


Остановите войну!
for scientists:


default search action
Joost van de Weijer 0001
Person information

- affiliation: Universitat Autònoma de Barcelona, Spain
Other persons with the same name
- Joost van de Weijer 0002
— Lund University, Centre for Languages and Literature, Sweden
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c108]Dipam Goswami, René Schuster, Joost van de Weijer, Didier Stricker:
Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. WACV 2023: 3194-3203 - [i89]Mert Kilickaya, Joost van de Weijer, Yuki M. Asano:
Towards Label-Efficient Incremental Learning: A Survey. CoRR abs/2302.00353 (2023) - [i88]Dawid Rymarczyk, Joost van de Weijer, Bartosz Zielinski, Bartlomiej Twardowski:
ICICLE: Interpretable Class Incremental Continual Learning. CoRR abs/2303.07811 (2023) - 2022
- [c107]Kai Wang, Chenshen Wu, Andy Bagdanov, Xialei Liu, Shiqi Yang, Shangling Jui, Joost van de Weijer:
Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification. BMVC 2022: 38 - [c106]Kai Wang, Fei Yang, Joost van de Weijer:
Attention Distillation: self-supervised vision transformer students need more guidance. BMVC 2022: 666 - [c105]Bojana Gajic, Ariel Amato, Ramon Baldrich, Joost van de Weijer, Carlo Gatta:
Area Under the ROC Curve Maximization for Metric Learning. CVPR Workshops 2022: 2806-2815 - [c104]Kai Wang, Xialei Liu, Andy Bagdanov, Luis Herranz, Shangling Jui, Joost van de Weijer:
Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition. CVPR Workshops 2022: 3728-3738 - [c103]Francesco Pelosin, Saurav Jha, Andrea Torsello, Bogdan Raducanu, Joost van de Weijer:
Towards Exemplar-Free Continual Learning in Vision Transformers: an Account of Attention, Functional and Weight Regularization. CVPR Workshops 2022: 3819-3828 - [c102]Héctor Laria Mantecon, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu:
Transferring Unconditional to Conditional GANs with Hyper-Modulation. CVPR Workshops 2022: 3839-3848 - [c101]Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew D. Bagdanov, Joost van de Weijer:
Continually Learning Self-Supervised Representations with Projected Functional Regularization. CVPR Workshops 2022: 3866-3876 - [c100]Aitor Alvarez-Gila, Joost van de Weijer, Yaxing Wang, Estíbaliz Garrote:
MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation. ICIP 2022: 1166-1170 - [c99]Yaxing Wang, Joost van de Weijer, Lu Yu, Shangling Jui:
Distilling GANs with Style-Mixed Triplets for X2I Translation with Limited Data. ICLR 2022 - [c98]Vacit Oguz Yazici, Joost van de Weijer, Longlong Yu:
Visual Transformers with Primal Object Queries for Multi-Label Image Classification. ICPR 2022: 3014-3020 - [c97]Javad Zolfaghari Bengar, Joost van de Weijer, Laura Lopez-Fuentes, Bogdan Raducanu:
Class-Balanced Active Learning for Image Classification. WACV 2022: 3707-3716 - [i87]Vacit Oguz Yazici, Longlong Yu, Arnau Ramisa, Luis Herranz, Joost van de Weijer:
Main Product Detection with Graph Networks for Fashion. CoRR abs/2201.10431 (2022) - [i86]Simone Zini, Marco Buzzelli, Bartlomiej Twardowski, Joost van de Weijer:
Planckian jitter: enhancing the color quality of self-supervised visual representations. CoRR abs/2202.07993 (2022) - [i85]Francesco Pelosin, Saurav Jha, Andrea Torsello, Bogdan Raducanu, Joost van de Weijer:
Towards Exemplar-Free Continual Learning in Vision Transformers: an Account of Attention, Functional and Weight Regularization. CoRR abs/2203.13167 (2022) - [i84]Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, Joost van de Weijer:
Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation. CoRR abs/2205.04183 (2022) - [i83]Aitor Alvarez-Gila, Joost van de Weijer, Yaxing Wang, Estíbaliz Garrote:
MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation. CoRR abs/2205.15452 (2022) - [i82]Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, Joost van de Weijer:
One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift. CoRR abs/2206.03600 (2022) - [i81]Kai Wang, Fei Yang, Joost van de Weijer:
Attention Distillation: self-supervised vision transformer students need more guidance. CoRR abs/2210.00944 (2022) - [i80]Kai Wang, Chenshen Wu, Andy Bagdanov, Xialei Liu, Shiqi Yang, Shangling Jui, Joost van de Weijer:
Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification. CoRR abs/2210.01600 (2022) - [i79]Dipam Goswami, René Schuster, Joost van de Weijer, Didier Stricker:
Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. CoRR abs/2210.07207 (2022) - [i78]Marco Cotogni
, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer:
Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers. CoRR abs/2211.12292 (2022) - 2021
- [j46]Yaxing Wang, Abel Gonzalez-Garcia, Luis Herranz
, Joost van de Weijer:
Controlling biases and diversity in diverse image-to-image translation. Comput. Vis. Image Underst. 202: 103082 (2021) - [j45]Carola Figueroa Flores, David Berga
, Joost van de Weijer
, Bogdan Raducanu:
Saliency for free: Saliency prediction as a side-effect of object recognition. Pattern Recognit. Lett. 150: 1-7 (2021) - [j44]Kai Wang, Joost van de Weijer, Luis Herranz
:
ACAE-REMIND for online continual learning with compressed feature replay. Pattern Recognit. Lett. 150: 122-129 (2021) - [j43]Shiqi Yang
, Kai Wang, Luis Herranz
, Joost van de Weijer
:
On Implicit Attribute Localization for Generalized Zero-Shot Learning. IEEE Signal Process. Lett. 28: 872-876 (2021) - [j42]Sudeep Katakol
, Basem Elbarashy, Luis Herranz
, Joost van de Weijer
, Antonio M. López
:
Distributed Learning and Inference With Compressed Images. IEEE Trans. Image Process. 30: 3069-3083 (2021) - [c96]Kai Wang, Xialei Liu, Luis Herranz, Joost van de Weijer:
HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification. BMVC 2021: 119 - [c95]Javad Zolfaghari Bengar
, Bogdan Raducanu
, Joost van de Weijer:
When Deep Learners Change Their Mind: Learning Dynamics for Active Learning. CAIP (1) 2021: 403-413 - [c94]Marc Masana
, Tinne Tuytelaars
, Joost van de Weijer:
Ternary Feature Masks: Zero-Forgetting for Task-Incremental Learning. CVPR Workshops 2021: 3570-3579 - [c93]Vincenzo Lomonaco
, Lorenzo Pellegrini
, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De Lange, Marc Masana
, Jary Pomponi
, Gido M. van de Ven, Martin Mundt
, Qi She, Keiland Cooper
, Jeremy Forest, Eden Belouadah, Simone Calderara, German Ignacio Parisi, Fabio Cuzzolin, Andreas S. Tolias, Simone Scardapane, Luca Antiga, Subutai Ahmad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars
, Davide Bacciu, Davide Maltoni:
Avalanche: An End-to-End Library for Continual Learning. CVPR Workshops 2021: 3600-3610 - [c92]Kai Wang, Luis Herranz
, Joost van de Weijer:
Continual Learning in Cross-Modal Retrieval. CVPR Workshops 2021: 3628-3638 - [c91]Shiqi Yang
, Yaxing Wang, Joost van de Weijer, Luis Herranz, Shangling Jui:
Generalized Source-free Domain Adaptation. ICCV 2021: 8958-8967 - [c90]Yaxing Wang, Héctor Laria Mantecon, Joost van de Weijer, Laura Lopez-Fuentes, Bogdan Raducanu:
TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets. ICCV 2021: 13990-13999 - [c89]Javad Zolfaghari Bengar, Joost van de Weijer, Bartlomiej Twardowski
, Bogdan Raducanu:
Reducing Label Effort: Self-Supervised meets Active Learning. ICCVW 2021: 1631-1639 - [c88]Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, Shangling Jui:
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation. NeurIPS 2021: 29393-29405 - [c87]Carola Figueroa Flores, Bogdan Raducanu, David Berga
, Joost van de Weijer:
Hallucinating Saliency Maps for Fine-grained Image Classification for Limited Data Domains. VISIGRAPP (4: VISAPP) 2021: 163-171 - [i77]Akshita Gupta, Sanath Narayan, Salman H. Khan, Fahad Shahbaz Khan, Ling Shao, Joost van de Weijer:
Generative Multi-Label Zero-Shot Learning. CoRR abs/2101.11606 (2021) - [i76]Shiqi Yang, Kai Wang, Luis Herranz, Joost van de Weijer:
On Implicit Attribute Localization for Generalized Zero-Shot Learning. CoRR abs/2103.04704 (2021) - [i75]Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M. van de Ven, Martin Mundt, Qi She, Keiland Cooper
, Jeremy Forest, Eden Belouadah, Simone Calderara, German Ignacio Parisi, Fabio Cuzzolin, Andreas S. Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, Davide Maltoni:
Avalanche: an End-to-End Library for Continual Learning. CoRR abs/2104.00405 (2021) - [i74]Kai Wang, Luis Herranz, Joost van de Weijer:
Continual learning in cross-modal retrieval. CoRR abs/2104.06806 (2021) - [i73]Yaxing Wang, Abel Gonzalez-Garcia, Chenshen Wu, Luis Herranz, Fahad Shahbaz Khan, Shangling Jui, Joost van de Weijer:
MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains. CoRR abs/2104.13742 (2021) - [i72]Yaxing Wang, Héctor Laria Mantecon, Joost van de Weijer, Laura Lopez-Fuentes, Bogdan Raducanu:
TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets. CoRR abs/2105.06219 (2021) - [i71]Kai Wang, Luis Herranz, Joost van de Weijer:
ACAE-REMIND for Online Continual Learning with Compressed Feature Replay. CoRR abs/2105.08595 (2021) - [i70]Albin Soutif-Cormerais, Marc Masana, Joost van de Weijer, Bartlomiej Twardowski:
On the importance of cross-task features for class-incremental learning. CoRR abs/2106.11930 (2021) - [i69]Carola Figueroa Flores, David Berga, Joost van de Weijer, Bogdan Raducanu:
Saliency for free: Saliency prediction as a side-effect of object recognition. CoRR abs/2107.09628 (2021) - [i68]Javad Zolfaghari Bengar, Bogdan Raducanu, Joost van de Weijer:
When Deep Learners Change Their Mind: Learning Dynamics for Active Learning. CoRR abs/2107.14707 (2021) - [i67]Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, Shangling Jui:
Generalized Source-free Domain Adaptation. CoRR abs/2108.01614 (2021) - [i66]Javad Zolfaghari Bengar, Joost van de Weijer, Bartlomiej Twardowski, Bogdan Raducanu:
Reducing Label Effort: Self-Supervised meets Active Learning. CoRR abs/2108.11458 (2021) - [i65]Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, Shangling Jui:
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation. CoRR abs/2110.04202 (2021) - [i64]Javad Zolfaghari Bengar, Joost van de Weijer, Laura Lopez-Fuentes, Bogdan Raducanu:
Class-Balanced Active Learning for Image Classification. CoRR abs/2110.04543 (2021) - [i63]Kai Wang, Xialei Liu, Luis Herranz, Joost van de Weijer:
HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification. CoRR abs/2110.11148 (2021) - [i62]Kai Wang, Xialei Liu, Andrew D. Bagdanov, Luis Herranz, Shangling Jui, Joost van de Weijer:
Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition. CoRR abs/2111.04993 (2021) - [i61]Héctor Laria Mantecon, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu:
Hyper-GAN: Transferring Unconditional to Conditional GANs with HyperNetworks. CoRR abs/2112.02219 (2021) - [i60]Vacit Oguz Yazici, Joost van de Weijer, Longlong Yu:
Visual Transformers with Primal Object Queries for Multi-Label Image Classification. CoRR abs/2112.05485 (2021) - [i59]Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew D. Bagdanov, Joost van de Weijer:
Continually Learning Self-Supervised Representations with Projected Functional Regularization. CoRR abs/2112.15022 (2021) - 2020
- [j41]Fei Yang
, Yongmei Cheng, Joost van de Weijer, Mikhail G. Mozerov:
Improved Discrete Optical Flow Estimation With Triple Image Matching Cost. IEEE Access 8: 17093-17102 (2020) - [j40]Yaxing Wang
, Luis Herranz
, Joost van de Weijer
:
Mix and Match Networks: Cross-Modal Alignment for Zero-Pair Image-to-Image Translation. Int. J. Comput. Vis. 128(12): 2849-2872 (2020) - [j39]Rahma Kalboussi
, Aymen Azaza, Joost van de Weijer
, Mehrez Abdellaoui, Ali Douik
:
Object proposals for salient object segmentation in videos. Multim. Tools Appl. 79(13-14): 8677-8693 (2020) - [j38]Gabriel Villalonga
, Joost van de Weijer
, Antonio M. López
:
Recognizing New Classes with Synthetic Data in the Loop: Application to Traffic Sign Recognition. Sensors 20(3): 583 (2020) - [j37]Aymen Azaza
, Joost van de Weijer, Ali Douik
, Javad Zolfaghari Bengar, Marc Masana
:
Saliency from High-Level Semantic Image Features. SN Comput. Sci. 1(4): 200 (2020) - [j36]Fei Yang
, Luis Herranz
, Joost van de Weijer, José Antonio Iglesias Guitián, Antonio M. López
, Mikhail G. Mozerov
:
Variable Rate Deep Image Compression With Modulated Autoencoder. IEEE Signal Process. Lett. 27: 331-335 (2020) - [c86]Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D. Bagdanov, Shangling Jui, Joost van de Weijer:
Generative Feature Replay For Class-Incremental Learning. CVPR Workshops 2020: 915-924 - [c85]Yaxing Wang, Salman H. Khan, Abel Gonzalez-Garcia, Joost van de Weijer, Fahad Shahbaz Khan:
Semi-Supervised Learning for Few-Shot Image-to-Image Translation. CVPR 2020: 4452-4461 - [c84]Lu Yu, Bartlomiej Twardowski
, Xialei Liu, Luis Herranz
, Kai Wang, Yongmei Cheng, Shangling Jui, Joost van de Weijer:
Semantic Drift Compensation for Class-Incremental Learning. CVPR 2020: 6980-6989 - [c83]Yaxing Wang, Abel Gonzalez-Garcia, David Berga
, Luis Herranz, Fahad Shahbaz Khan, Joost van de Weijer:
MineGAN: Effective Knowledge Transfer From GANs to Target Domains With Few Images. CVPR 2020: 9329-9338 - [c82]Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski
, Joost van de Weijer:
Orderless Recurrent Models for Multi-Label Classification. CVPR 2020: 13437-13446 - [c81]Minghan Li
, Xialei Liu, Joost van de Weijer, Bogdan Raducanu:
Learning to Rank for Active Learning: A Listwise Approach. ICPR 2020: 5587-5594 - [c80]Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer:
RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning. NeurIPS 2020 - [c79]Yaxing Wang, Lu Yu, Joost van de Weijer:
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. NeurIPS 2020 - [i58]Mikel Menta, Adriana Romero, Joost van de Weijer:
Learning to adapt class-specific features across domains for semantic segmentation. CoRR abs/2001.08311 (2020) - [i57]Marc Masana
, Tinne Tuytelaars, Joost van de Weijer:
Ternary Feature Masks: continual learning without any forgetting. CoRR abs/2001.08714 (2020) - [i56]Yaxing Wang, Salman H. Khan, Abel Gonzalez-Garcia, Joost van de Weijer, Fahad Shahbaz Khan:
Semi-supervised Learning for Few-shot Image-to-Image Translation. CoRR abs/2003.13853 (2020) - [i55]Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, Joost van de Weijer:
Semantic Drift Compensation for Class-Incremental Learning. CoRR abs/2004.00440 (2020) - [i54]Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz
, Bogdan Raducanu, Andrew D. Bagdanov, Shangling Jui, Joost van de Weijer:
Generative Feature Replay For Class-Incremental Learning. CoRR abs/2004.09199 (2020) - [i53]Sudeep Katakol, Basem Elbarashy, Luis Herranz
, Joost van de Weijer, Antonio M. López:
Distributed Learning and Inference with Compressed Images. CoRR abs/2004.10497 (2020) - [i52]Shiqi Yang, Kai Wang, Luis Herranz, Joost van de Weijer:
Simple and effective localized attribute representations for zero-shot learning. CoRR abs/2006.05938 (2020) - [i51]Kai Wang, Luis Herranz, Anjan Dutta, Joost van de Weijer:
Bookworm continual learning: beyond zero-shot learning and continual learning. CoRR abs/2006.15176 (2020) - [i50]Marc Masana
, Bartlomiej Twardowski, Joost van de Weijer:
On Class Orderings for Incremental Learning. CoRR abs/2007.02145 (2020) - [i49]Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer:
RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning. CoRR abs/2007.06271 (2020) - [i48]David Berga, Marc Masana
, Joost van de Weijer:
Disentanglement of Color and Shape Representations for Continual Learning. CoRR abs/2007.06356 (2020) - [i47]Carola Figueroa Flores, Bogdan Raducanu, David Berga, Joost van de Weijer:
Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains. CoRR abs/2007.12562 (2020) - [i46]Minghan Li, Xialei Liu, Joost van de Weijer, Bogdan Raducanu:
Learning to Rank for Active Learning: A Listwise Approach. CoRR abs/2008.00078 (2020) - [i45]Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, Shangling Jui:
Unsupervised Domain Adaptation without Source Data by Casting a BAIT. CoRR abs/2010.12427 (2020) - [i44]Marc Masana
, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, Joost van de Weijer:
Class-incremental learning: survey and performance evaluation. CoRR abs/2010.15277 (2020) - [i43]Yaxing Wang, Lu Yu, Joost van de Weijer:
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. CoRR abs/2011.05867 (2020) - [i42]Lu Yu, Xialei Liu, Joost van de Weijer:
Self-Training for Class-Incremental Semantic Segmentation. CoRR abs/2012.03362 (2020)
2010 – 2019
- 2019
- [j35]Aitor Alvarez-Gila, Adrian Galdran, Estíbaliz Garrote
, Joost van de Weijer
:
Self-supervised blur detection from synthetically blurred scenes. Image Vis. Comput. 92 (2019) - [j34]Xialei Liu
, Joost van de Weijer
, Andrew D. Bagdanov:
Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank. IEEE Trans. Pattern Anal. Mach. Intell. 41(8): 1862-1878 (2019) - [j33]Carola Figueroa Flores, Abel Gonzalez-Garcia
, Joost van de Weijer
, Bogdan Raducanu:
Saliency for fine-grained object recognition in domains with scarce training data. Pattern Recognit. 94: 62-73 (2019) - [j32]Mikhail G. Mozerov
, Fei Yang
, Joost van de Weijer
:
Sparse Data Interpolation Using the Geodesic Distance Affinity Space. IEEE Signal Process. Lett. 26(6): 943-947 (2019) - [j31]Lichao Zhang
, Abel Gonzalez-Garcia
, Joost van de Weijer
, Martin Danelljan, Fahad Shahbaz Khan
:
Synthetic Data Generation for End-to-End Thermal Infrared Tracking. IEEE Trans. Image Process. 28(4): 1837-1850 (2019) - [j30]Mikhail G. Mozerov
, Joost van de Weijer
:
One-View Occlusion Detection for Stereo Matching With a Fully Connected CRF Model. IEEE Trans. Image Process. 28(6): 2936-2947 (2019) - [c78]Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng, Arnau Ramisa:
Learning Metrics From Teachers: Compact Networks for Image Embedding. CVPR 2019: 2907-2916 - [c77]Hamed H. Aghdam, Abel Gonzalez-Garcia, Antonio M. López, Joost van de Weijer:
Active Learning for Deep Detection Neural Networks. ICCV 2019: 3671-3679 - [c76]Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan, Fahad Shahbaz Khan
:
Learning the Model Update for Siamese Trackers. ICCV 2019: 4009-4018 - [c75]Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel Villalonga, Bogdan Raducanu, Hamed Habibi Aghdam, Mikhail Mozerov, Antonio M. López, Joost van de Weijer:
Temporal Coherence for Active Learning in Videos. ICCV Workshops 2019: 914-923 - [c74]Matej Kristan, Amanda Berg, Linyu Zheng, Litu Rout, Luc Van Gool, Luca Bertinetto, Martin Danelljan, Matteo Dunnhofer
, Meng Ni, Min Young Kim, Ming Tang, Ming-Hsuan Yang
, Abdelrahman Eldesokey, Naveen Paluru, Niki Martinel, Pengfei Xu, Pengfei Zhang, Pengkun Zheng, Pengyu Zhang, Philip H. S. Torr, Qi Zhang, Qiang Wang, Qing Guo, Radu Timofte, Jani Käpylä, Rama Krishna Sai Subrahmanyam Gorthi, Richard M. Everson, Ruize Han, Ruohan Zhang, Shan You, Shao-Chuan Zhao, Shengwei Zhao, Shihu Li, Shikun Li, Shiming Ge, Gustavo Fernández, Shuai Bai, Shuosen Guan, Tengfei Xing, Tianyang Xu, Tianyu Yang, Ting Zhang, Tomás Vojír, Wei Feng, Weiming Hu, Weizhao Wang, Abel Gonzalez-Garcia, Wenjie Tang, Wenjun Zeng, Wenyu Liu, Xi Chen, Xi Qiu, Xiang Bai, Xiao-Jun Wu, Xiaoyun Yang, Xier Chen, Xin Li, Alireza Memarmoghadam
, Xing Sun, Xingyu Chen, Xinmei Tian, Xu Tang, Xuefeng Zhu, Yan Huang, Yanan Chen, Yanchao Lian, Yang Gu, Yang Liu, Andong Lu, Yanjie Chen, Yi Zhang, Yinda Xu, Yingming Wang, Yingping Li, Yu Zhou, Yuan Dong, Yufei Xu, Yunhua Zhang, Yunkun Li, Anfeng He, Zeyu Wang, Zhao Luo, Zhaoliang Zhang, Zhen-Hua Feng, Zhenyu He, Zhichao Song, Zhihao Chen, Zhipeng Zhang, Zhirong Wu, Zhiwei Xiong, Zhongjian Huang, Anton Varfolomieiev
, Zhu Teng, Zihan Ni, Antoni B. Chan, Jirí Matas, Ardhendu Shekhar Tripathi, Arnold W. M. Smeulders, Bala Suraj Pedasingu, Bao Xin Chen, Baopeng Zhang, Baoyuan Wu, Bi Li, Bin He, Bin Yan, Bing Bai, Ales Leonardis, Bing Li, Bo Li, Byeong Hak Kim, Chao Ma, Chen Fang, Chen Qian, Cheng Chen, Chenglong Li, Chengquan Zhang, Chi-Yi Tsai, Michael Felsberg
, Chong Luo, Christian Micheloni, Chunhui Zhang, Dacheng Tao, Deepak Gupta, Dejia Song, Dong Wang, Efstratios Gavves, Eunu Yi, Fahad Shahbaz Khan
, Roman P. Pflugfelder, Fangyi Zhang, Fei Wang, Fei Zhao, George De Ath, Goutam Bhat, Guangqi Chen, Guangting Wang, Guoxuan Li, Hakan Cevikalp, Hao Du, Joni-Kristian Kämäräinen, Haojie Zhao, Hasan Saribas, Ho Min Jung, Hongliang Bai, Hongyuan Yu, Houwen Peng, Huchuan Lu, Hui Li, Jiakun Li, Luka Cehovin Zajc, Jianhua Li, Jianlong Fu, Jie Chen, Jie Gao, Jie Zhao, Jin Tang, Jing Li, Jingjing Wu, Jingtuo Liu, Jinqiao Wang, Ondrej Drbohlav, Jinqing Qi, Jinyue Zhang, John K. Tsotsos, Jong Hyuk Lee, Joost van de Weijer, Josef Kittler, Jun Ha Lee, Junfei Zhuang, Kangkai Zhang, Kangkang Wang, Alan Lukezic, Kenan Dai, Lei Chen, Lei Liu, Leida Guo, Li Zhang, Liang Wang, Liangliang Wang, Lichao Zhang, Lijun Wang, Lijun Zhou:
The Seventh Visual Object Tracking VOT2019 Challenge Results. ICCV Workshops 2019: 2206-2241 - [c73]Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost van de Weijer, Fahad Shahbaz Khan
:
Multi-Modal Fusion for End-to-End RGB-T Tracking. ICCV Workshops 2019: 2252-2261 - [c72]Yaxing Wang, Abel Gonzalez-Garcia, Joost van de Weijer, Luis Herranz
:
SDIT: Scalable and Diverse Cross-domain Image Translation. ACM Multimedia 2019: 1267-1276 - [i41]Mikhail G. Mozerov, Joost van de Weijer:
One-view occlusion detection for stereo matching with a fully connected CRF model. CoRR abs/1901.03852 (2019) - [i40]Xialei Liu, Joost van de Weijer, Andrew D. Bagdanov:
Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank. CoRR abs/1902.06285 (2019) - [i39]Yaxing Wang, Luis Herranz
, Joost van de Weijer:
Mix and match networks: multi-domain alignment for unpaired image-to-image translation. CoRR abs/1903.04294 (2019) - [i38]Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng, Arnau Ramisa:
Learning Metrics from Teachers: Compact Networks for Image Embedding. CoRR abs/1904.03624 (2019) - [i37]Mikhail G. Mozerov, Fei Yang, Joost van de Weijer:
Sparse data interpolation using the geodesic distance affinity space. CoRR abs/1905.02229 (2019) - [i36]Yaxing Wang, Abel Gonzalez-Garcia, Joost van de Weijer, Luis Herranz
:
Controlling biases and diversity in diverse image-to-image translation. CoRR abs/1907.09754 (2019) - [i35]Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan, Fahad Shahbaz Khan:
Learning the Model Update for Siamese Trackers. CoRR abs/1908.00855 (2019) - [i34]Yaxing Wang, Abel Gonzalez-Garcia, Joost van de Weijer, Luis Herranz:
SDIT: Scalable and Diverse Cross-domain Image Translation. CoRR abs/1908.06881 (2019) - [i33]Aitor Alvarez-Gila, Adrian Galdran, Estíbaliz Garrote, Joost van de Weijer:
Self-supervised blur detection from synthetically blurred scenes. CoRR abs/1908.10638 (2019) - [i32]Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost van de Weijer, Fahad Shahbaz Khan:
Multi-Modal Fusion for End-to-End RGB-T Tracking. CoRR abs/1908.11714 (2019) - [i31]Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel Villalonga, Bogdan Raducanu, Hamed H. Aghdam, Mikhail Mozerov, Antonio M. López, Joost van de Weijer:
Temporal Coherence for Active Learning in Videos. CoRR abs/1908.11757 (2019) - [i30]Hamed H. Aghdam, Abel Gonzalez-Garcia, Joost van de Weijer, Antonio M. López:
Active Learning for Deep Detection Neural Networks. CoRR abs/1911.09168 (2019) - [i29]Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski, Joost van de Weijer:
Orderless Recurrent Models for Multi-label Classification. CoRR abs/1911.09996 (2019) - [i28]Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz
, Fahad Shahbaz Khan, Joost van de Weijer:
MineGAN: effective knowledge transfer from GANs to target domains with few images. CoRR abs/1912.05270 (2019) - [i27]