


Остановите войну!
for scientists:


default search action
Mohammad Ghavamzadeh
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i76]Dhawal Gupta, Yinlam Chow, Mohammad Ghavamzadeh, Craig Boutilier:
Offline Reinforcement Learning for Mixture-of-Expert Dialogue Management. CoRR abs/2302.10850 (2023) - [i75]Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Shixiang Shane Gu:
Aligning Text-to-Image Models using Human Feedback. CoRR abs/2302.12192 (2023) - [i74]Moloud Abdar, Meenakshi Kollati, Swaraja Kuraparthi, Farhad Pourpanah, Daniel McDuff, Mohammad Ghavamzadeh, Shuicheng Yan, Abduallah Mohamed, Abbas Khosravi, Erik Cambria, Fatih Porikli:
A Review of Deep Learning for Video Captioning. CoRR abs/2304.11431 (2023) - [i73]Jia Lin Hau, Erick Delage, Mohammad Ghavamzadeh, Marek Petrik:
On Dynamic Program Decompositions of Static Risk Measures. CoRR abs/2304.12477 (2023) - [i72]Gecia Bravo-Hermsdorff, Róbert Busa-Fekete, Mohammad Ghavamzadeh, Andres Muñoz Medina, Umar Syed:
Private and Communication-Efficient Algorithms for Entropy Estimation. CoRR abs/2305.07751 (2023) - 2022
- [c95]Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh, Craig Boutilier:
Thompson Sampling with a Mixture Prior. AISTATS 2022: 7565-7586 - [c94]Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh:
Hierarchical Bayesian Bandits. AISTATS 2022: 7724-7741 - [c93]Ahmadreza Moradipari, Mohammad Ghavamzadeh, Mahnoosh Alizadeh:
Collaborative Multi-agent Stochastic Linear Bandits. ACC 2022: 2761-2766 - [c92]Manan Tomar, Lior Shani, Yonathan Efroni, Mohammad Ghavamzadeh:
Mirror Descent Policy Optimization. ICLR 2022 - [c91]Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, Mohammad Ghavamzadeh:
Deep Hierarchy in Bandits. ICML 2022: 8833-8851 - [c90]Ahmadreza Moradipari, Berkay Turan, Yasin Abbasi-Yadkori, Mahnoosh Alizadeh, Mohammad Ghavamzadeh:
Feature and Parameter Selection in Stochastic Linear Bandits. ICML 2022: 15927-15958 - [c89]Mohammad Javad Azizi, Branislav Kveton, Mohammad Ghavamzadeh:
Fixed-Budget Best-Arm Identification in Structured Bandits. IJCAI 2022: 2798-2804 - [c88]Ahmadreza Moradipari, Mohammad Ghavamzadeh, Taha Rajabzadeh, Christos Thrampoulidis, Mahnoosh Alizadeh:
Multi-Environment Meta-Learning in Stochastic Linear Bandits. ISIT 2022: 1659-1664 - [c87]Gecia Bravo-Hermsdorff, Róbert Busa-Fekete, Mohammad Ghavamzadeh, Andrés Muñoz Medina, Umar Syed:
Private and Communication-Efficient Algorithms for Entropy Estimation. NeurIPS 2022 - [c86]Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor:
Efficient Risk-Averse Reinforcement Learning. NeurIPS 2022 - [c85]Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh:
Robust Reinforcement Learning using Offline Data. NeurIPS 2022 - [c84]Amin Rakhsha, Andrew Wang, Mohammad Ghavamzadeh, Amir-massoud Farahmand:
Operator Splitting Value Iteration. NeurIPS 2022 - [i71]Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, Mohammad Ghavamzadeh:
Deep Hierarchy in Bandits. CoRR abs/2202.01454 (2022) - [i70]Mohammad Javad Azizi, Branislav Kveton, Mohammad Ghavamzadeh, Sumeet Katariya:
Meta-Learning for Simple Regret Minimization. CoRR abs/2202.12888 (2022) - [i69]Mohammad Javad Azizi, Thang Duong, Yasin Abbasi-Yadkori, András György, Claire Vernade, Mohammad Ghavamzadeh:
Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms. CoRR abs/2202.13001 (2022) - [i68]Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor:
Efficient Risk-Averse Reinforcement Learning. CoRR abs/2205.05138 (2022) - [i67]Ahmadreza Moradipari, Mohammad Ghavamzadeh, Taha Rajabzadeh, Christos Thrampoulidis, Mahnoosh Alizadeh:
Multi-Environment Meta-Learning in Stochastic Linear Bandits. CoRR abs/2205.06326 (2022) - [i66]Ahmadreza Moradipari, Mohammad Ghavamzadeh, Mahnoosh Alizadeh:
Collaborative Multi-agent Stochastic Linear Bandits. CoRR abs/2205.06331 (2022) - [i65]Yinlam Chow, Aza Tulepbergenov, Ofir Nachum, Moonkyung Ryu, Mohammad Ghavamzadeh, Craig Boutilier:
A Mixture-of-Expert Approach to RL-based Dialogue Management. CoRR abs/2206.00059 (2022) - [i64]Jorge A. Mendez, Alborz Geramifard, Mohammad Ghavamzadeh, Bing Liu:
Reinforcement Learning of Multi-Domain Dialog Policies Via Action Embeddings. CoRR abs/2207.00468 (2022) - [i63]Kishan Panaganti, Zaiyan Xu
, Dileep M. Kalathil, Mohammad Ghavamzadeh:
Robust Reinforcement Learning using Offline Data. CoRR abs/2208.05129 (2022) - [i62]Jia Lin Hau, Marek Petrik, Mohammad Ghavamzadeh, Reazul Hasan Russel:
RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk. CoRR abs/2209.04067 (2022) - [i61]Amin Rakhsha, Andrew Wang, Mohammad Ghavamzadeh, Amir-massoud Farahmand:
Operator Splitting Value Iteration. CoRR abs/2211.13937 (2022) - [i60]Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, Mohammad Ghavamzadeh:
Multi-Task Off-Policy Learning from Bandit Feedback. CoRR abs/2212.04720 (2022) - 2021
- [j17]Moloud Abdar
, Farhad Pourpanah
, Sadiq Hussain
, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul W. Fieguth
, Xiaochun Cao
, Abbas Khosravi
, U. Rajendra Acharya, Vladimir Makarenkov
, Saeid Nahavandi:
A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 76: 243-297 (2021) - [j16]Shubhanshu Shekhar
, Mohammad Ghavamzadeh
, Tara Javidi
:
Active Learning for Classification With Abstention. IEEE J. Sel. Areas Inf. Theory 2(2): 705-719 (2021) - [c83]Ravi Tej Akella, Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Animashree Anandkumar, Yisong Yue:
Deep Bayesian Quadrature Policy Optimization. AAAI 2021: 6600-6608 - [c82]Aldo Pacchiano, Mohammad Ghavamzadeh, Peter L. Bartlett, Heinrich Jiang:
Stochastic Bandits with Linear Constraints. AISTATS 2021: 2827-2835 - [c81]Brandon Cui, Yinlam Chow, Mohammad Ghavamzadeh:
Control-Aware Representations for Model-based Reinforcement Learning. ICLR 2021 - [c80]Amir Massoud Farahmand, Mohammad Ghavamzadeh:
PID Accelerated Value Iteration Algorithm. ICML 2021: 3143-3153 - [c79]Yinlam Chow, Brandon Cui, Moonkyung Ryu, Mohammad Ghavamzadeh:
Variational Model-based Policy Optimization. IJCAI 2021: 2292-2299 - [c78]Arash Mehrjou, Mohammad Ghavamzadeh, Bernhard Schölkopf:
Neural Lyapunov Redesign. L4DC 2021: 459-470 - [c77]Shubhanshu Shekhar, Greg Fields, Mohammad Ghavamzadeh, Tara Javidi
:
Adaptive Sampling for Minimax Fair Classification. NeurIPS 2021: 24535-24544 - [i59]Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi:
Adaptive Sampling for Minimax Fair Classification. CoRR abs/2103.00755 (2021) - [i58]Mohammad Javad Azizi, Branislav Kveton, Mohammad Ghavamzadeh:
Fixed-Budget Best-Arm Identification in Contextual Bandits: A Static-Adaptive Algorithm. CoRR abs/2106.04763 (2021) - [i57]Ahmadreza Moradipari, Yasin Abbasi-Yadkori, Mahnoosh Alizadeh, Mohammad Ghavamzadeh:
Parameter and Feature Selection in Stochastic Linear Bandits. CoRR abs/2106.05378 (2021) - [i56]Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh, Craig Boutilier:
Thompson Sampling with a Mixture Prior. CoRR abs/2106.05608 (2021) - [i55]Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh:
Hierarchical Bayesian Bandits. CoRR abs/2111.06929 (2021) - 2020
- [c76]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Improved Algorithms for Conservative Exploration in Bandits. AAAI 2020: 3962-3969 - [c75]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Conservative Exploration in Reinforcement Learning. AISTATS 2020: 1431-1441 - [c74]Branislav Kveton, Manzil Zaheer, Csaba Szepesvári, Lihong Li, Mohammad Ghavamzadeh, Craig Boutilier:
Randomized Exploration in Generalized Linear Bandits. AISTATS 2020: 2066-2076 - [c73]Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:
Safe Policy Learning for Continuous Control. CoRL 2020: 801-821 - [c72]Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, Hung Bui:
Prediction, Consistency, Curvature: Representation Learning for Locally-Linear Control. ICLR 2020 - [c71]Shubhanshu Shekhar, Tara Javidi
, Mohammad Ghavamzadeh:
Adaptive Sampling for Estimating Probability Distributions. ICML 2020: 8687-8696 - [c70]Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung H. Bui:
Predictive Coding for Locally-Linear Control. ICML 2020: 8862-8871 - [c69]Manan Tomar, Yonathan Efroni, Mohammad Ghavamzadeh:
Multi-step Greedy Reinforcement Learning Algorithms. ICML 2020: 9504-9513 - [c68]Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi
:
Active Learning for Classification with Abstention. ISIT 2020: 2801-2806 - [c67]Yonathan Efroni, Mohammad Ghavamzadeh, Shie Mannor:
Online Planning with Lookahead Policies. NeurIPS 2020 - [c66]Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Model Estimation in Markov Decision Processes. UAI 2020: 1019-1028 - [i54]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Conservative Exploration in Reinforcement Learning. CoRR abs/2002.03218 (2020) - [i53]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Improved Algorithms for Conservative Exploration in Bandits. CoRR abs/2002.03221 (2020) - [i52]Romina Abachi, Mohammad Ghavamzadeh, Amir-massoud Farahmand:
Policy-Aware Model Learning for Policy Gradient Methods. CoRR abs/2003.00030 (2020) - [i51]Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung H. Bui:
Predictive Coding for Locally-Linear Control. CoRR abs/2003.01086 (2020) - [i50]Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Model Estimation in Markov Decision Processes. CoRR abs/2003.03297 (2020) - [i49]Manan Tomar, Lior Shani, Yonathan Efroni, Mohammad Ghavamzadeh:
Mirror Descent Policy Optimization. CoRR abs/2005.09814 (2020) - [i48]Arash Mehrjou, Mohammad Ghavamzadeh, Bernhard Schölkopf:
Automatic Policy Synthesis to Improve the Safety of Nonlinear Dynamical Systems. CoRR abs/2006.03947 (2020) - [i47]Bo Liu, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan, Marek Petrik:
Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity. CoRR abs/2006.03976 (2020) - [i46]Yinlam Chow, Brandon Cui, Moonkyung Ryu, Mohammad Ghavamzadeh:
Variational Model-based Policy Optimization. CoRR abs/2006.05443 (2020) - [i45]Aldo Pacchiano, Mohammad Ghavamzadeh, Peter L. Bartlett, Heinrich Jiang:
Stochastic Bandits with Linear Constraints. CoRR abs/2006.10185 (2020) - [i44]Brandon Cui, Yinlam Chow, Mohammad Ghavamzadeh:
Control-Aware Representations for Model-based Reinforcement Learning. CoRR abs/2006.13408 (2020) - [i43]Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik:
Finite-Sample Analysis of GTD Algorithms. CoRR abs/2006.14364 (2020) - [i42]Ravi Tej Akella, Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Anima Anandkumar, Yisong Yue:
Deep Bayesian Quadrature Policy Optimization. CoRR abs/2006.15637 (2020) - [i41]Daoming Lyu, Qi Qi, Mohammad Ghavamzadeh, Hengshuai Yao, Tianbao Yang, Bo Liu:
Variance-Reduced Off-Policy Memory-Efficient Policy Search. CoRR abs/2009.06548 (2020) - [i40]Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul W. Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra Acharya, Vladimir Makarenkov, Saeid Nahavandi:
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. CoRR abs/2011.06225 (2020) - [i39]Elita A. Lobo, Mohammad Ghavamzadeh, Marek Petrik:
Soft-Robust Algorithms for Handling Model Misspecification. CoRR abs/2011.14495 (2020) - [i38]Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, Mohammad Ghavamzadeh, Craig Boutilier:
Non-Stationary Latent Bandits. CoRR abs/2012.00386 (2020)
2010 – 2019
- 2019
- [c65]Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, Marco Pavone:
Risk-Sensitive Generative Adversarial Imitation Learning. AISTATS 2019: 2154-2163 - [c64]Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis:
Optimizing over a Restricted Policy Class in MDPs. AISTATS 2019: 3042-3050 - [c63]Branislav Kveton, Csaba Szepesvári, Sharan Vaswani, Zheng Wen, Tor Lattimore, Mohammad Ghavamzadeh:
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits. ICML 2019: 3601-3610 - [c62]Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, Craig Boutilier:
Perturbed-History Exploration in Stochastic Multi-Armed Bandits. IJCAI 2019: 2786-2793 - [c61]Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, Shie Mannor:
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies. NeurIPS 2019: 12203-12213 - [c60]Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, Craig Boutilier:
Perturbed-History Exploration in Stochastic Linear Bandits. UAI 2019: 530-540 - [i37]Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, Edgar A. Duéñez-Guzmán:
Lyapunov-based Safe Policy Optimization for Continuous Control. CoRR abs/1901.10031 (2019) - [i36]Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, Craig Boutilier:
Perturbed-History Exploration in Stochastic Multi-Armed Bandits. CoRR abs/1902.10089 (2019) - [i35]Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, Craig Boutilier:
Perturbed-History Exploration in Stochastic Linear Bandits. CoRR abs/1903.09132 (2019) - [i34]Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi:
Binary Classification with Bounded Abstention Rate. CoRR abs/1905.09561 (2019) - [i33]Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, Shie Mannor:
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies. CoRR abs/1905.11527 (2019) - [i32]Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi:
Active Learning for Binary Classification with Abstention. CoRR abs/1906.00303 (2019) - [i31]Branislav Kveton, Manzil Zaheer, Csaba Szepesvári, Lihong Li, Mohammad Ghavamzadeh, Craig Boutilier:
Randomized Exploration in Generalized Linear Bandits. CoRR abs/1906.08947 (2019) - [i30]Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, Hung Bui:
Prediction, Consistency, Curvature: Representation Learning for Locally-Linear Control. CoRR abs/1909.01506 (2019) - [i29]Yonathan Efroni, Mohammad Ghavamzadeh, Shie Mannor:
Multi-Step Greedy and Approximate Real Time Dynamic Programming. CoRR abs/1909.04236 (2019) - [i28]Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, Joelle Pineau:
Benchmarking Batch Deep Reinforcement Learning Algorithms. CoRR abs/1910.01708 (2019) - [i27]Manan Tomar, Yonathan Efroni, Mohammad Ghavamzadeh:
Multi-step Greedy Policies in Model-Free Deep Reinforcement Learning. CoRR abs/1910.02919 (2019) - [i26]Shubhanshu Shekhar, Mohammad Ghavamzadeh, Tara Javidi:
Adaptive Sampling for Estimating Multiple Probability Distributions. CoRR abs/1910.12406 (2019) - 2018
- [j15]Bo Liu, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan, Marek Petrik:
Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity. J. Artif. Intell. Res. 63: 461-494 (2018) - [c59]Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi:
Robust Locally-Linear Controllable Embedding. AISTATS 2018: 1751-1759 - [c58]Yinlam Chow, Ofir Nachum, Mohammad Ghavamzadeh:
Path Consistency Learning in Tsallis Entropy Regularized MDPs. ICML 2018: 978-987 - [c57]Mehrdad Farajtabar, Yinlam Chow, Mohammad Ghavamzadeh:
More Robust Doubly Robust Off-policy Evaluation. ICML 2018: 1446-1455 - [c56]Yahel David, Balázs Szörényi, Mohammad Ghavamzadeh, Shie Mannor, Nahum Shimkin:
PAC Bandits with Risk Constraints. ISAIM 2018 - [c55]Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu
, Daesub Yoon:
A Block Coordinate Ascent Algorithm for Mean-Variance Optimization. NeurIPS 2018: 1073-1083 - [c54]Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:
A Lyapunov-based Approach to Safe Reinforcement Learning. NeurIPS 2018: 8103-8112 - [i25]Mehrdad Farajtabar, Yinlam Chow, Mohammad Ghavamzadeh:
More Robust Doubly Robust Off-policy Evaluation. CoRR abs/1802.03493 (2018) - [i24]Ofir Nachum, Yinlam Chow, Mohammad Ghavamzadeh:
Path Consistency Learning in Tsallis Entropy Regularized MDPs. CoRR abs/1802.03501 (2018) - [i23]Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis:
Optimizing over a Restricted Policy Class in Markov Decision Processes. CoRR abs/1802.09646 (2018) - [i22]Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:
A Lyapunov-based Approach to Safe Reinforcement Learning. CoRR abs/1805.07708 (2018) - [i21]Jonathan Lacotte, Yinlam Chow, Mohammad Ghavamzadeh, Marco Pavone:
Risk-Sensitive Generative Adversarial Imitation Learning. CoRR abs/1808.04468 (2018) - [i20]Bo Liu, Tengyang Xie, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu, Daesub Yoon:
A Block Coordinate Ascent Algorithm for Mean-Variance Optimization. CoRR abs/1809.02292 (2018) - [i19]Branislav Kveton, Csaba Szepesvári, Zheng Wen, Mohammad Ghavamzadeh, Tor Lattimore:
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits. CoRR abs/1811.05154 (2018) - 2017
- [j14]Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, Marco Pavone:
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria. J. Mach. Learn. Res. 18: 167:1-167:51 (2017) - [j13]Aviv Tamar, Yinlam Chow
, Mohammad Ghavamzadeh, Shie Mannor
:
Sequential Decision Making With Coherent Risk. IEEE Trans. Autom. Control. 62(7): 3323-3338 (2017) - [c53]Philip S. Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Durugkar, Emma Brunskill:
Predictive Off-Policy Policy Evaluation for Nonstationary Decision Problems, with Applications to Digital Marketing. AAAI 2017: 4740-4745 - [c52]Ian Gemp, Georgios Theocharous, Mohammad Ghavamzadeh:
Automated Data Cleansing through Meta-Learning. AAAI 2017: 4760-4761 - [c51]Alan Malek, Sumeet Katariya, Yinlam Chow, Mohammad Ghavamzadeh:
Sequential Multiple Hypothesis Testing with Type I Error Control. AISTATS 2017: 1468-1476 - [c50]Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Learning for Accurate Estimation of Linear Models. ICML 2017: 2931-2939 - [c49]Rui Shu, Hung Hai Bui, Mohammad Ghavamzadeh:
Bottleneck Conditional Density Estimation. ICML 2017: 3164-3172 - [c48]Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, Mark Schmidt:
Model-Independent Online Learning for Influence Maximization. ICML 2017: 3530-3539 - [c47]Masrour Zoghi, Tomás Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvári, Zheng Wen:
Online Learning to Rank in Stochastic Click Models. ICML 2017: 4199-4208 - [c46]Sougata Chaudhuri, Georgios Theocharous, Mohammad Ghavamzadeh:
Importance of Recommendation Policy Space in Addressing Click Sparsity in Personalized Advertisement Display. MLDM 2017: 32-46 - [c45]Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi, Benjamin Van Roy:
Conservative Contextual Linear Bandits. NIPS 2017: 3910-3919 - [i18]Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, Mark Schmidt:
Diffusion Independent Semi-Bandit Influence Maximization. CoRR abs/1703.00557 (2017) - [i17]Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Learning for Accurate Estimation of Linear Models. CoRR abs/1703.00579 (2017) - [i16]Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvári, Tomás Tunys, Zheng Wen, Masrour Zoghi:
Online Learning to Rank in Stochastic Click Models. CoRR abs/1703.02527 (2017) - [i15]Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi:
Robust Locally-Linear Controllable Embedding. CoRR abs/1710.05373 (2017) - [i14]Ershad Banijamali, Ahmad Khajenezhad, Ali Ghodsi, Mohammad Ghavamzadeh:
Disentangling Dynamics and Content for Control and Planning. CoRR abs/1711.09165 (2017) - 2016
- [j12]Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos:
Analysis of Classification-based Policy Iteration Algorithms. J. Mach. Learn. Res. 17: 19:1-19:30 (2016) - [j11]Mohammad Ghavamzadeh, Yaakov Engel, Michal Valko:
Bayesian Policy Gradient and Actor-Critic Algorithms. J. Mach. Learn. Res. 17: 66:1-66:53 (2016) - [j10]Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, Shie Mannor:
Regularized Policy Iteration with Nonparametric Function Spaces. J. Mach. Learn. Res. 17: 139:1-139:66 (2016) - [j9]Prashanth L. A.
, Mohammad Ghavamzadeh:
Variance-constrained actor-critic algorithms for discounted and average reward MDPs. Mach. Learn. 105(3): 367-417 (2016) - [c44]Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter L. Bartlett:
Improved Learning Complexity in Combinatorial Pure Exploration Bandits. AISTATS 2016: 1004-1012 - [c43]Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik:
Proximal Gradient Temporal Difference Learning Algorithms. IJCAI 2016: 4195-4199 - [c42]Mohammad Ghavamzadeh, Marek Petrik, Yinlam Chow:
Safe Policy Improvement by Minimizing Robust Baseline Regret. NIPS 2016: 2298-2306 - [c41]Branislav Kveton, Hung Bui, Mohammad Ghavamzadeh, Georgios Theocharous, S. Muthukrishnan, Siqi Sun:
Graphical Model Sketch. ECML/PKDD (1) 2016: 81-97 - [i13]Branislav Kveton, Hung Bui, Mohammad Ghavamzadeh, Georgios Theocharous, S. Muthukrishnan, Siqi Sun:
Graphical Model Sketch. CoRR abs/1602.03105 (2016) - [i12]Sougata Chaudhuri, Georgios Theocharous, Mohammad Ghavamzadeh:
Personalized Advertisement Recommendation: A Ranking Approach to Address the Ubiquitous Click Sparsity Problem. CoRR abs/1603.01870 (2016) - [i11]