default search action
Shin Yoo
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j34]Sungmin Kang, Gabin An, Shin Yoo:
A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization. Proc. ACM Softw. Eng. 1(FSE): 1424-1446 (2024) - [j33]William B. Langdon, Gabin An, Aymeric Blot, Vesna Nowack, Justyna Petke, Shin Yoo, Oliver Krauss, Erik M. Fredericks, Daniel Blackwell:
The 13th International Workshop on Genetic Improvement(GI @ ICSE 2024). ACM SIGSOFT Softw. Eng. Notes 49(3): 42-50 (2024) - [j32]Sungmin Kang, Robert Feldt, Shin Yoo:
Deceiving Humans and Machines Alike: Search-based Test Input Generation for DNNs Using Variational Autoencoders. ACM Trans. Softw. Eng. Methodol. 33(4): 103:1-103:24 (2024) - [c80]Juyeon Yoon, Robert Feldt, Shin Yoo:
Intent-Driven Mobile GUI Testing with Autonomous Large Language Model Agents. ICST 2024: 129-139 - [c79]Jae Yong Lee, Sungmin Kang, Juyeon Yoon, Shin Yoo:
The GitHub Recent Bugs Dataset for Evaluating LLM-Based Debugging Applications. ICST 2024: 442-444 - [i35]Saeyoon Oh, Shin Yoo:
CSA-Trans: Code Structure Aware Transformer for AST. CoRR abs/2404.05767 (2024) - [i34]Sungmin Kang, Louis Milliken, Shin Yoo:
Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution. CoRR abs/2406.14836 (2024) - 2023
- [j31]Jinhan Kim, Gabin An, Robert Feldt, Shin Yoo:
Learning test-mutant relationship for accurate fault localisation. Inf. Softw. Technol. 162: 107272 (2023) - [j30]Jinhan Kim, Robert Feldt, Shin Yoo:
Evaluating Surprise Adequacy for Deep Learning System Testing. ACM Trans. Softw. Eng. Methodol. 32(2): 42:1-42:29 (2023) - [j29]Jeongju Sohn, Sungmin Kang, Shin Yoo:
Arachne: Search-Based Repair of Deep Neural Networks. ACM Trans. Softw. Eng. Methodol. 32(4): 85:1-85:26 (2023) - [c78]Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, Jie M. Zhang:
Large Language Models for Software Engineering: Survey and Open Problems. ICSE-FoSE 2023: 31-53 - [c77]Sungmin Kang, Shin Yoo:
Towards Objective-Tailored Genetic Improvement Through Large Language Models. GI 2023: 19-20 - [c76]Sungmin Kang, Shin Yoo:
GLAD: Neural Predicate Synthesis to Repair Omission Faults. ICSE Companion 2023: 320-321 - [c75]Gabin An, Jingun Hong, Naryeong Kim, Shin Yoo:
Fonte: Finding Bug Inducing Commits from Failures. ICSE 2023: 589-601 - [c74]Sungmin Kang, Juyeon Yoon, Shin Yoo:
Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction. ICSE 2023: 2312-2323 - [c73]Jinhan Kim, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, Shin Yoo:
Repairing DNN Architecture: Are We There Yet? ICST 2023: 234-245 - [c72]Jinhan Kim, Jongchan Park, Shin Yoo:
The Inversive Relationship Between Bugs and Patches: An Empirical Study. ICSTW 2023: 314-323 - [c71]Sungmin Kang, Wonkeun Choi, Shin Yoo:
A Bayesian Framework for Automated Debugging. ISSTA 2023: 880-891 - [c70]Robert Feldt, Sungmin Kang, Juyeon Yoon, Shin Yoo:
Towards Autonomous Testing Agents via Conversational Large Language Models. ASE 2023: 1688-1693 - [c69]Gabin An, Minhyuk Kwon, Kyunghwa Choi, Jooyong Yi, Shin Yoo:
BUGSC++: A Highly Usable Real World Defect Benchmark for C/C++. ASE 2023: 2034-2037 - [i33]Jinhan Kim, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, Shin Yoo:
Repairing DNN Architecture: Are We There Yet? CoRR abs/2301.11568 (2023) - [i32]Jinhan Kim, Jongchan Park, Shin Yoo:
The Inversive Relationship Between Bugs and Patches: An Empirical Study. CoRR abs/2303.00303 (2023) - [i31]Sungmin Kang, Bei Chen, Shin Yoo, Jian-Guang Lou:
Explainable Automated Debugging via Large Language Model-driven Scientific Debugging. CoRR abs/2304.02195 (2023) - [i30]Sungmin Kang, Shin Yoo:
Towards Objective-Tailored Genetic Improvement Through Large Language Models. CoRR abs/2304.09386 (2023) - [i29]Jinhan Kim, Gabin An, Robert Feldt, Shin Yoo:
Learning Test-Mutant Relationship for Accurate Fault Localisation. CoRR abs/2306.02319 (2023) - [i28]Robert Feldt, Sungmin Kang, Juyeon Yoon, Shin Yoo:
Towards Autonomous Testing Agents via Conversational Large Language Models. CoRR abs/2306.05152 (2023) - [i27]Sungmin Kang, Gabin An, Shin Yoo:
A Preliminary Evaluation of LLM-Based Fault Localization. CoRR abs/2308.05487 (2023) - [i26]Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, Jie M. Zhang:
Large Language Models for Software Engineering: Survey and Open Problems. CoRR abs/2310.03533 (2023) - [i25]Gabin An, Juyeon Yoon, Thomas Bach, Jingun Hong, Shin Yoo:
Just-in-Time Flaky Test Detection via Abstracted Failure Symptom Matching. CoRR abs/2310.06298 (2023) - [i24]Jae Yong Lee, Sungmin Kang, Juyeon Yoon, Shin Yoo:
The GitHub Recent Bugs Dataset for Evaluating LLM-based Debugging Applications. CoRR abs/2310.13229 (2023) - [i23]Sungmin Kang, Juyeon Yoon, Nargiz Askarbekkyzy, Shin Yoo:
Evaluating Diverse Large Language Models for Automatic and General Bug Reproduction. CoRR abs/2311.04532 (2023) - [i22]Juyeon Yoon, Robert Feldt, Shin Yoo:
Autonomous Large Language Model Agents Enabling Intent-Driven Mobile GUI Testing. CoRR abs/2311.08649 (2023) - 2022
- [j28]Jinhan Kim, Juyoung Jeon, Shin Hong, Shin Yoo:
Predictive Mutation Analysis via the Natural Language Channel in Source Code. ACM Trans. Softw. Eng. Methodol. 31(4): 73:1-73:27 (2022) - [c68]Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, Shin Yoo:
Automatically Identifying Shared Root Causes of Test Breakages in SAP HANA. ICSE (SEIP) 2022: 65-74 - [c67]Sungmin Kang, Shin Yoo:
Language Models Can Prioritize Patches for Practical Program Patching. APR@ICSE 2022: 8-15 - [c66]Seungjoon Chung, Shin Yoo:
Augmenting Equivalent Mutant Dataset Using Symbolic Execution. ICST Workshops 2022: 150-159 - [c65]Juyeon Yoon, Seungjoon Chung, Kihyuck Shin, Jinhan Kim, Shin Hong, Shin Yoo:
Repairing Fragile GUI Test Cases Using Word and Layout Embedding. ICST 2022: 291-301 - [c64]Gabin An, Shin Yoo:
FDG: a precise measurement of fault diagnosability gain of test cases. ISSTA 2022: 14-26 - [i21]Sungmin Kang, Shin Yoo:
GLAD: Neural Predicate Synthesis to Repair Omission Faults. CoRR abs/2204.06771 (2022) - [i20]Sungmin Kang, Juyeon Yoon, Shin Yoo:
Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction. CoRR abs/2209.11515 (2022) - [i19]Gabin An, Jingun Hong, Naryeong Kim, Shin Yoo:
Fonte: Finding Bug Inducing Commits from Failures. CoRR abs/2212.06376 (2022) - [i18]Sungmin Kang, Wonkeun Choi, Shin Yoo:
A Bayesian Framework for Automated Debugging. CoRR abs/2212.13773 (2022) - 2021
- [j27]Seongmin Lee, Dave W. Binkley, Robert Feldt, Nicolas Gold, Shin Yoo:
Observation-based approximate dependency modeling and its use for program slicing. J. Syst. Softw. 179: 110988 (2021) - [j26]Shin Yoo, Aldeida Aleti, Burak Turhan, Leandro L. Minku, Andriy V. Miranskyy, Çetin Meriçli:
The 8th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering. ACM SIGSOFT Softw. Eng. Notes 46(1): 23-24 (2021) - [j25]Robert Feldt, Shin Yoo:
Special Issue: IEEE International Conference on Software Testing, Validation & Verification 2018. Softw. Test. Verification Reliab. 31(1-2) (2021) - [j24]Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, Yves Le Traon:
Mining Fix Patterns for FindBugs Violations. IEEE Trans. Software Eng. 47(1): 165-188 (2021) - [j23]Jeongju Sohn, Shin Yoo:
Empirical Evaluation of Fault Localisation Using Code and Change Metrics. IEEE Trans. Software Eng. 47(8): 1605-1625 (2021) - [c63]Seah Kim, Shin Yoo:
Multimodal Surprise Adequacy Analysis of Inputs for Natural Language Processing DNN Models. AST@ICSE 2021: 80-89 - [c62]Saeyoon Oh, Seongmin Lee, Shin Yoo:
Effectively Sampling Higher Order Mutants Using Causal Effect. ICST Workshops 2021: 19-24 - [c61]Jeongju Sohn, Gabin An, Jingun Hong, Dongwon Hwang, Shin Yoo:
Assisting Bug Report Assignment Using Automated Fault Localisation: An Industrial Case Study. ICST 2021: 284-294 - [c60]Jinhan Kim, Gabin An, Robert Feldt, Shin Yoo:
Ahead of Time Mutation Based Fault Localisation using Statistical Inference. ISSRE 2021: 253-263 - [c59]Juyeon Yoon, Shin Yoo:
Enhancing Lexical Representation of Test Coverage for Failure Clustering. ASE Workshops 2021: 232-238 - [c58]Seunghee Han, Jaeuk Kim, Geon Kim, Jaemin Cho, Jiin Kim, Shin Yoo:
Preliminary Evaluation of Path-aware Crossover Operators for Search-Based Test Data Generation for Autonomous Driving. SBST@ICSE 2021: 44-47 - [c57]Gabin An, Shin Yoo:
Reducing the search space of bug inducing commits using failure coverage. ESEC/SIGSOFT FSE 2021: 1459-1462 - [c56]Yu-Seung Ma, Shin Yoo, Taeho Kim:
Selecting test inputs for DNNs using differential testing with subspecialized model instances. ESEC/SIGSOFT FSE 2021: 1467-1470 - [c55]Junghyun Lee, Chani Jung, Yoo Hwa Park, Dongmin Lee, Juyeon Yoon, Shin Yoo:
Preliminary Evaluation of SWAY in Permutation Decision Space via a Novel Euclidean Embedding. SSBSE 2021: 26-40 - [c54]Gabin An, Juyeon Yoon, Shin Yoo:
Searching for Multi-fault Programs in Defects4J. SSBSE 2021: 153-158 - [c53]Jeongju Sohn, Yasutaka Kamei, Shane McIntosh, Shin Yoo:
Leveraging Fault Localisation to Enhance Defect Prediction. SANER 2021: 284-294 - [i17]Gabin An, Shin Yoo:
Human-in-the-Loop Fault Localisation Using Efficient Test Prioritisation of Generated Tests. CoRR abs/2104.06641 (2021) - [i16]Seongmin Lee, Dave W. Binkley, Robert Feldt, Nicolas Gold, Shin Yoo:
Causal Program Dependence Analysis. CoRR abs/2104.09107 (2021) - [i15]Gabin An, Juyeon Yoon, Joyce Jiyoung Whang, Shin Yoo:
Improving Test Distance for Failure Clustering with Hypergraph Modelling. CoRR abs/2104.10360 (2021) - [i14]Jinhan Kim, Juyoung Jeon, Shin Hong, Shin Yoo:
Predictive Mutation Analysis via Natural Language Channel in Source Code. CoRR abs/2104.10865 (2021) - [i13]Saeyoon Oh, Seongmin Lee, Shin Yoo:
Effectively Sampling Higher Order Mutants Using Causal Effect. CoRR abs/2104.11005 (2021) - [i12]Gabin An, Juyeon Yoon, Shin Yoo:
Searching for Multi-Fault Programs in Defects4J. CoRR abs/2108.04455 (2021) - 2020
- [j22]Paul Ralph, Sebastian Baltes, Gianisa Adisaputri, Richard Torkar, Vladimir Kovalenko, Marcos Kalinowski, Nicole Novielli, Shin Yoo, Xavier Devroey, Xin Tan, Minghui Zhou, Burak Turhan, Rashina Hoda, Hideaki Hata, Gregorio Robles, Amin Milani Fard, Rana Alkadhi:
Pandemic programming. Empir. Softw. Eng. 25(6): 4927-4961 (2020) - [j21]Seongmin Lee, Dave W. Binkley, Nicolas Gold, Syed S. Islam, Jens Krinke, Shin Yoo:
Evaluating lexical approximation of program dependence. J. Syst. Softw. 160 (2020) - [j20]William B. Langdon, Westley Weimer, Justyna Petke, Erik M. Fredericks, Seongmin Lee, Emily Winter, Michail Basios, Myra B. Cohen, Aymeric Blot, Markus Wagner, Bobby R. Bruce, Shin Yoo, Simos Gerasimou, Oliver Krauss, Yu Huang, Michael C. Gerten:
Genetic Improvement @ ICSE 2020. ACM SIGSOFT Softw. Eng. Notes 45(4): 24-30 (2020) - [c52]Federica Sarro, Alessio Petrozziello, Dan-Qi He, Shin Yoo:
A new approach to distribute MOEA pareto front computation. GECCO Companion 2020: 315-316 - [c51]Seah Kim, Shin Yoo:
Evaluating Surprise Adequacy for Question Answering. ICSE (Workshops) 2020: 197-202 - [c50]Sungmin Kang, Robert Feldt, Shin Yoo:
SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation. ICSE (Workshops) 2020: 521-528 - [c49]Robert Feldt, Shin Yoo:
Flexible Probabilistic Modeling for Search Based Test Data Generation. ICSE (Workshops) 2020: 537-540 - [c48]Jinhan Kim, Jeongil Ju, Robert Feldt, Shin Yoo:
Reducing DNN labelling cost using surprise adequacy: an industrial case study for autonomous driving. ESEC/SIGSOFT FSE 2020: 1466-1476 - [i11]Paul Ralph, Sebastian Baltes, Gianisa Adisaputri, Richard Torkar, Vladimir Kovalenko, Marcos Kalinowski, Nicole Novielli, Shin Yoo, Xavier Devroey, Xin Tan, Minghui Zhou, Burak Turhan, Rashina Hoda, Hideaki Hata, Gregorio Robles, Amin Milani Fard, Rana Alkadhi:
Pandemic Programming: How COVID-19 affects software developers and how their organizations can help. CoRR abs/2005.01127 (2020) - [i10]Sungmin Kang, Robert Feldt, Shin Yoo:
SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation. CoRR abs/2005.09296 (2020) - [i9]Jinhan Kim, Jeongil Ju, Robert Feldt, Shin Yoo:
Reducing DNN Labelling Cost using Surprise Adequacy: An Industrial Case Study for Autonomous Driving. CoRR abs/2006.00894 (2020) - [i8]William B. Langdon, Westley Weimer, Justyna Petke, Erik M. Fredericks, Seongmin Lee, Emily Winter, Michail Basios, Myra B. Cohen, Aymeric Blot, Markus Wagner, Bobby R. Bruce, Shin Yoo, Simos Gerasimou, Oliver Krauss, Yu Huang, Michael C. Gerten:
Genetic Improvement @ ICSE 2020. CoRR abs/2007.15987 (2020)
2010 – 2019
- 2019
- [j19]David W. Binkley, Nicolas Gold, Syed S. Islam, Jens Krinke, Shin Yoo:
A comparison of tree- and line-oriented observational slicing. Empir. Softw. Eng. 24(5): 3077-3113 (2019) - [j18]Jinhan Kim, Shin Yoo:
Software review: DEAP (Distributed Evolutionary Algorithm in Python) library. Genet. Program. Evolvable Mach. 20(1): 139-142 (2019) - [j17]Donghwan Shin, Shin Yoo, Mike Papadakis, Doo-Hwan Bae:
Empirical evaluation of mutation-based test case prioritization techniques. Softw. Test. Verification Reliab. 29(1-2) (2019) - [j16]Yunho Kim, Seokhyeon Mun, Shin Yoo, Moonzoo Kim:
Precise Learn-to-Rank Fault Localization Using Dynamic and Static Features of Target Programs. ACM Trans. Softw. Eng. Methodol. 28(4): 23:1-23:34 (2019) - [c47]Jeongju Sohn, Shin Yoo:
Why train-and-select when you can use them all?: ensemble model for fault localisation. GECCO 2019: 1408-1416 - [c46]Shin Yoo:
SBST in the age of machine learning systems: challenges ahead. SBST@ICSE 2019: 2 - [c45]Jinhan Kim, Robert Feldt, Shin Yoo:
Guiding deep learning system testing using surprise adequacy. ICSE 2019: 1039-1049 - [c44]Seongmin Lee, Shin Hong, Jungbae Yi, Taeksu Kim, Chul-Joo Kim, Shin Yoo:
Classifying False Positive Static Checker Alarms in Continuous Integration Using Convolutional Neural Networks. ICST 2019: 391-401 - [c43]Seongmin Lee, David W. Binkley, Robert Feldt, Nicolas Gold, Shin Yoo:
MOAD: Modeling Observation-Based Approximate Dependency. SCAM 2019: 12-22 - [c42]Gabin An, Aymeric Blot, Justyna Petke, Shin Yoo:
PyGGI 2.0: language independent genetic improvement framework. ESEC/SIGSOFT FSE 2019: 1100-1104 - [i7]Jinhan Kim, Gabin An, Robert Feldt, Shin Yoo:
Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference. CoRR abs/1902.09729 (2019) - [i6]Jeongju Sohn, Sungmin Kang, Shin Yoo:
Search Based Repair of Deep Neural Networks. CoRR abs/1912.12463 (2019) - 2018
- [j15]Donghwan Shin, Shin Yoo, Doo-Hwan Bae:
A Theoretical and Empirical Study of Diversity-Aware Mutation Adequacy Criterion. IEEE Trans. Software Eng. 44(10): 914-931 (2018) - [c41]Gabin An, Jinhan Kim, Shin Yoo:
Comparing line and AST granularity level for program repair using PyGGI. GI@ICSE 2018: 19-26 - [c40]Junhwi Kim, Minhyuk Kwon, Shin Yoo:
Generating test input with deep reinforcement learning. SBST@ICSE 2018: 51-58 - [c39]Seongmin Lee, David W. Binkley, Nicolas Gold, Syed S. Islam, Jens Krinke, Shin Yoo:
MOBS: multi-operator observation-based slicing using lexical approximation of program dependence. ICSE (Companion Volume) 2018: 302-303 - [c38]Mike Papadakis, Donghwan Shin, Shin Yoo, Doo-Hwan Bae:
Are mutation scores correlated with real fault detection?: a large scale empirical study on the relationship between mutants and real faults. ICSE 2018: 537-548 - [c37]Jinhan Kim, Michael G. Epitropakis, Shin Yoo:
Learning Without Peeking: Secure Multi-party Computation Genetic Programming. SSBSE 2018: 246-261 - [c36]Kabdo Choi, Jeongju Sohn, Shin Yoo:
Learning Fault Localisation for both Humans and Machines Using Multi-objective GP. SSBSE 2018: 349-355 - [i5]Jinhan Kim, Robert Feldt, Shin Yoo:
Guiding Deep Learning System Testing using Surprise Adequacy. CoRR abs/1808.08444 (2018) - 2017
- [j14]Claire Le Goues, Shin Yoo:
Guest editorial for special section on research in search-based software engineering. Empir. Softw. Eng. 22(2): 849-851 (2017) - [j13]Jimin Hwa, Shin Yoo, Yeong-Seok Seo, Doo-Hwan Bae:
Search-Based Approaches for Software Module Clustering Based on Multiple Relationship Factors. Int. J. Softw. Eng. Knowl. Eng. 27(7): 1033-1062 (2017) - [j12]Shin Yoo, David W. Binkley, Roger D. Eastman:
Observational slicing based on visual semantics. J. Syst. Softw. 129: 60-78 (2017) - [j11]Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, Mark Harman:
Human Competitiveness of Genetic Programming in Spectrum-Based Fault Localisation: Theoretical and Empirical Analysis. ACM Trans. Softw. Eng. Methodol. 26(1): 4:1-4:30 (2017) - [c35]Dahyun Kang, Jeongju Sohn, Shin Yoo:
Empirical evaluation of conditional operators in GP based fault localization. GECCO 2017: 1295-1302 - [c34]Shin Yoo:
Embedding genetic improvement into programming languages. GECCO (Companion) 2017: 1551-1552 - [c33]William B. Langdon, Shin Yoo, Mark Harman:
Inferring Automatic Test Oracles. SBST@ICSE 2017: 5-6 - [c32]Jeongju Sohn, Shin Yoo:
FLUCCS: using code and change metrics to improve fault localization. ISSTA 2017: 273-283 - [c31]David W. Binkley, Nicolas Gold, Syed S. Islam, Jens Krinke, Shin Yoo:
Tree-Oriented vs. Line-Oriented Observation-Based Slicing. SCAM 2017: 21-30 - [c30]Nicolas E. Gold, David W. Binkley, Mark Harman, Syed S. Islam, Jens Krinke, Shin Yoo:
Generalized observational slicing for tree-represented modelling languages. ESEC/SIGSOFT FSE 2017: 547-558 - [c29]Jinhan Kim, Junhwi Kim, Shin Yoo:
GPGPGPU: Evaluation of Parallelisation of Genetic Programming Using GPGPU. SSBSE 2017: 137-142 - [c28]Junhwi Kim, Byeonghyeon You, Minhyuk Kwon, Phil McMinn, Shin Yoo:
Evaluating CAVM: A New Search-Based Test Data Generation Tool for C. SSBSE 2017: 143-149 - [c27]Seongmin Lee, Shin Yoo:
Hyperheuristic Observation Based Slicing of Guava. SSBSE 2017: 175-180 - [i4]Donghwan Shin, Shin Yoo, Mike Papadakis, Doo-Hwan Bae:
Empirical Evaluation of Mutation-based Test Prioritization Techniques. CoRR abs/1709.04631 (2017) - [i3]Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, Yves Le Traon:
Mining Fix Patterns for FindBugs Violations. CoRR abs/1712.03201 (2017) - 2016
- [c26]Donghwan Shin, Shin Yoo, Doo-Hwan Bae:
Diversity-Aware Mutation Adequacy Criterion for Improving Fault Detection Capability. ICST Workshops 2016: 122-131 - [c25]Robert Feldt, Simon M. Poulding, David Clark, Shin Yoo:
Test Set Diameter: Quantifying the Diversity of Sets of Test Cases. ICST 2016: 223-233 - [c24]Jeongju Sohn, Seongmin Lee, Shin Yoo:
Amortised Deep Parameter Optimisation of GPGPU Work Group Size for OpenCV. SSBSE 2016: 211-217 - [c23]Jinsuk Lim, Shin Yoo:
Field Report: Applying Monte Carlo Tree Search for Program Synthesis. SSBSE 2016: 304-310 - 2015
- [j10]Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, Shin Yoo:
The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software Eng. 41(5): 507-525 (2015) - [j9]Justyna Petke, Myra B. Cohen, Mark Harman, Shin Yoo:
Practical Combinatorial Interaction Testing: Empirical Findings on Efficiency and Early Fault Detection. IEEE Trans. Software Eng. 41(9): 901-924 (2015) - [c22]David Robert White, Shin Yoo, Jeremy Singer:
The Programming Game: Evaluating MCTS as an Alternative to GP for Symbolic Regression. GECCO (Companion) 2015: 1521-1522 - [c21]David Clark, Robert Feldt, Simon M. Poulding, Shin Yoo:
Information Transformation: An Underpinning Theory for Software Engineering. ICSE (2) 2015: 599-602 - [c20]Michael G. Epitropakis, Shin Yoo, Mark Harman, Edmund K. Burke:
Empirical evaluation of pareto efficient multi-objective regression test case prioritisation. ISSTA 2015: 234-245 - [c19]