


Остановите войну!
for scientists:


default search action
Vianney Perchet
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c56]Sasila Ilandarideva, Yannis Bekri, Anatoli Iouditski, Vianney Perchet:
Stochastic Mirror Descent for Large-Scale Sparse Recovery. AISTATS 2023: 5931-5957 - [c55]Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, Michal Valko:
Adapting to game trees in zero-sum imperfect information games. ICML 2023: 10093-10135 - [c54]Nadav Merlis, Hugo Richard, Flore Sentenac, Corentin Odic, Mathieu Molina, Vianney Perchet:
On Preemption and Learning in Stochastic Scheduling. ICML 2023: 24478-24516 - [i71]Ziyad Benomar, Evgenii Chzhen, Nicolas Schreuder, Vianney Perchet:
Addressing bias in online selection with limited budget of comparisons. CoRR abs/2303.09205 (2023) - [i70]Hugo Richard, Etienne Boursier, Vianney Perchet:
Constant or logarithmic regret in asynchronous multiplayer bandits. CoRR abs/2305.19691 (2023) - [i69]Felipe Garrido-Lucero, Benjamin Heymann, Maxime Vono, Patrick Loiseau, Vianney Perchet:
DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation. CoRR abs/2306.02071 (2023) - [i68]Flore Sentenac, Nathan Noiry, Matthieu Lerasle, Laurent Ménard, Vianney Perchet:
Online Matching in Geometric Random Graphs. CoRR abs/2306.07891 (2023) - [i67]Mathieu Molina, Nicolas Gast, Patrick Loiseau, Vianney Perchet:
Trading-off price for data quality to achieve fair online allocation. CoRR abs/2306.13440 (2023) - [i66]Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, Michal Valko:
Local and adaptive mirror descents in extensive-form games. CoRR abs/2309.00656 (2023) - 2022
- [j11]Thomas Nedelec, Clément Calauzènes, Noureddine El Karoui, Vianney Perchet:
Learning in Repeated Auctions. Found. Trends Mach. Learn. 15(3): 176-334 (2022) - [j10]Thomas Nedelec
, Clément Calauzènes, Vianney Perchet, Noureddine El Karoui:
Revenue-Maximizing Auctions: A Bidder's Standpoint. Oper. Res. 70(5): 2767-2783 (2022) - [c53]Evrard Garcelon, Matteo Pirotta, Vianney Perchet:
Encrypted Linear Contextual Bandit. AISTATS 2022: 2519-2551 - [c52]Etienne Boursier, Vianney Perchet, Marco Scarsini:
Social Learning in Non-Stationary Environments. ALT 2022: 128-129 - [c51]Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, Matteo Pirotta:
Privacy Amplification via Shuffling for Linear Contextual Bandits. ALT 2022: 381-407 - [c50]Vivien Cabannes, Francis R. Bach, Vianney Perchet, Alessandro Rudi:
Active Labeling: Streaming Stochastic Gradients. NeurIPS 2022 - [c49]Vianney Perchet, Philippe Rigollet, Thibaut Le Gouic:
An Algorithmic Solution to the Blotto Game using Multi-marginal Couplings. EC 2022: 208-209 - [i65]Vianney Perchet, Philippe Rigollet, Thibaut Le Gouic:
An algorithmic solution to the Blotto game using multi-marginal couplings. CoRR abs/2202.07318 (2022) - [i64]Vivien Cabannes, Francis R. Bach, Vianney Perchet, Alessandro Rudi:
Active Labeling: Streaming Stochastic Gradients. CoRR abs/2205.13255 (2022) - [i63]Hugo Richard, Flore Sentenac, Corentin Odic, Mathieu Molina, Vianney Perchet:
Static Scheduling with Predictions Learned through Efficient Exploration. CoRR abs/2205.15695 (2022) - [i62]Sasila Ilandarideva, Yannis Bekri, Anatoli B. Juditsky, Vianney Perchet:
Stochastic Mirror Descent for Large-Scale Sparse Recovery. CoRR abs/2210.12882 (2022) - [i61]Etienne Boursier, Vianney Perchet:
A survey on multi-player bandits. CoRR abs/2211.16275 (2022) - [i60]Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, Michal Valko:
Adapting to game trees in zero-sum imperfect information games. CoRR abs/2212.12567 (2022) - 2021
- [c48]Thomas Nedelec, Jules Baudet, Vianney Perchet, Noureddine El Karoui:
Adversarial Learning in Revenue-Maximizing Auctions. AAMAS 2021: 955-963 - [c47]Xavier Fontaine, Pierre Perrault, Michal Valko, Vianney Perchet:
Online A-Optimal Design and Active Linear Regression. ICML 2021: 3374-3383 - [c46]Flore Sentenac, Jialin Yi, Clément Calauzènes, Vianney Perchet, Milan Vojnovic:
Pure Exploration and Regret Minimization in Matching Bandits. ICML 2021: 9434-9442 - [c45]Nicolò Cesa-Bianchi, Tommaso Cesari, Yishay Mansour, Vianney Perchet:
A New Theoretical Framework for Fast and Accurate Online Decision-Making. NeurIPS 2021: 9152-9166 - [c44]Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, Matteo Pirotta:
Local Differential Privacy for Regret Minimization in Reinforcement Learning. NeurIPS 2021: 10561-10573 - [c43]Etienne Boursier, Tristan Garrec, Vianney Perchet, Marco Scarsini:
Making the most of your day: online learning for optimal allocation of time. NeurIPS 2021: 11208-11219 - [c42]Flore Sentenac, Etienne Boursier, Vianney Perchet:
Decentralized Learning in Online Queuing Systems. NeurIPS 2021: 18501-18512 - [c41]Reda Ouhamma, Odalric-Ambrym Maillard, Vianney Perchet:
Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits. NeurIPS 2021: 18577-18589 - [c40]Nathan Noiry, Vianney Perchet, Flore Sentenac:
Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm. NeurIPS 2021: 21400-21412 - [c39]Reda Ouhamma, Odalric-Ambrym Maillard, Vianney Perchet:
Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge. NeurIPS 2021: 24430-24441 - [i59]Matthieu Jedor, Jonathan Louëdec, Vianney Perchet:
Be Greedy in Multi-Armed Bandits. CoRR abs/2101.01086 (2021) - [i58]Etienne Boursier, Tristan Garrec, Vianney Perchet, Marco Scarsini:
Making the most of your day: online learning for optimal allocation of time. CoRR abs/2102.08087 (2021) - [i57]Evrard Garcelon, Vianney Perchet, Matteo Pirotta:
Homomorphically Encrypted Linear Contextual Bandit. CoRR abs/2103.09927 (2021) - [i56]Firas Jarboui, Vianney Perchet:
A Generalised Inverse Reinforcement Learning Framework. CoRR abs/2105.11812 (2021) - [i55]Flore Sentenac, Etienne Boursier, Vianney Perchet:
Decentralized Learning in Online Queuing Systems. CoRR abs/2106.04228 (2021) - [i54]Firas Jarboui, Vianney Perchet:
Quickest change detection with unknown parameters: Constant complexity and near optimality. CoRR abs/2106.05061 (2021) - [i53]Firas Jarboui, Vianney Perchet:
Offline Inverse Reinforcement Learning. CoRR abs/2106.05068 (2021) - [i52]Firas Jarboui, Vianney Perchet:
Unsupervised Neural Hidden Markov Models with a Continuous latent state space. CoRR abs/2106.06536 (2021) - [i51]Nathan Noiry, Flore Sentenac, Vianney Perchet:
Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm. CoRR abs/2107.00995 (2021) - [i50]Flore Sentenac, Jialin Yi, Clément Calauzènes, Vianney Perchet, Milan Vojnovic:
Pure Exploration and Regret Minimization in Matching Bandits. CoRR abs/2108.00230 (2021) - [i49]Reda Ouhamma, Rémy Degenne, Pierre Gaillard, Vianney Perchet:
Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits. CoRR abs/2110.09133 (2021) - [i48]Reda Ouhamma, Odalric Maillard, Vianney Perchet:
Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge. CoRR abs/2111.01602 (2021) - [i47]Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, Matteo Pirotta:
Privacy Amplification via Shuffling for Linear Contextual Bandits. CoRR abs/2112.06008 (2021) - 2020
- [c38]Etienne Boursier, Vianney Perchet:
Utility/Privacy Trade-off through the lens of Optimal Transport. AISTATS 2020: 591-601 - [c37]Abbas Mehrabian, Etienne Boursier, Emilie Kaufmann, Vianney Perchet:
A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players. AISTATS 2020: 1211-1221 - [c36]Thomas Nedelec, Clément Calauzènes, Vianney Perchet, Noureddine El Karoui:
Robust Stackelberg buyers in repeated auctions. AISTATS 2020: 1342-1351 - [c35]Xavier Fontaine, Shie Mannor, Vianney Perchet:
An adaptive stochastic optimization algorithm for resource allocation. ALT 2020: 319-363 - [c34]Vianney Perchet:
Finding Robust Nash equilibria. ALT 2020: 725-751 - [c33]Matthieu Jedor, Jonathan Louëdec, Vianney Perchet:
Categorized Bandits. CIRCLE 2020 - [c32]Etienne Boursier, Vianney Perchet:
Selfish Robustness and Equilibria in Multi-Player Bandits. COLT 2020: 530-581 - [c31]Pierre Perrault, Michal Valko, Vianney Perchet:
Covariance-adapting algorithm for semi-bandits with application to sparse outcomes. COLT 2020: 3152-3184 - [c30]Firas Jarboui, Vianney Perchet:
Trajectory representation learning for Multi-Task NMRDP planning. ICPR 2020: 6786-6793 - [c29]Sandrine Péché, Vianney Perchet:
Robustness of Community Detection to Random Geometric Perturbations. NeurIPS 2020 - [c28]Pierre Perrault, Etienne Boursier, Michal Valko, Vianney Perchet:
Statistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits. NeurIPS 2020 - [i46]Etienne Boursier, Vianney Perchet:
Selfish Robustness and Equilibria in Multi-Player Bandits. CoRR abs/2002.01197 (2020) - [i45]Matthieu Jedor, Jonathan Louëdec, Vianney Perchet:
Categorized Bandits. CoRR abs/2005.01656 (2020) - [i44]Pierre Perrault, Etienne Boursier, Vianney Perchet, Michal Valko:
Statistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits. CoRR abs/2006.06613 (2020) - [i43]Etienne Boursier, Vianney Perchet, Marco Scarsini:
Speed of Social Learning from Reviews in Non-Stationary Environments. CoRR abs/2007.09996 (2020) - [i42]Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, Matteo Pirotta:
Local Differentially Private Regret Minimization in Reinforcement Learning. CoRR abs/2010.07778 (2020) - [i41]Sandrine Péché, Vianney Perchet:
Robustness of Community Detection to Random Geometric Perturbations. CoRR abs/2011.04298 (2020) - [i40]Thomas Nedelec, Clément Calauzènes, Noureddine El Karoui, Vianney Perchet:
Learning in repeated auctions. CoRR abs/2011.09365 (2020) - [i39]Matthieu Jedor, Jonathan Louëdec, Vianney Perchet:
Lifelong Learning in Multi-Armed Bandits. CoRR abs/2012.14264 (2020)
2010 – 2019
- 2019
- [c27]Pierre Perrault, Vianney Perchet, Michal Valko:
Finding the bandit in a graph: Sequential search-and-stop. AISTATS 2019: 1668-1677 - [c26]Rémy Degenne, Thomas Nedelec, Clément Calauzènes, Vianney Perchet:
Bridging the gap between regret minimization and best arm identification, with application to A/B tests. AISTATS 2019: 1988-1996 - [c25]Xavier Fontaine, Quentin Berthet, Vianney Perchet:
Regularized Contextual Bandits. AISTATS 2019: 2144-2153 - [c24]Nicolò Cesa-Bianchi, Tommaso Cesari, Vianney Perchet:
Dynamic Pricing with Finitely Many Unknown Valuations. ALT 2019: 247-273 - [c23]Firas Jarboui, Célya Gruson-Daniel, Alain Durmus, Vincent Rocchisani, Sophie-Helene Goulet Ebongue, Anneliese Depoux, Wilfried Kirschenmann, Vianney Perchet:
Markov Decision Process for MOOC Users Behavioral Inference. EMOOCs 2019: 70-80 - [c22]Thomas Nedelec, Noureddine El Karoui, Vianney Perchet:
Learning to bid in revenue-maximizing auctions. ICML 2019: 4781-4789 - [c21]Pierre Perrault, Vianney Perchet, Michal Valko:
Exploiting structure of uncertainty for efficient matroid semi-bandits. ICML 2019: 5123-5132 - [c20]Etienne Boursier, Vianney Perchet:
SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits. NeurIPS 2019: 12048-12057 - [c19]Matthieu Jedor, Vianney Perchet, Jonathan Louëdec:
Categorized Bandits. NeurIPS 2019: 14399-14409 - [c18]Thomas Nedelec, Noureddine El Karoui, Vianney Perchet:
Learning to Bid in Revenue Maximizing Auction. WWW (Companion Volume) 2019: 934-935 - [i38]Pierre Perrault, Vianney Perchet, Michal Valko:
Exploiting Structure of Uncertainty for Efficient Combinatorial Semi-Bandits. CoRR abs/1902.03794 (2019) - [i37]Xavier Fontaine, Shie Mannor, Vianney Perchet:
A Problem-Adaptive Algorithm for Resource Allocation. CoRR abs/1902.04376 (2019) - [i36]Thomas Nedelec, Noureddine El Karoui, Vianney Perchet:
Learning to bid in revenue-maximizing auctions. CoRR abs/1902.10427 (2019) - [i35]Etienne Boursier, Vianney Perchet:
Private Learning and Regularized Optimal Transport. CoRR abs/1905.11148 (2019) - [i34]Nicolò Cesa-Bianchi, Tommaso Cesari
, Yishay Mansour, Vianney Perchet:
Repeated A/B Testing. CoRR abs/1905.11797 (2019) - [i33]Clément Calauzènes, Thomas Nedelec, Vianney Perchet, Noureddine El Karoui:
Robust Stackelberg buyers in repeated auctions. CoRR abs/1905.13031 (2019) - [i32]Xavier Fontaine, Pierre Perrault, Vianney Perchet:
Active Linear Regression. CoRR abs/1906.08509 (2019) - [i31]Firas Jarboui, Célya Gruson-Daniel, Alain Durmus, Vincent Rocchisani, Sophie-Helene Goulet Ebongue, Anneliese Depoux, Wilfried Kirschenmann, Vianney Perchet:
Markov Decision Process for MOOC users behavioral inference. CoRR abs/1907.04723 (2019) - [i30]Thomas Nedelec, Jules Baudet, Vianney Perchet, Noureddine El Karoui:
Adversarial learning for revenue-maximizing auctions. CoRR abs/1909.06806 (2019) - 2018
- [j9]János Flesch, Rida Laraki
, Vianney Perchet:
Approachability of convex sets in generalized quitting games. Games Econ. Behav. 108: 411-431 (2018) - [c17]Rémy Degenne, Evrard Garcelon, Vianney Perchet:
Bandits with Side Observations: Bounded vs. Logarithmic Regret. UAI 2018: 467-476 - [e1]Sébastien Bubeck, Vianney Perchet, Philippe Rigollet:
Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018. Proceedings of Machine Learning Research 75, PMLR 2018 [contents] - [i29]Marc Abeille, Clément Calauzènes, Noureddine El Karoui, Thomas Nedelec, Vianney Perchet:
Explicit shading strategies for repeated truthful auctions. CoRR abs/1805.00256 (2018) - [i28]Pierre Perrault, Vianney Perchet, Michal Valko:
Finding the Bandit in a Graph: Sequential Search-and-Stop. CoRR abs/1806.02282 (2018) - [i27]Nicolò Cesa-Bianchi, Tommaso Cesari
, Vianney Perchet:
Dynamic Pricing with Finitely Many Unknown Valuations. CoRR abs/1807.03288 (2018) - [i26]Rémy Degenne, Evrard Garcelon, Vianney Perchet:
Bandits with Side Observations: Bounded vs. Logarithmic Regret. CoRR abs/1807.03558 (2018) - [i25]Thomas Nedelec, Marc Abeille, Clément Calauzènes, Noureddine El Karoui, Benjamin Heymann, Vianney Perchet:
Thresholding the virtual value: a simple method to increase welfare and lower reserve prices in online auction systems. CoRR abs/1808.06979 (2018) - [i24]Etienne Boursier, Vianney Perchet:
SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits. CoRR abs/1809.08151 (2018) - [i23]Rémy Degenne, Thomas Nedelec, Clément Calauzènes, Vianney Perchet:
Bridging the gap between regret minimization and best arm identification, with application to A/B tests. CoRR abs/1810.04088 (2018) - [i22]Xavier Fontaine, Quentin Berthet, Vianney Perchet:
Regularized Contextual Bandits. CoRR abs/1810.05065 (2018) - [i21]Vianney Perchet, Marc Quincampoix:
A differential game on Wasserstein space. Application to weak approachability with partial monitoring. CoRR abs/1811.04575 (2018) - 2017
- [c16]Joon Kwon, Vianney Perchet:
Online Learning and Blackwell Approachability with Partial Monitoring: Optimal Convergence Rates. AISTATS 2017: 604-613 - [c15]Joon Kwon, Vianney Perchet, Claire Vernade:
Sparse Stochastic Bandits. COLT 2017: 1269-1270 - [c14]Quentin Berthet, Vianney Perchet:
Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe. NIPS 2017: 2225-2234 - [c13]Claire Vernade, Olivier Cappé, Vianney Perchet:
Stochastic Bandit Models for Delayed Conversions. UAI 2017 - [i20]Quentin Berthet, Vianney Perchet:
Bandit Optimization with Upper-Confidence Frank-Wolfe. CoRR abs/1702.06917 (2017) - [i19]Thomas Nedelec, Nicolas Le Roux, Vianney Perchet:
A comparative study of counterfactual estimators. CoRR abs/1704.00773 (2017) - [i18]Joon Kwon, Vianney Perchet, Claire Vernade:
Sparse Stochastic Bandits. CoRR abs/1706.01383 (2017) - [i17]Claire Vernade, Olivier Cappé, Vianney Perchet:
Stochastic Bandit Models for Delayed Conversions. CoRR abs/1706.09186 (2017) - 2016
- [j8]Joon Kwon, Vianney Perchet:
Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case. J. Mach. Learn. Res. 17: 229:1-229:32 (2016) - [j7]Guillaume Merle, Jean-Marc Roussel, Jean-Jacques Lesage, Vianney Perchet, Nicolas Vayatis:
Quantitative Analysis of Dynamic Fault Trees Based on the Coupling of Structure Functions and Monte Carlo Simulation. Qual. Reliab. Eng. Int. 32(1): 7-18 (2016) - [c12]Francis R. Bach, Vianney Perchet:
Highly-Smooth Zero-th Order Online Optimization. COLT 2016: 257-283 - [c11]János Flesch, Rida Laraki, Vianney Perchet:
Online Learning and Blackwell Approachability in Quitting Games. COLT 2016: 941-942 - [c10]Jonathan Weed, Vianney Perchet, Philippe Rigollet:
Online learning in repeated auctions. COLT 2016: 1562-1583 - [c9]Rémy Degenne, Vianney Perchet:
Anytime optimal algorithms in stochastic multi-armed bandits. ICML 2016: 1587-1595 - [c8]Rémy Degenne, Vianney Perchet:
Combinatorial semi-bandit with known covariance. NIPS 2016: 2964-2972 - [i16]Francis R. Bach, Vianney Perchet:
Highly-Smooth Zero-th Order Online Optimization Vianney Perchet. CoRR abs/1605.08165 (2016) - [i15]János Flesch, Rida Laraki, Vianney Perchet:
Approachability of convex sets in generalized quitting games. CoRR abs/1609.08870 (2016) - [i14]Rémy Degenne, Vianney Perchet:
Combinatorial semi-bandit with known covariance. CoRR abs/1612.01859 (2016) - 2015
- [j6]Vianney Perchet:
Exponential Weight Approachability, Applications to Calibration and Regret Minimization. Dyn. Games Appl. 5(1): 136-153 (2015) - [j5]Vianney Perchet, Marc Quincampoix:
On a Unified Framework for Approachability with Full or Partial Monitoring. Math. Oper. Res. 40(3): 596-610 (2015) - [c7]Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg:
Batched Bandit Problems. COLT 2015: 1456 - [i13]Jonathan Weed, Vianney Perchet, Philippe Rigollet:
Online learning in repeated auctions. CoRR abs/1511.05720 (2015) - [i12]Joon Kwon, Vianney Perchet:
Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case. CoRR abs/1511.08405 (2015) - 2014
- [j4]Shie Mannor, Vianney Perchet, Gilles Stoltz:
Set-valued approachability and online learning with partial monitoring. J. Mach. Learn. Res. 15(1): 3247-3295 (2014) - [j3]Vianney Perchet:
A note on robust Nash equilibria with uncertainties. RAIRO Oper. Res. 48(3): 365-371 (2014) - [c6]Shie Mannor, Vianney Perchet, Gilles Stoltz:
Approachability in unknown games: Online learning meets multi-objective optimization. COLT 2014: 339-355 - [c5]Emile Contal, Vianney Perchet, Nicolas Vayatis:
Gaussian Process Optimization with Mutual Information. ICML 2014: 253-261 - [i11]Shie Mannor
, Vianney Perchet, Gilles Stoltz:
Approachability in unknown games: Online learning meets multi-objective optimization. CoRR abs/1402.2043 (2014) - 2013
- [c4]Sébastien Bubeck, Vianney Perchet, Philippe Rigollet:
Bounded regret in stochastic multi-armed bandits. COLT 2013: 122-134 - [c3]Vianney Perchet, Shie Mannor:
Approachability, fast and slow. COLT 2013: 474-488 - [i10]Vianney Perchet:
Nash equilibria with partial monitoring; Computation and Lemke-Howson algorithm. CoRR abs/1301.2662 (2013) - [i9]Vianney Perchet:
Approachability, Regret and Calibration; implications and equivalences. CoRR abs/1301.2663 (2013) - [i8]Vianney Perchet, Marc Quincampoix:
On an unified framework for approachability in games with or without signals. CoRR abs/1301.3609 (2013) - [i7]Sébastien Bubeck, Vianney Perchet, Philippe Rigollet:
Bounded regret in stochastic multi-armed bandits. CoRR abs/1302.1611 (2013) - [i6]Shie Mannor
, Vianney Perchet, Gilles Stoltz:
A Primal Condition for Approachability with Partial Monitoring. CoRR abs/1305.5399 (2013) - 2011
- [j2]Vianney Perchet:
Internal Regret with Partial Monitoring: Calibration-Based Optimal Algorithms. J. Mach. Learn. Res. 12: 1893-1921 (2011) - [j1]Vianney Perchet:
Approachability of Convex Sets in Games with Partial Monitoring. J. Optim. Theory Appl. 149(3): 665-677 (2011) - [c2]Shie Mannor, Vianney Perchet, Gilles Stoltz:
Robust approachability and regret minimization in games with partial monitoring. COLT 2011: 515-536 - [i5]