707.00683 (2017) - [i8]Alexandre Berard, Olivier Pietquin, Laurent Besacier:
LIG-CRIStAL System for the WMT17 Automatic Post-Editing Task. CoRR abs/1707.05118 (2017) - [i7]Matej Vecerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, Martin A. Riedmiller:
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards. CoRR abs/1707.08817 (2017) - 2016
- [c88]