default search action
Shachar Lovett
Person information
- affiliation: University of California at San Diego, La Jolla, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j47]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Realizable Learning is All You Need. TheoretiCS 3 (2024) - [c87]Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni:
Refuting Approaches to the Log-Rank Conjecture for XOR Functions. ICALP 2024: 82:1-82:11 - [c86]Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, Raghu Meka:
New Graph Decompositions and Combinatorial Boolean Matrix Multiplication Algorithms. STOC 2024: 935-943 - [c85]Zander Kelley, Shachar Lovett, Raghu Meka:
Explicit Separations between Randomized and Deterministic Number-on-Forehead Communication. STOC 2024: 1299-1310 - [i147]Michael Jaber, Shachar Lovett, Anthony Ostuni:
Corners in Quasirandom Groups via Sparse Mixing. CoRR abs/2411.02702 (2024) - [i146]Michael Jaber, Shachar Lovett, Anthony Ostuni:
Corners in Quasirandom Groups via Sparse Mixing. Electron. Colloquium Comput. Complex. TR24 (2024) - 2023
- [j46]Abhishek Bhowmick, Shachar Lovett:
Bias vs Structure of Polynomials in Large Fields, and Applications in Information Theory. IEEE Trans. Inf. Theory 69(2): 963-977 (2023) - [c84]Sihan Liu, Gaurav Mahajan, Daniel Kane, Shachar Lovett, Gellért Weisz, Csaba Szepesvári:
Exponential Hardness of Reinforcement Learning with Linear Function Approximation. COLT 2023: 1588-1617 - [c83]Shachar Lovett, Jiapeng Zhang:
Streaming Lower Bounds and Asymmetric Set-Disjointness. FOCS 2023: 871-882 - [c82]Shachar Lovett, Jiapeng Zhang:
Fractional Certificates for Bounded Functions. ITCS 2023: 84:1-84:13 - [c81]Daniel Beaglehole, Max Hopkins, Daniel Kane, Sihan Liu, Shachar Lovett:
Sampling Equilibria: Fast No-Regret Learning in Structured Games. SODA 2023: 3817-3855 - [i145]Shachar Lovett, Jiapeng Zhang:
Streaming Lower Bounds and Asymmetric Set-Disjointness. CoRR abs/2301.05658 (2023) - [i144]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Do PAC-Learners Learn the Marginal Distribution? CoRR abs/2302.06285 (2023) - [i143]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan, Csaba Szepesvári, Gellért Weisz:
Exponential Hardness of Reinforcement Learning with Linear Function Approximation. CoRR abs/2302.12940 (2023) - [i142]Zander Kelley, Shachar Lovett, Raghu Meka:
Explicit separations between randomized and deterministic Number-on-Forehead communication. CoRR abs/2308.12451 (2023) - [i141]Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, Raghu Meka:
New Graph Decompositions and Combinatorial Boolean Matrix Multiplication Algorithms. CoRR abs/2311.09095 (2023) - [i140]Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni:
Refuting approaches to the log-rank conjecture for XOR functions. CoRR abs/2312.09400 (2023) - [i139]Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, Raghu Meka:
New Graph Decompositions and Combinatorial Boolean Matrix Multiplication Algorithms. Electron. Colloquium Comput. Complex. TR23 (2023) - [i138]Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni:
Refuting approaches to the log-rank conjecture for XOR functions. Electron. Colloquium Comput. Complex. TR23 (2023) - [i137]Zander Kelley, Shachar Lovett, Raghu Meka:
Explicit separations between randomized and deterministic Number-on-Forehead communication. Electron. Colloquium Comput. Complex. TR23 (2023) - [i136]Shachar Lovett, Jiapeng Zhang:
Streaming Lower Bounds and Asymmetric Set-Disjointness. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [j45]Xin Li, Shachar Lovett, Jiapeng Zhang:
Sunflowers and Robust Sunflowers from Randomness Extractors. Adv. Math. Commun. 18: 1-18 (2022) - [j44]Kaave Hosseini, Hamed Hatami, Shachar Lovett:
Sign-Rank vs. Discrepancy. Adv. Math. Commun. 18: 1-22 (2022) - [c80]Jason Gaitonde, Max Hopkins, Tali Kaufman, Shachar Lovett, Ruizhe Zhang:
Eigenstripping, Spectral Decay, and Edge-Expansion on Posets. APPROX/RANDOM 2022: 16:1-16:24 - [c79]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan:
Computational-Statistical Gap in Reinforcement Learning. COLT 2022: 1282-1302 - [c78]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Realizable Learning is All You Need. COLT 2022: 3015-3069 - [c77]Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, Jiapeng Zhang:
Lifting with Sunflowers. ITCS 2022: 104:1-104:24 - [c76]Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett:
High Dimensional Expanders: Eigenstripping, Pseudorandomness, and Unique Games. SODA 2022: 1069-1128 - [c75]Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett:
Hypercontractivity on high dimensional expanders. STOC 2022: 185-194 - [e1]Shachar Lovett:
37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA. LIPIcs 234, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2022, ISBN 978-3-95977-241-9 [contents] - [i135]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan:
Computational-Statistical Gaps in Reinforcement Learning. CoRR abs/2202.05444 (2022) - [i134]Jason Gaitonde, Max Hopkins, Tali Kaufman, Shachar Lovett, Ruizhe Zhang:
Eigenstripping, Spectral Decay, and Edge-Expansion on Posets. CoRR abs/2205.00644 (2022) - [i133]Shachar Lovett, Jiapeng Zhang:
Fractional certificates for bounded functions. Electron. Colloquium Comput. Complex. TR22 (2022) - 2021
- [j43]Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Decision List Compression by Mild Random Restrictions. J. ACM 68(6): 45:1-45:17 (2021) - [j42]Shachar Lovett:
Sparse MDS Matrices over Small Fields: A Proof of the GM-MDS Conjecture. SIAM J. Comput. 50(4): 1248-1262 (2021) - [j41]Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan:
Guest Column: Models of computation between decision trees and communication. SIGACT News 52(2): 46-70 (2021) - [c74]Sankeerth Rao Karingula, Shachar Lovett:
Singularity of Random Integer Matrices with Large Entries. APPROX-RANDOM 2021: 33:1-33:16 - [c73]Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, Abhishek Shetty:
Fractional Pseudorandom Generators from Any Fourier Level. CCC 2021: 10:1-10:24 - [c72]Max Hopkins, Daniel Kane, Shachar Lovett, Michal Moshkovitz:
Bounded Memory Active Learning through Enriched Queries. COLT 2021: 2358-2387 - [c71]Simon S. Du, Sham M. Kakade, Jason D. Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, Ruosong Wang:
Bilinear Classes: A Structural Framework for Provable Generalization in RL. ICML 2021: 2826-2836 - [c70]Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan:
Log-rank and lifting for AND-functions. STOC 2021: 197-208 - [i132]Max Hopkins, Daniel Kane, Shachar Lovett, Michal Moshkovitz:
Bounded Memory Active Learning through Enriched Queries. CoRR abs/2102.05047 (2021) - [i131]Simon S. Du, Sham M. Kakade, Jason D. Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, Ruosong Wang:
Bilinear Classes: A Structural Framework for Provable Generalization in RL. CoRR abs/2103.10897 (2021) - [i130]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Realizable Learning is All You Need. CoRR abs/2111.04746 (2021) - [i129]Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett:
Hypercontractivity on High Dimensional Expanders: a Local-to-Global Approach for Higher Moments. CoRR abs/2111.09444 (2021) - [i128]Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett:
Hypercontractivity on High Dimensional Expanders: a Local-to-Global Approach for Higher Moments. Electron. Colloquium Comput. Complex. TR21 (2021) - 2020
- [j40]Shachar Lovett, Sankeerth Rao, Alexander Vardy:
Probabilistic existence of large sets of designs. J. Comb. Theory A 176: 105286 (2020) - [c69]Hamed Hatami, Kaave Hosseini, Shachar Lovett:
Sign Rank vs Discrepancy. CCC 2020: 18:1-18:14 - [c68]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Noise-tolerant, Reliable Active Classification with Comparison Queries. COLT 2020: 1957-2006 - [c67]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Point Location and Active Learning: Learning Halfspaces Almost Optimally. FOCS 2020: 1034-1044 - [c66]Alon Gonen, Shachar Lovett, Michal Moshkovitz:
Towards a Combinatorial Characterization of Bounded-Memory Learning. NeurIPS 2020 - [c65]Max Hopkins, Daniel Kane, Shachar Lovett:
The Power of Comparisons for Actively Learning Linear Classifiers. NeurIPS 2020 - [c64]Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, David Zuckerman:
XOR lemmas for resilient functions against polynomials. STOC 2020: 234-246 - [c63]Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Decision list compression by mild random restrictions. STOC 2020: 247-254 - [c62]Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Improved bounds for the sunflower lemma. STOC 2020: 624-630 - [i127]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Noise-tolerant, Reliable Active Classification with Comparison Queries. CoRR abs/2001.05497 (2020) - [i126]Alon Gonen, Shachar Lovett, Michal Moshkovitz:
Towards a combinatorial characterization of bounded memory learning. CoRR abs/2002.03123 (2020) - [i125]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Point Location and Active Learning: Learning Halfspaces Almost Optimally. CoRR abs/2004.11380 (2020) - [i124]Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, Abhishek Shetty:
Fractional Pseudorandom Generators from Any Fourier Level. CoRR abs/2008.01316 (2020) - [i123]Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan:
Log-rank and lifting for AND-functions. CoRR abs/2010.08994 (2020) - [i122]Sankeerth Rao Karingula, Shachar Lovett:
Codes over integers, and the singularity of random matrices with large entries. CoRR abs/2010.12081 (2020) - [i121]Max Hopkins, Tali Kaufman, Shachar Lovett:
High Dimensional Expanders: Random Walks, Pseudorandomness, and Unique Games. CoRR abs/2011.04658 (2020) - [i120]Max Hopkins, Tali Kaufman, Shachar Lovett:
High Dimensional Expanders: Random Walks, Pseudorandomness, and Unique Games. Electron. Colloquium Comput. Complex. TR20 (2020) - [i119]Sankeerth Rao Karingula, Shachar Lovett:
Codes over integers, and the singularity of random matrices with large entries. Electron. Colloquium Comput. Complex. TR20 (2020) - [i118]Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan:
Log-rank and lifting for AND-functions. Electron. Colloquium Comput. Complex. TR20 (2020) - [i117]Shachar Lovett, Raghu Meka, Jiapeng Zhang:
Improved lifting theorems via robust sunflowers. Electron. Colloquium Comput. Complex. TR20 (2020)
2010 – 2019
- 2019
- [j39]Hamed Hatami, Pooya Hatami, Shachar Lovett:
Higher-order Fourier Analysis and Applications. Found. Trends Theor. Comput. Sci. 13(4): 247-448 (2019) - [j38]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal Linear Decision Trees for k-SUM and Related Problems. J. ACM 66(3): 16:1-16:18 (2019) - [j37]Esther Ezra, Shachar Lovett:
On the Beck-Fiala conjecture for random set systems. Random Struct. Algorithms 54(4): 665-675 (2019) - [j36]Daniel Kane, Shachar Lovett, Sankeerth Rao:
The Independence Number of the Birkhoff Polytope Graph, and Applications to Maximally Recoverable Codes. SIAM J. Comput. 48(4): 1425-1435 (2019) - [j35]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues. Theory Comput. 15: 1-27 (2019) - [j34]Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:
Pseudorandom Generators from Polarizing Random Walks. Theory Comput. 15: 1-26 (2019) - [j33]Daniel Dadush, Shashwat Garg, Shachar Lovett, Aleksandar Nikolov:
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem. Theory Comput. 15: 1-58 (2019) - [c61]Shachar Lovett, Noam Solomon, Jiapeng Zhang:
From DNF Compression to Sunflower Theorems via Regularity. CCC 2019: 5:1-5:14 - [c60]Kaave Hosseini, Shachar Lovett, Grigory Yaroslavtsev:
Optimality of Linear Sketching Under Modular Updates. CCC 2019: 13:1-13:17 - [c59]Arkadev Chattopadhyay, Shachar Lovett, Marc Vinyals:
Equality Alone Does not Simulate Randomness. CCC 2019: 14:1-14:11 - [c58]Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, Sankeerth Rao:
Torus Polynomials: An Algebraic Approach to ACC Lower Bounds. ITCS 2019: 13:1-13:16 - [c57]Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, Avishay Tal:
Pseudorandom Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. ITCS 2019: 22:1-22:15 - [c56]Shachar Lovett, Jiapeng Zhang:
DNF sparsification beyond sunflowers. STOC 2019: 454-460 - [i116]Shachar Lovett, Noam Solomon, Jiapeng Zhang:
From DNF compression to sunflower theorems via regularity. CoRR abs/1903.00580 (2019) - [i115]Max Hopkins, Daniel M. Kane, Shachar Lovett:
The Power of Comparisons for Actively Learning Linear Classifiers. CoRR abs/1907.03816 (2019) - [i114]Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Improved bounds for the sunflower lemma. CoRR abs/1908.08483 (2019) - [i113]Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Decision list compression by mild random restrictions. CoRR abs/1909.10658 (2019) - [i112]Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Improved bounds for the sunflower lemma. Electron. Colloquium Comput. Complex. TR19 (2019) - [i111]Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, David Zuckerman:
XOR Lemmas for Resilient Functions Against Polynomials. Electron. Colloquium Comput. Complex. TR19 (2019) - [i110]Hamed Hatami, Kaave Hosseini, Shachar Lovett:
Sign rank vs Discrepancy. Electron. Colloquium Comput. Complex. TR19 (2019) - [i109]Shachar Lovett, Noam Solomon, Jiapeng Zhang:
From DNF compression to sunflower theorems via regularity. Electron. Colloquium Comput. Complex. TR19 (2019) - [i108]Shachar Lovett, Kewen Wu, Jiapeng Zhang:
Decision list compression by mild random restrictions. Electron. Colloquium Comput. Complex. TR19 (2019) - 2018
- [j32]Benny Applebaum, Shachar Lovett:
Algebraic Attacks against Random Local Functions and Their Countermeasures. SIAM J. Comput. 47(1): 52-79 (2018) - [j31]Hamed Hatami, Kaave Hosseini, Shachar Lovett:
Structure of Protocols for XOR Functions. SIAM J. Comput. 47(1): 208-217 (2018) - [j30]Divesh Aggarwal, Yevgeniy Dodis, Shachar Lovett:
Non-Malleable Codes from Additive Combinatorics. SIAM J. Comput. 47(2): 524-546 (2018) - [j29]Abhishek Bhowmick, Shachar Lovett:
The List Decoding Radius for Reed-Muller Codes Over Small Fields. IEEE Trans. Inf. Theory 64(6): 4382-4391 (2018) - [j28]Shachar Lovett, Ryan O'Donnell:
Special Issue: CCC 2017: Guest Editor's Foreword. Theory Comput. 14(1): 1-2 (2018) - [c55]Xin Li, Shachar Lovett, Jiapeng Zhang:
Sunflowers and Quasi-Sunflowers from Randomness Extractors. APPROX-RANDOM 2018: 51:1-51:13 - [c54]Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:
Pseudorandom Generators from Polarizing Random Walks. CCC 2018: 1:1-1:21 - [c53]Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, Ivan Mihajlin:
Hardness Amplification for Non-Commutative Arithmetic Circuits. CCC 2018: 12:1-12:16 - [c52]Shachar Lovett:
MDS Matrices over Small Fields: A Proof of the GM-MDS Conjecture. FOCS 2018: 194-199 - [c51]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized Comparison Trees for Point-Location Problems. ICALP 2018: 82:1-82:13 - [c50]Shachar Lovett, Sankeerth Rao, Alexander Vardy:
Probabilistic Existence of Large Sets of Designs. SODA 2018: 1545-1556 - [c49]Shachar Lovett, Avishay Tal, Jiapeng Zhang:
The Robust Sensitivity of Boolean Functions. SODA 2018: 1822-1833 - [c48]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. STOC 2018: 554-563 - [c47]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The gram-schmidt walk: a cure for the Banaszczyk blues. STOC 2018: 587-597 - [i107]Shachar Lovett:
MDS matrices over small fields: A proof of the GM-MDS conjecture. CoRR abs/1803.02523 (2018) - [i106]Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, Sankeerth Rao:
Torus polynomials: an algebraic approach to ACC lower bounds. CoRR abs/1804.08176 (2018) - [i105]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized comparison trees for point-location problems. CoRR abs/1804.08237 (2018) - [i104]Kaave Hosseini, Shachar Lovett, Grigory Yaroslavtsev:
Optimality of Linear Sketching under Modular Updates. CoRR abs/1809.09063 (2018) - [i103]Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, Sankeerth Rao:
Torus polynomials: an algebraic approach to ACC lower bounds. Electron. Colloquium Comput. Complex. TR18 (2018) - [i102]Marco Carmosino, Russell Impagliazzo, Shachar Lovett, Ivan Mihajlin:
Hardness Amplification for Non-Commutative Arithmetic Circuits. Electron. Colloquium Comput. Complex. TR18 (2018) - [i101]Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:
Pseudorandom Generators from Polarizing Random Walks. Electron. Colloquium Comput. Complex. TR18 (2018) - [i100]Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, Avishay Tal:
Pseudorandom generators from the second Fourier level and applications to AC0 with parity gates. Electron. Colloquium Comput. Complex. TR18 (2018) - [i99]Arkadev Chattopadhyay, Shachar Lovett, Marc Vinyals:
Equality Alone Does Not Simulate Randomness. Electron. Colloquium Comput. Complex. TR18 (2018) - [i98]Kaave Hosseini, Shachar Lovett:
A bilinear Bogolyubov-Ruzsa lemma with poly-logarithmic bounds. Electron. Colloquium Comput. Complex. TR18 (2018) - [i97]Kaave Hosseini, Shachar Lovett, Grigory Yaroslavtsev:
Optimality of Linear Sketching under Modular Updates. Electron. Colloquium Comput. Complex. TR18 (2018) - [i96]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized comparison trees for point-location problems. Electron. Colloquium Comput. Complex. TR18 (2018) - [i95]Xin Li, Shachar Lovett, Jiapeng Zhang:
Sunflowers and Quasi-sunflowers from Randomness Extractors. Electron. Colloquium Comput. Complex. TR18 (2018) - [i94]Shachar Lovett:
A proof of the GM-MDS conjecture. Electron. Colloquium Comput. Complex. TR18 (2018) - [i93]Shachar Lovett, Jiapeng Zhang:
DNF sparsification beyond sunflowers. Electron. Colloquium Comput. Complex. TR18 (2018) - 2017
- [j27]Kaave Hosseini, Shachar Lovett:
On the structure of the spectrum of small sets. J. Comb. Theory A 148: 1-14 (2017) - [j26]Shachar Lovett:
Additive Combinatorics and its Applications in Theoretical Computer Science. Theory Comput. 8: 1-55 (2017) - [c46]Shachar Lovett, Jiapeng Zhang:
Noisy Population Recovery from Unknown Noise. COLT 2017: 1417-1431 - [c45]Daniel Kane, Shachar Lovett, Sankeerth Rao:
The Independence Number of the Birkhoff Polytope Graph, and Applications to Maximally Recoverable Codes. FOCS 2017: 252-259 - [c44]Daniel M. Kane, Shachar Lovett, Shay Moran, Jiapeng Zhang:
Active Classification with Comparison Queries. FOCS 2017: 355-366 - [c43]Shachar Lovett, Jiapeng Zhang:
On the Impossibility of Entropy Reversal, and Its Application to Zero-Knowledge Proofs. TCC (1) 2017: 31-55 - [i92]Daniel M. Kane, Shachar Lovett, Sankeerth Rao:
Labeling the complete bipartite graph with no zero cycles. CoRR abs/1702.05773 (2017) - [i91]Daniel M. Kane, Shachar Lovett, Shay Moran, Jiapeng Zhang:
Active classification with comparison queries. CoRR abs/1704.03564 (2017) - [i90]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. CoRR abs/1705.01720 (2017) - [i89]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues. CoRR abs/1708.01079 (2017) - [i88]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. Electron. Colloquium Comput. Complex. TR17 (2017) - [i87]