


default search action
Richard Nock
Person information
- affiliation: Google Research
- affiliation (former): CSIRO, Data61, Sydney, Australia
- affiliation (former): University of the French West Indies, CEREGMIA, Martinique, France
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c131]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
Optimal Transport with Tempered Exponential Measures. AAAI 2024: 10838-10846 - [c130]Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth:
Hyperbolic Embeddings of Supervised Models. NeurIPS 2024 - [c129]Richard Nock, Mathieu Guillame-Bert:
Generative Forests. NeurIPS 2024 - [c128]Richard Nock, Yishay Mansour:
How to Boost Any Loss Function. NeurIPS 2024 - [c127]Nathan Stromberg, Rohan Ayyagari, Sanmi Koyejo, Richard Nock, Lalitha Sankar:
Enhancing Robustness of Last Layer Two-Stage Fair Model Corrections. NeurIPS 2024 - [i71]Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth:
Tempered Calculus for ML: Application to Hyperbolic Model Embedding. CoRR abs/2402.04163 (2024) - [i70]Mathieu Guillame-Bert, Richard Nock:
Boosting gets full Attention for Relational Learning. CoRR abs/2402.14926 (2024) - [i69]Nathan Stromberg, Rohan Ayyagari, Sanmi Koyejo, Richard Nock, Lalitha Sankar:
Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading. CoRR abs/2406.09561 (2024) - [i68]Richard Nock, Yishay Mansour:
How to Boost Any Loss Function. CoRR abs/2407.02279 (2024) - 2023
- [c126]Ehsan Amid, Richard Nock, Manfred K. Warmuth:
Clustering above Exponential Families with Tempered Exponential Measures. AISTATS 2023: 2994-3017 - [c125]Tyler Sypherd, Nathaniel Stromberg, Richard Nock, Visar Berisha, Lalitha Sankar:
Smoothly Giving up: Robustness for Simple Models. AISTATS 2023: 5376-5410 - [c124]Kevin H. Lam, Christian J. Walder, Spiridon I. Penev, Richard Nock:
LegendreTron: Uprising Proper Multiclass Loss Learning. ICML 2023: 18454-18470 - [c123]Yishay Mansour, Richard Nock, Robert C. Williamson:
Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice. ICML 2023: 23706-23742 - [c122]Alexander Soen, Hisham Husain, Richard Nock:
Fair Densities via Boosting the Sufficient Statistics of Exponential Families. ICML 2023: 32105-32144 - [c121]Richard Nock, Ehsan Amid, Manfred K. Warmuth:
Boosting with Tempered Exponential Measures. NeurIPS 2023 - [i67]Kevin H. Lam, Christian J. Walder, Spiridon I. Penev, Richard Nock:
LegendreTron: Uprising Proper Multiclass Loss Learning. CoRR abs/2301.11695 (2023) - [i66]Tyler Sypherd, Nathan Stromberg, Richard Nock, Visar Berisha, Lalitha Sankar:
Smoothly Giving up: Robustness for Simple Models. CoRR abs/2302.09114 (2023) - [i65]Richard Nock, Ehsan Amid, Manfred K. Warmuth:
Boosting with Tempered Exponential Measures. CoRR abs/2306.05487 (2023) - [i64]Richard Nock, Mathieu Guillame-Bert:
Generative Forests. CoRR abs/2308.03648 (2023) - [i63]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
Optimal Transport with Tempered Exponential Measures. CoRR abs/2309.04015 (2023) - [i62]Ehsan Amid, Frank Nielsen, Richard Nock, Manfred K. Warmuth:
The Tempered Hilbert Simplex Distance and Its Application To Non-linear Embeddings of TEMs. CoRR abs/2311.13459 (2023) - 2022
- [c120]Yao Ni, Piotr Koniusz, Richard I. Hartley, Richard Nock:
Manifold Learning Benefits GANs. CVPR 2022: 11255-11264 - [c119]Moein Khajehnejad, Forough Habibollahi, Richard Nock, Ehsan Arabzadeh, Peter Dayan, Amir Dezfouli:
Neural Network Poisson Models for Behavioural and Neural Spike Train Data. ICML 2022: 10974-10996 - [c118]Richard Nock, Mathieu Guillame-Bert:
Generative Trees: Adversarial and Copycat. ICML 2022: 16906-16951 - [c117]Tyler Sypherd, Richard Nock, Lalitha Sankar:
Being Properly Improper. ICML 2022: 20891-20932 - [c116]Alexander Soen, Ibrahim M. Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie:
Fair Wrapping for Black-box Predictions. NeurIPS 2022 - [i61]Richard Nock, Mathieu Guillame-Bert:
Generative Trees: Adversarial and Copycat. CoRR abs/2201.11205 (2022) - [i60]Alexander Soen, Ibrahim Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie:
Fair Wrapping for Black-box Predictions. CoRR abs/2201.12947 (2022) - [i59]Yishay Mansour, Richard Nock, Robert C. Williamson:
What killed the Convex Booster ? CoRR abs/2205.09628 (2022) - [i58]Ehsan Amid, Richard Nock, Manfred K. Warmuth:
Clustering above Exponential Families with Tempered Exponential Measures. CoRR abs/2211.02765 (2022) - 2021
- [j42]Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis
, Arjun Nitin Bhagoji
, Kallista A. Bonawitz, Zachary Charles, Graham Cormode
, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans
, Josh Gardner, Zachary Garrett
, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui
, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi
, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh
, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr
, Praneeth Vepakomma
, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu
, Sen Zhao:
Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 14(1-2): 1-210 (2021) - [c115]Frank Nielsen
, Richard Nock:
Computing Statistical Divergences with Sigma Points. GSI 2021: 677-684 - [c114]Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, Simon Kornblith:
Generalised Lipschitz Regularisation Equals Distributional Robustness. ICML 2021: 2178-2188 - [c113]Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Jakub Nabaglo, Giorgio Patrini, Guillaume Smith, Brian Thorne:
The Impact of Record Linkage on Learning from Feature Partitioned Data. ICML 2021: 8216-8226 - [i57]Richard Nock, Tyler Sypherd, Lalitha Sankar:
Being Properly Improper. CoRR abs/2106.09920 (2021) - [i56]Yao Ni, Piotr Koniusz, Richard I. Hartley, Richard Nock:
Manifold Learning Benefits GANs. CoRR abs/2112.12618 (2021) - 2020
- [j41]Huijun Wu, Chen Wang
, Richard Nock, Wei Wang, Jie Yin, Kai Lu, Liming Zhu
:
SMINT: Toward Interpretable and Robust Model Sharing for Deep Neural Networks. ACM Trans. Web 14(3): 11:1-11:28 (2020) - [c112]Hisham Husain, Borja Balle, Zac Cranko, Richard Nock:
Local Differential Privacy for Sampling. AISTATS 2020: 3404-3413 - [c111]Christian Simon, Piotr Koniusz, Richard Nock, Mehrtash Harandi
:
Adaptive Subspaces for Few-Shot Learning. CVPR 2020: 4135-4144 - [c110]Christian Simon, Piotr Koniusz, Richard Nock, Mehrtash Harandi
:
On Modulating the Gradient for Meta-learning. ECCV (8) 2020: 556-572 - [c109]Richard Nock, Aditya Krishna Menon:
Supervised learning: no loss no cry. ICML 2020: 7370-7380 - [c108]Christian J. Walder, Richard Nock:
All your loss are belong to Bayes. NeurIPS 2020 - [p2]Antoine Cornuéjols, Frédéric Koriche, Richard Nock:
Statistical Computational Learning. A Guided Tour of Artificial Intelligence Research (1) (I) 2020: 341-388 - [i55]Richard Nock, Wilko Henecka:
Boosted and Differentially Private Ensembles of Decision Trees. CoRR abs/2001.09384 (2020) - [i54]Richard Nock, Aditya Krishna Menon:
Supervised Learning: No Loss No Cry. CoRR abs/2002.03555 (2020) - [i53]Zac Cranko
, Zhan Shi, Xinhua Zhang, Richard Nock, Simon Kornblith:
Generalised Lipschitz Regularisation Equals Distributional Robustness. CoRR abs/2002.04197 (2020) - [i52]Frank Nielsen, Richard Nock:
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family. CoRR abs/2003.02469 (2020) - [i51]Christian J. Walder, Richard Nock:
All your loss are belong to Bayes. CoRR abs/2006.04633 (2020) - [i50]Alexander Soen, Hisham Husain, Richard Nock:
Data Preprocessing to Mitigate Bias with Boosted Fair Mollifiers. CoRR abs/2012.00188 (2020)
2010 – 2019
- 2019
- [c107]Samitha Herath, Mehrtash Harandi
, Basura Fernando
, Richard Nock:
Min-Max Statistical Alignment for Transfer Learning. CVPR 2019: 9288-9297 - [c106]Frank Nielsen
, Richard Nock:
The Bregman Chord Divergence. GSI 2019: 299-308 - [c105]Soumava Kumar Roy, Mehrtash Harandi
, Richard Nock, Richard I. Hartley:
Siamese Networks: The Tale of Two Manifolds. ICCV 2019: 3046-3055 - [c104]Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian J. Walder:
Monge blunts Bayes: Hardness Results for Adversarial Training. ICML 2019: 1406-1415 - [c103]Zac Cranko, Richard Nock:
Boosted Density Estimation Remastered. ICML 2019: 1416-1425 - [c102]Richard Nock, Robert C. Williamson:
Lossless or Quantized Boosting with Integer Arithmetic. ICML 2019: 4829-4838 - [c101]Hisham Husain, Richard Nock, Robert C. Williamson:
A Primal-Dual link between GANs and Autoencoders. NeurIPS 2019: 413-422 - [c100]Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong:
Disentangled behavioural representations. NeurIPS 2019: 2251-2260 - [c99]Daniel Filonik, Tian Feng, Ke Sun
, Richard Nock, Alex Collins, Tomasz Bednarz:
Non-Euclidean Embeddings for Graph Analytics and Visualisation. SIGGRAPH Asia Posters 2019: 47:1-47:2 - [i49]Christian J. Walder, Richard Nock, Cheng Soon Ong, Masashi Sugiyama:
New Tricks for Estimating Gradients of Expectations. CoRR abs/1901.11311 (2019) - [i48]Hisham Husain, Richard Nock, Robert C. Williamson:
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and Generalization Bounds. CoRR abs/1902.00985 (2019) - [i47]Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett
, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao:
Advances and Open Problems in Federated Learning. CoRR abs/1912.04977 (2019) - 2018
- [c98]Frank Nielsen
, Richard Nock:
On the Geometry of Mixtures of Prescribed Distributions. ICASSP 2018: 2861-2865 - [c97]Amir Dezfouli, Edwin V. Bonilla, Richard Nock:
Variational Network Inference: Strong and Stable with Concrete Support. ICML 2018: 1212-1221 - [c96]Marta Avalos, Richard Nock, Cheng Soon Ong, Julien Rouar, Ke Sun:
Representation Learning of Compositional Data. NeurIPS 2018: 6680-6690 - [c95]Kelvin Hsu, Richard Nock, Fabio Ramos:
Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds. ECML/PKDD (2) 2018: 227-242 - [i46]Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Giorgio Patrini, Guillaume Smith, Brian Thorne:
Entity Resolution and Federated Learning get a Federated Resolution. CoRR abs/1803.04035 (2018) - [i45]Zac Cranko, Richard Nock:
Boosted Density Estimation Remastered. CoRR abs/1803.08178 (2018) - [i44]Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian J. Walder:
Monge beats Bayes: Hardness Results for Adversarial Training. CoRR abs/1806.02977 (2018) - [i43]Hisham Husain, Zac Cranko, Richard Nock:
Integral Privacy for Density Estimation with Approximation Guarantees. CoRR abs/1806.04819 (2018) - [i42]Leif W. Hanlen, Richard Nock, Hanna Suominen
, Neil Bacon:
Private Text Classification. CoRR abs/1806.06998 (2018) - [i41]Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing Xie, Richard Nock:
D-PAGE: Diverse Paraphrase Generation. CoRR abs/1808.04364 (2018) - [i40]Kelvin Hsu, Richard Nock, Fabio Ramos:
Hyperparameter Learning for Conditional Mean Embeddings with Rademacher Complexity Bounds. CoRR abs/1809.00175 (2018) - [i39]Zac Cranko, Simon Kornblith, Zhan Shi, Richard Nock:
Lipschitz Networks and Distributional Robustness. CoRR abs/1809.01129 (2018) - [i38]Frank Nielsen, Richard Nock:
The Bregman chord divergence. CoRR abs/1810.09113 (2018) - 2017
- [j40]Frank Nielsen
, Richard Nock:
MaxEnt Upper Bounds for the Differential Entropy of Univariate Continuous Distributions. IEEE Signal Process. Lett. 24(4): 402-406 (2017) - [j39]Frank Nielsen
, Richard Nock:
Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity. IEEE Signal Process. Lett. 24(8): 1123-1127 (2017) - [c94]Boris Muzellec, Richard Nock, Giorgio Patrini, Frank Nielsen:
Tsallis Regularized Optimal Transport and Ecological Inference. AAAI 2017: 2387-2393 - [c93]Giorgio Patrini, Alessandro Rozza
, Aditya Krishna Menon, Richard Nock, Lizhen Qu:
Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach. CVPR 2017: 2233-2241 - [c92]Frank Nielsen
, Richard Nock:
Bregman Divergences from Comparative Convexity. GSI 2017: 639-647 - [c91]Richard Nock, Zac Cranko, Aditya Krishna Menon, Lizhen Qu, Robert C. Williamson:
f-GANs in an Information Geometric Nutshell. NIPS 2017: 456-464 - [i37]Frank Nielsen, Richard Nock:
Generalizing Jensen and Bregman divergences with comparative convexity and the statistical Bhattacharyya distances with comparable means. CoRR abs/1702.04877 (2017) - [i36]Amir Dezfouli, Edwin V. Bonilla, Richard Nock:
Semi-parametric Network Structure Discovery Models. CoRR abs/1702.08530 (2017) - [i35]Richard Nock, Frank Nielsen:
Distribution-free Evolvability of Vector Spaces: All it takes is a Generating Set. CoRR abs/1704.02708 (2017) - [i34]Richard Nock, Zac Cranko, Aditya Krishna Menon, Lizhen Qu, Robert C. Williamson:
f-GANs in an Information Geometric Nutshell. CoRR abs/1707.04385 (2017) - [i33]Frank Nielsen, Richard Nock:
On w-mixtures: Finite convex combinations of prescribed component distributions. CoRR abs/1708.00568 (2017) - [i32]Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith, Brian Thorne:
Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. CoRR abs/1711.10677 (2017) - 2016
- [j38]Richard Nock, Frank Nielsen
, Shun-ichi Amari:
On Conformal Divergences and Their Population Minimizers. IEEE Trans. Inf. Theory 62(1): 527-538 (2016) - [c90]Frank Nielsen
, Boris Muzellec, Richard Nock:
Classification with mixtures of curved mahalanobis metrics. ICIP 2016: 241-245 - [c89]Richard Nock, Raphaël Canyasse, Roksana Boreli, Frank Nielsen:
k-variates++: more pluses in the k-means++. ICML 2016: 145-154 - [c88]Giorgio Patrini, Frank Nielsen, Richard Nock, Marcello Carioni:
Loss factorization, weakly supervised learning and label noise robustness. ICML 2016: 708-717 - [c87]Giorgio Patrini, Richard Nock, Stephen Hardy, Tibério S. Caetano:
Fast Learning from Distributed Datasets without Entity Matching. IJCAI 2016: 1909-1917 - [c86]Richard Nock, Aditya Krishna Menon, Cheng Soon Ong:
A scaled Bregman theorem with applications. NIPS 2016: 19-27 - [c85]Richard Nock:
On Regularizing Rademacher Observation Losses. NIPS 2016: 37-45 - [c84]Frank Nielsen
, Richard Nock:
Patch Matching with Polynomial Exponential Families and Projective Divergences. SISAP 2016: 109-116 - [i31]Richard Nock, Raphaël Canyasse, Roksana Boreli, Frank Nielsen:
k-variates++: more pluses in the k-means++. CoRR abs/1602.01198 (2016) - [i30]Giorgio Patrini, Frank Nielsen, Richard Nock, Marcello Carioni:
Loss factorization, weakly supervised learning and label noise robustness. CoRR abs/1602.02450 (2016) - [i29]Giorgio Patrini, Richard Nock, Stephen Hardy, Tibério S. Caetano:
Fast Learning from Distributed Datasets without Entity Matching. CoRR abs/1603.04002 (2016) - [i28]Frank Nielsen, Richard Nock:
Fast $(1+ε)$-approximation of the Löwner extremal matrices of high-dimensional symmetric matrices. CoRR abs/1604.01592 (2016) - [i27]Richard Nock, Giorgio Patrini, Finnian Lattimore, Tibério S. Caetano:
The Crossover Process: Learnability meets Protection from Inference Attacks. CoRR abs/1606.04160 (2016) - [i26]Richard Nock, Aditya Krishna Menon, Cheng Soon Ong:
A scaled Bregman theorem with applications. CoRR abs/1607.00360 (2016) - [i25]Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, Lizhen Qu:
Making Neural Networks Robust to Label Noise: a Loss Correction Approach. CoRR abs/1609.03683 (2016) - [i24]Boris Muzellec, Richard Nock, Giorgio Patrini, Frank Nielsen:
Tsallis Regularized Optimal Transport and Ecological Inference. CoRR abs/1609.04495 (2016) - [i23]Frank Nielsen, Boris Muzellec, Richard Nock:
Large Margin Nearest Neighbor Classification using Curved Mahalanobis Distances. CoRR abs/1609.07082 (2016) - [i22]Frank Nielsen, Richard Nock:
A series of maximum entropy upper bounds of the differential entropy. CoRR abs/1612.02954 (2016) - 2015
- [j37]Meriam Bayoudh, Emmanuel Roux
, Gilles Richard, Richard Nock:
Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana. Comput. Geosci. 76: 31-40 (2015) - [j36]Richard Nock, Wafa Bel Haj Ali, Roberto D'Ambrosio, Frank Nielsen
, Michel Barlaud:
Gentle Nearest Neighbors Boosting over Proper Scoring Rules. IEEE Trans. Pattern Anal. Mach. Intell. 37(1): 80-93 (2015) - [c83]Frank Nielsen
, Richard Nock:
Total Jensen divergences: Definition, properties and clustering. ICASSP 2015: 2016-2020 - [c82]Richard Nock, Giorgio Patrini, Arik Friedman:
Rademacher Observations, Private Data, and Boosting. ICML 2015: 948-956 - [i21]Richard Nock, Giorgio Patrini, Arik Friedman:
Rademacher Observations, Private Data, and Boosting. CoRR abs/1502.02322 (2015) - [i20]Richard Nock:
Learning Games and Rademacher Observations Losses. CoRR abs/1512.05244 (2015) - 2014
- [j35]Frank Nielsen
, Richard Nock, Shun-ichi Amari:
On Clustering Histograms with k-Means by Using Mixed α-Divergences. Entropy 16(6): 3273-3301 (2014) - [j34]Frank Nielsen
, Richard Nock:
On the Chi Square and Higher-Order Chi Distances for Approximating $f$ -Divergences. IEEE Signal Process. Lett. 21(1): 10-13 (2014) - [j33]Frank Nielsen
, Richard Nock:
Optimal Interval Clustering: Application to Bregman Clustering and Statistical Mixture Learning. IEEE Signal Process. Lett. 21(10): 1289-1292 (2014) - [c81]Frank Nielsen
, Richard Nock:
Visualizing hyperbolic Voronoi diagrams. SoCG 2014: 90 - [c80]Wafa Bel Haj Ali, Richard Nock, Michel Barlaud:
Boosting Stochastic Newton with Entropy Constraint for Large-Scale Image Classification. ICPR 2014: 232-237 - [c79]Giorgio Patrini, Richard Nock, Tibério S. Caetano, Paul Rivera:
(Almost) No Label No Cry. NIPS 2014: 190-198 - [i19]Frank Nielsen, Richard Nock:
A note on the optimal scalar Bregman k-means clustering with an application to learning best statistical mixtures. CoRR abs/1403.2485 (2014) - [i18]Frank Nielsen, Richard Nock:
Further heuristics for $k$-means: The merge-and-split heuristic and the $(k, l)$-means. CoRR abs/1406.6314 (2014) - [i17]Frank Nielsen, Richard Nock:
Further results on the hyperbolic Voronoi diagrams. CoRR abs/1410.1036 (2014) - 2013
- [c78]Frank Nielsen
, Richard Nock:
Consensus Region Merging for Image Segmentation. ACPR 2013: 325-329 - [c77]Erol Elisabeth, Richard Nock, Fred Celimene:
Demonstrator of a Tourist Recommendation System. BDA 2013: 171-175 - [c76]Richard Nock, Frank Nielsen
, Eric Briys
:
Non-linear book manifolds: learning from associations the dynamic geometry of digital libraries. JCDL 2013: 313-322 - [c75]Richard Nock, Frank Nielsen
:
Information-geometric lenses for multiple foci+contexts interfaces. SIGGRAPH ASIA Technical Briefs 2013: 18:1-18:4 - [p1]Paolo Piro, Richard Nock, Wafa Bel Haj Ali:
Boosting k-Nearest Neighbors Classification. Advanced Topics in Computer Vision 2013: 341-375 - [i16]Marc Sebban, Richard Nock:
Combining Feature and Prototype Pruning by Uncertainty Minimization. CoRR abs/1301.3891 (2013) - [i15]Frank Nielsen, Richard Nock:
On the Chi square and higher-order Chi distances for approximating f-divergences. CoRR abs/1309.3029 (2013) - [i14]Frank Nielsen, Richard Nock:
Total Jensen divergences: Definition, Properties and k-Means++ Clustering. CoRR abs/1309.7109 (2013) - [i13]Richard Nock, Frank Nielsen, Shun-ichi Amari:
On conformal divergences and their population minimizers. CoRR abs/1311.5125 (2013) - 2012
- [j32]Richard Nock, Paolo Piro, Frank Nielsen
, Wafa Bel Haj Ali, Michel Barlaud:
Boosting k-NN for Categorization of Natural Scenes. Int. J. Comput. Vis. 100(3): 294-314 (2012) - [j31]Paolo Piro, Richard Nock, Frank Nielsen
, Michel Barlaud:
Leveraging k-NN for generic classification boosting. Neurocomputing 80: 3-9 (2012) - [c74]Wafa Bel Haj Ali, Dario Giampaglia, Michel Barlaud, Paolo Piro, Richard Nock, Thierry Pourcher:
Classification of biological cells using bio-inspired descriptors. ICPR 2012: 3353-3357 - [c73]Roberto D'Ambrosio, Wafa Bel Haj Ali, Richard Nock, Paolo Soda
, Frank Nielsen
, Michel Barlaud:
Biomedical Images Classification by Universal Nearest Neighbours Classifier Using Posterior Probability. MLMI 2012: 119-127 - [c72]Roberto D'Ambrosio, Richard Nock, Wafa Bel Haj Ali, Frank Nielsen
, Michel Barlaud:
Boosting Nearest Neighbors for the Efficient Estimation of Posteriors. ECML/PKDD (1) 2012: 314-329 - [i12]Frank Nielsen, Richard Nock:
The hyperbolic Voronoi diagram in arbitrary dimension. CoRR abs/1210.8234 (2012) - 2011
- [j30]Brice Magdalou, Richard Nock:
Income distributions and decomposable divergence measures. J. Econ. Theory 146(6): 2440-2454 (2011) - [j29]Frank Nielsen
, Richard Nock:
Skew Jensen-Bregman Voronoi Diagrams. Trans. Comput. Sci. 14: 102-128 (2011) - [c71]Richard Nock, Brice Magdalou, Eric Briys, Frank Nielsen:
On tracking portfolios with certainty equivalents on a generalization of Markowitz model: the Fool, the Wise and the Adaptive. ICML 2011: 73-80 - [i11]Frank Nielsen, Richard Nock:
On Rényi and Tsallis entropies and divergences for exponential families. CoRR abs/1105.3259 (2011) - [i10]Richard Nock:
Inducing Interpretable Voting Classifiers without Trading Accuracy for Simplicity: Theoretical Results, Approximation Algorithms. CoRR abs/1106.1818 (2011) - [i9]Frank Nielsen, Richard Nock:
A closed-form expression for the Sharma-Mittal entropy of exponential families. CoRR abs/1112.4221 (2011) - 2010
- [j28]Jean-Daniel Boissonnat, Frank Nielsen
, Richard Nock:
Bregman Voronoi Diagrams. Discret. Comput. Geom. 44(2): 281-307 (2010) - [c70]Paolo Piro, Richard Nock, Frank Nielsen
, Michel Barlaud:
Multi-class Leveraged κ-NN for Image Classification. ACCV (3) 2010: 67-81 - [c69]Vincent Garcia, Frank Nielsen, Richard Nock:
Hierarchical Gaussian Mixture Model. ICASSP 2010: 4070-4073 - [c68]Frank Nielsen
, Richard Nock:
Hyperbolic Voronoi Diagrams Made Easy. ICCSA Workshops 2010: 74-80 - [c67]Frank Nielsen
, Richard Nock:
Entropies and cross-entropies of exponential families. ICIP 2010: 3621-3624 - [c66]Paolo Piro, Richard Nock, Frank Nielsen
, Michel Barlaud:
Boosting Bayesian MAP Classification. ICPR 2010: 661-665 - [c65]Frank Nielsen
, Richard Nock:
Jensen-Bregman Voronoi Diagrams and Centroidal Tessellations. ISVD 2010: 56-65 - [c64]Paolo Piro, Michel Barlaud, Richard Nock, Frank Nielsen:
K-NN boosting prototype learning for object classification. WIAMIS 2010: 1-4 - [i8]Paolo Piro, Richard Nock, Frank Nielsen, Michel Barlaud:
Boosting k-NN for categorization of natural scenes. CoRR abs/1001.1221 (2010)
2000 – 2009
- 2009
- [j27]Frank Nielsen
, Richard Nock:
Approximating Smallest Enclosing Balls with Applications to Machine Learning. Int. J. Comput. Geom. Appl. 19(5): 389-414 (2009) - [j26]Richard Nock, Frank Nielsen
:
Bregman Divergences and Surrogates for Learning. IEEE Trans. Pattern Anal. Mach. Intell. 31(11): 2048-2059 (2009) - [j25]Richard Nock, Pascal Vaillant
, Claudia Henry, Frank Nielsen
:
Soft memberships for spectral clustering, with application to permeable language distinction. Pattern Recognit. 42(1): 43-53 (2009) - [j24]Frank Nielsen
, Richard Nock:
Sided and symmetrized Bregman centroids. IEEE Trans. Inf. Theory 55(6): 2882-2904 (2009) - [c63]Vincent Garcia, Frank Nielsen
, Richard Nock:
Levels of Details for Gaussian Mixture Models. ACCV (2) 2009: 514-525 - [c62]Frank Nielsen, Vincent Garcia, Richard Nock:
Simplifying Gaussian mixture models via entropic quantization. EUSIPCO 2009: 2012-2016 - [c61]Frank Nielsen
, Richard Nock:
The Dual Voronoi Diagrams with Respect to Representational Bregman Divergences. ISVD 2009: 71-78 - [i7]Richard Nock, Brice Magdalou, Nicolas Sanz, Eric Briys, Fred Celimene, Frank Nielsen:
Information geometries and Microeconomic Theories. CoRR abs/0901.2586 (2009) - [i6]Frank Nielsen, Richard Nock:
Hyperbolic Voronoi diagrams made easy. CoRR abs/0903.3287 (2009) - 2008
- [j23]Frank Nielsen
, Richard Nock:
On the smallest enclosing information disk. Inf. Process. Lett. 105(3): 93-97 (2008) - [c60]Frank Nielsen
, Richard Nock:
Clustering Multivariate Normal Distributions. ETVC 2008: 164-174 - [c59]Richard Nock, Frank Nielsen
:
Intrinsic Geometries in Learning. ETVC 2008: 175-215 - [c58]Frank Nielsen
, Richard Nock:
Bregman sided and symmetrized centroids. ICPR 2008: 1-4 - [c57]Richard Nock, Frank Nielsen
:
On the efficient minimization of convex surrogates in supervised learning. ICPR 2008: 1-4 - [c56]Frank Nielsen
, Richard Nock:
Quantum Voronoi diagrams and Holevo channel capacity for 1-qubit quantum states. ISIT 2008: 96-100 - [c55]Richard Nock, Frank Nielsen:
On the Efficient Minimization of Classification Calibrated Surrogates. NIPS 2008: 1201-1208 - [c54]Richard Nock, Panu Luosto, Jyrki Kivinen:
Mixed Bregman Clustering with Approximation Guarantees. ECML/PKDD (2) 2008: 154-169 - [i5]Richard Nock, Nicolas Sanz, Fred Celimene, Frank Nielsen:
Staring at Economic Aggregators through Information Lenses. CoRR abs/0801.0390 (2008) - [i4]Pascal Vaillant
, Richard Nock, Claudia Henry:
Analyse spectrale des textes: détection automatique des frontières de langue et de discours. CoRR abs/0810.1212 (2008) - [i3]Richard Nock, Pascal Vaillant
, Frank Nielsen, Claudia Henry:
Soft Uncoupling of Markov Chains for Permeable Language Distinction: A New Algorithm. CoRR abs/0810.1261 (2008) - 2007
- [j22]Richard Nock, Frank Nielsen
:
A Real generalization of discrete AdaBoost. Artif. Intell. 171(1): 25-41 (2007) - [j21]Pierre-Alain Laur, Jean-Emile Symphor, Richard Nock, Pascal Poncelet:
Statistical supports for mining sequential patterns and improving the incremental update process on data streams. Intell. Data Anal. 11(1): 29-47 (2007) - [j20]Pierre-Alain Laur, Richard Nock, Jean-Emile Symphor, Pascal Poncelet
:
Mining evolving data streams for frequent patterns. Pattern Recognit. 40(2): 492-503 (2007) - [j19]Richard Nock, Frank Nielsen
:
Self-improved gaps almost everywhere for the agnostic approximation of monomials. Theor. Comput. Sci. 377(1-3): 139-150 (2007) - [c53]Frank Nielsen
, Jean-Daniel Boissonnat, Richard Nock:
Visualizing bregman voronoi diagrams. SCG 2007: 121-122 - [c52]Claudia Henry, Richard Nock, Frank Nielsen:
Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree. IJCAI 2007: 842-847 - [c51]Frank Nielsen, Richard Nock:
Fast Graph Segmentation Based on Statistical Aggregation Phenomena. MVA 2007: 150-153 - [c50]Frank Nielsen, Jean-Daniel Boissonnat, Richard Nock:
On Bregman Voronoi diagrams. SODA 2007: 746-755 - [i2]Frank Nielsen, Jean-Daniel Boissonnat, Richard Nock:
Bregman Voronoi Diagrams: Properties, Algorithms and Applications. CoRR abs/0709.2196 (2007) - [i1]Frank Nielsen, Richard Nock:
On the Centroids of Symmetrized Bregman Divergences. CoRR abs/0711.3242 (2007) - 2006
- [j18]Richard Nock, Frank Nielsen
:
On Weighting Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(8): 1223-1235 (2006) - [c49]Svetlana Kiritchenko
, Stan Matwin
, Richard Nock, A. Fazel Famili:
Learning and Evaluation in the Presence of Class Hierarchies: Application to Text Categorization. Canadian AI 2006: 395-406 - [c48]Frank Nielsen, Richard Nock:
On the Smallest Enclosing Information Disk. CCCG 2006 - [c47]Frank Nielsen
, Richard Nock:
On approximating the smallest enclosing Bregman Balls. SCG 2006: 485-486 - [c46]Richard Nock, Frank Nielsen:
A Real Generalization of Discrete AdaBoost. ECAI 2006: 509-515 - [c45]Richard Nock, Pascal Vaillant, Frank Nielsen, Claudia Henry:
Soft Uncoupling of Markov Chains for Permeable Language Distinction: A New Algorithm. ECAI 2006: 823-824 - [c44]Patrice Lefaucheur, Richard Nock:
Robust Multiclass Ensemble Classifiers via Symmetric Functions. ICPR (4) 2006: 136-139 - [c43]Richard Nock, Pierre-Alain Laur, Jean-Emile Symphor:
Statistical Borders for Incremental Mining. ICPR (3) 2006: 212-215 - [c42]Pascal Vaillant, Richard Nock, Claudia Henry:
Analyse spectrale des textes : détection automatique des frontières de langue et de discours. TALN (Posters) 2006: 619-629 - 2005
- [j17]Frank Nielsen
, Richard Nock:
A fast deterministic smallest enclosing disk approximation algorithm. Inf. Process. Lett. 93(6): 263-268 (2005) - [j16]Richard Nock, Frank Nielsen
:
Semi-supervised statistical region refinement for color image segmentation. Pattern Recognit. 38(6): 835-846 (2005) - [j15]Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:
Adaptation du boosting à l'inférence grammaticale via l'utilisation d'un oracle de confiance. Rev. d'Intelligence Artif. 19(4-5): 713-740 (2005) - [c41]Pierre-Alain Laur, Richard Nock, Jean-Emile Symphor, Pascal Poncelet:
On the estimation of frequent itemsets for data streams: theory and experiments. CIKM 2005: 327-328 - [c40]Frank Nielsen
, Richard Nock:
Interactive Pinpoint Image Object Removal. CVPR (2) 2005: 1191 - [c39]Richard Nock, Frank Nielsen:
Fitting the Smallest Enclosing Bregman Ball. ECML 2005: 649-656 - [c38]Frank Nielsen
, Richard Nock:
Interactive Point-and-Click Segmentation for Object Removal in Digital Images. ICCV-HCI 2005: 131-140 - [c37]Pierre-Alain Laur, Jean-Emile Symphor, Richard Nock, Pascal Poncelet:
Statistical Supports for Frequent Itemsets on Data Streams. MLDM 2005: 395-404 - [c36]Frank Nielsen
, Richard Nock:
ClickRemoval: interactive pinpoint image object removal. ACM Multimedia 2005: 315-318 - [c35]Richard Nock, Babak Esfandiari:
On-Line Adaptive Filtering of Web Pages. PKDD 2005: 634-642 - [c34]Babak Esfandiari, Richard Nock:
Adaptive filtering of advertisements on web pages. WWW (Special interest tracks and posters) 2005: 916-917 - 2004
- [j14]Richard Nock, Frank Nielsen
:
Statistical Region Merging. IEEE Trans. Pattern Anal. Mach. Intell. 26(11): 1452-1458 (2004) - [j13]Richard Nock, Frank Nielsen
:
On domain-partitioning induction criteria: worst-case bounds for the worst-case based. Theor. Comput. Sci. 321(2-3): 371-382 (2004) - [c33]Frank Nielsen, Richard Nock:
Approximating smallest enclosing disks. CCCG 2004: 124-127 - [c32]Richard Nock, Frank Nielsen:
Grouping with Bias Revisited. CVPR (2) 2004: 460-465 - [c31]Frank Nielsen
, Richard Nock:
Approximating Smallest Enclosing Balls. ICCSA (3) 2004: 147-157 - [c30]Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:
Boosting grammatical inference with confidence oracles. ICML 2004 - [c29]Richard Nock, Vincent Pagé:
Grouping with Bias for Distribution-Free Mixture Model Estimation. ICPR (2) 2004: 44-47 - [c28]Richard Nock, Frank Nielsen
:
Improving Clustering Algorithms through Constrained Convex Optimization. ICPR (4) 2004: 557-560 - [c27]Richard Nock, Frank Nielsen
:
An Abstract Weighting Framework for Clustering Algorithms. SDM 2004: 200-209 - 2003
- [j12]Richard Nock, Marc Sebban, Didier Bernard:
A Simple Locally Adaptive Nearest Neighbor Rule With Application To Pollution Forecasting. Int. J. Pattern Recognit. Artif. Intell. 17(8): 1369-1382 (2003) - [j11]Richard Nock, Tapio Elomaa
, Matti Kääriäinen:
Reduced Error Pruning of branching programs cannot be approximated to within a logarithmic factor. Inf. Process. Lett. 87(2): 73-78 (2003) - [j10]Richard Nock:
Complexity in the case against accuracy estimation. Theor. Comput. Sci. 301(1-3): 143-165 (2003) - [c26]Frank Nielsen, Richard Nock:
On Region Merging: The Statistical Soundness of Fast Sorting, with Applications. CVPR (2) 2003: 19-26 - 2002
- [j9]Richard Nock:
Inducing Interpretable Voting Classifiers without Trading Accuracy for Simplicity: Theoretical Results, Approximation Algorithms, and Experiments. J. Artif. Intell. Res. 17: 137-170 (2002) - [j8]Marc Sebban, Richard Nock, Stéphane Lallich:
Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problem. J. Mach. Learn. Res. 3: 863-885 (2002) - [j7]Marc Sebban, Richard Nock:
A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognit. 35(4): 835-846 (2002) - [c25]Richard Nock, Patrice Lefaucheur:
A Robust Boosting Algorithm. ECML 2002: 319-330 - 2001
- [j6]Richard Nock, Marc Sebban:
Advances in Adaptive Prototype Weighting and Selection. Int. J. Artif. Intell. Tools 10(1-2): 137-155 (2001) - [j5]Richard Nock, Marc Sebban:
An improved bound on the finite-sample risk of the nearest neighbor rule. Pattern Recognit. Lett. 22(3/4): 407-412 (2001) - [j4]Richard Nock, Marc Sebban:
A Bayesian boosting theorem. Pattern Recognit. Lett. 22(3/4): 413-419 (2001) - [c24]Richard Nock:
Fast and Reliable Color Region Merging inspired by Decision Tree Pruning. CVPR (1) 2001: I:271- - [c23]Marc Sebban, Richard Nock:
Improvement of Nearest-Neighbor Classifiers via Support Vector Machines. FLAIRS 2001: 113-117 - [c22]Marc Sebban, Richard Nock, Stéphane Lallich:
Boosting Neighborhood-Based Classifiers. ICML 2001: 505-512 - 2000
- [j3]Marc Sebban, Richard Nock, Jean-Hugues Chauchat, Ricco Rakotomalala:
Impact of learning set quality and size on decision tree performances. Int. J. Comput. Syst. Signals 1(1): 85-105 (2000) - [c21]Marc Sebban, Richard Nock:
Identifying and Eliminating Irrelevant Instances Using Information Theory. AI 2000: 90-101 - [c20]Richard Nock, Marc Sebban:
Sharper Bounds for the Hardness of Prototype and Feature Selection. ALT 2000: 224-237 - [c19]Christophe Fiorio, Richard Nock:
A Concentration-Based Adaptive Approach to Region Merging of Optimal Time and Space Complexities. BMVC 2000: 1-10 - [c18]Richard Nock, Marc Sebban, Pascal Jabby:
A Symmetric Nearest Neighbor Learning Rule. EWCBR 2000: 222-233 - [c17]Richard Nock, Marc Sebban:
A Boosting-Based Prototype Weighting and Selection Scheme. FLAIRS 2000: 71-75 - [c16]Christophe Fiorio, Richard Nock:
Sorted Region Merging to Maximize Test Reliability. ICIP 2000: 808-811 - [c15]Marc Sebban, Richard Nock:
Instance Pruning as an Information Preserving Problem. ICML 2000: 855-862 - [c14]Marc Sebban, Richard Nock:
Contribution of Dataset Reduction Techniques to Tree-Simplification and Knowledge Discovery. PKDD 2000: 44-53 - [c13]Marc Sebban, Richard Nock:
Combining Feature and Example Pruning by Uncertainty Minimization. UAI 2000: 533-540
1990 – 1999
- 1999
- [j2]Richard Nock, Pascal Jappy:
Decision tree based induction of decision lists. Intell. Data Anal. 3(3): 227-240 (1999) - [c12]Richard Nock:
Complexity in the Case against Accuracy: When Building one Function-Free Horn Clause is as Hard as Any. ALT 1999: 182-193 - [c11]Richard Nock, Pascal Jappy:
A "Top-Down and Prune" Induction Scheme for Constrained Decision Committees. IDA 1999: 27-38 - [c10]Marc Sebban, Richard Nock:
Contribution of Boosting in Wrapper Models. PKDD 1999: 214-222 - [c9]Richard Nock, Marc Sebban, Pascal Jappy:
Experiments on a Representation-Independent "Top-Down and Prune" Induction Scheme. PKDD 1999: 223-231 - 1998
- [j1]Olivier Gascuel, Bernadette Bouchon-Meunier, Gilles Caraux, Patrick Gallinari, Alain Guénoche, Yann Guermeur, Yves Lechevallier, Christophe Marsala
, Laurent Miclet, Jacques Nicolas, Richard Nock, Mohammed Ramdani, Michèle Sebag, Basavanneppa Tallur, Gilles Venturini, Patrick Vitte:
Twelve Numerical, Symbolic and Hybrid Supervised Classification Methods. Int. J. Pattern Recognit. Artif. Intell. 12(4): 517-571 (1998) - [c8]Richard Nock, Babak Esfandiari:
Oracles and Assistants: Machine Learning Applied to Network Supervision. Canadian AI 1998: 86-98 - [c7]Pascal Jappy, Richard Nock:
PAC Learning Conceptual Graphs. ICCS 1998: 303-318 - [c6]Richard Nock, Pascal Jappy:
On the Power of Decision Lists. ICML 1998: 413-420 - [c5]Christophe Fiorio, Richard Nock:
Image segmentation using a generic, fast and non-parametric approach. ICTAI 1998: 450-458 - [c4]Richard Nock, Pascal Jappy:
Function-Free Horn Clauses Are Hard to Approximate. ILP 1998: 195-204 - [c3]Richard Nock, Pascal Jappy, Jean Sallantin:
Generalized Graph Colorability and Compressibility of Boolean Formulae. ISAAC 1998: 237-246 - 1996
- [c2]Pascal Jappy, Richard Nock, Olivier Gascuel:
Negative Robust Learning Results from Horn Claus Programs. ICML 1996: 258-265 - 1995
- [c1]Richard Nock, Olivier Gascuel:
On Learning Decision Committees. ICML 1995: 413-420
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-04 21:21 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint