default search action
Zahava Koren
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c46]Glenn H. Chapman, Klinsmann J. Coelho Silva Meneses, Linda Wu, Israel Koren, Zahava Koren:
Image Degradation in Time Due to Interacting Hot Pixels. DFT 2023: 1-6 - 2022
- [c45]Glenn H. Chapman, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Image Degradation due to Interacting Adjacent Hot Pixels. DFT 2022: 1-6 - 2021
- [c44]Glenn H. Chapman, Simone Neufeld, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Dependence of SEUs in Digital Cameras on Pixel size and Elevation. DFT 2021: 1-4 - 2020
- [c43]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Ruoyi Zhao, Israel Koren, Zahava Koren:
Using digital imagers to characterize the dependence of energy and area distributions of SEUs on elevation. DFT 2020: 1-4
2010 – 2019
- 2019
- [c42]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Bifei Huang, Hao Yang, Israel Koren, Zahava Koren:
Detecting SEUs in Noisy Digital Imagers with small pixels. DFT 2019: 1-6 - [c41]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Image degradation from hot pixel defects with pixel size shrinkage. IMSE 2019: 1-7 - 2018
- [c40]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Analysis of Single Event Upsets Based on Digital Cameras with Very Small Pixels. DFT 2018: 1-6 - [c39]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Parham Purbakht, Israel Koren, Zahava Koren:
Exploring Hot Pixel Characteristics for 7 to 1.3 micron Pixels. IMSE 2018: 1-6 - 2017
- [c38]Glenn H. Chapman, Parham Purbakht, Peter Le, Israel Koren, Zahava Koren:
Exploring soft errors (SEUs) with digital imager pixels ranging from 7 to 1.3 μm. DFT 2017: 1-4 - [c37]Glenn H. Chapman, Rahul Thomas, Israel Koren, Zahava Koren:
Hot Pixel Behavior as Pixel Size Reduces to 1 micron. IMSE 2017: 39-45 - 2016
- [c36]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Israel Koren, Zahava Koren:
Experimental study and analysis of soft and permanent errors in digital cameras. DFT 2016: 11-14 - [c35]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Tommy Q. Yang, Israel Koren, Zahava Koren:
Increases in Hot Pixel Development Rates for Small Digital Pixel Sizes. IMSE 2016: 1-6 - 2015
- [c34]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Tommy Q. Yang, Israel Koren, Zahava Koren:
Single Event Upsets and Hot Pixels in digital imagers. DFTS 2015: 41-46 - [c33]Glenn H. Chapman, Rahul Thomas, Rohit Thomas, Zahava Koren, Israel Koren:
Enhanced correction methods for high density hot pixel defects in digital imagers. IMSE 2015: 94030T - 2014
- [j12]R. C. Ravindran, C. Mani Krishna, Israel Koren, Zahava Koren:
Scheduling imprecise task graphs for real-time applications. Int. J. Embed. Syst. 6(1): 73-85 (2014) - [c32]Glenn H. Chapman, Rohit Thomas, Rahul Thomas, Israel Koren, Zahava Koren:
Improved correction for hot pixels in digital imagers. DFT 2014: 116-121 - [c31]Glenn H. Chapman, Rohit Thomas, Zahava Koren, Israel Koren:
Correcting high-density hot pixel defects in digital imagers. IMSE 2014: 90220G - 2013
- [c30]Glenn H. Chapman, Rohit Thomas, Israel Koren, Zahava Koren:
Improved image accuracy in Hot Pixel degraded digital cameras. DFTS 2013: 172-177 - [c29]Glenn H. Chapman, Rohit Thomas, Zahava Koren, Israel Koren:
Empirical formula for rates of hot pixel defects based on pixel size, sensor area, and ISO. Sensors, Cameras, and Systems for Industrial and Scientific Applications 2013: 86590C - 2012
- [c28]Glenn H. Chapman, Rohit Thomas, Israel Koren, Zahava Koren:
Relating digital imager defect rates to pixel size, sensor area and ISO. DFT 2012: 164-169 - [c27]Glenn H. Chapman, Jenny Leung, Rohit Thomas, Ana I. L. Namburete, Zahava Koren, Israel Koren:
Projecting the rate of in-field pixel defects based on pixel size, sensor area, and ISO. Sensors, Cameras, and Systems for Industrial and Scientific Applications 2012: 82980E - [c26]Abhinna Jain, C. M. Krishna, Israel Koren, Zahava Koren:
Cost Functions for Scheduling Tasks in Cyber-physical Systems. ICINCO (1) 2012: 412-421 - [c25]Glenn H. Chapman, Israel Koren, Zahava Koren:
Do more camera pixels result in a better picture? IOLTS 2012: 73-78 - 2011
- [c24]Glenn H. Chapman, Jenny Leung, Ana I. L. Namburete, Israel Koren, Zahava Koren:
Predicting Pixel Defect Rates Based on Image Sensor Parameters. DFT 2011: 408-416 - [c23]Glenn H. Chapman, Jenny Leung, Rahul Thomas, Zahava Koren, Israel Koren:
Tradeoffs in imager design parameters for sensor reliability. Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications 2011: 78750I - 2010
- [c22]Glenn H. Chapman, Jenny Leung, Israel Koren, Zahava Koren:
Tradeoffs in Imager Design with Respect to Pixel Defect Rates. DFT 2010: 231-239
2000 – 2009
- 2009
- [j11]Srikanth Sundaresan, Israel Koren, Zahava Koren, C. Mani Krishna:
Event-driven adaptive duty-cycling in sensor networks. Int. J. Sens. Networks 6(2): 89-100 (2009) - [c21]Jenny Leung, Glenn H. Chapman, Israel Koren, Zahava Koren:
Characterization of Gain Enhanced In-Field Defects in Digital Imagers. DFT 2009: 155-163 - [c20]Jenny Leung, Glenn H. Chapman, Zahava Koren, Israel Koren:
Statistical identification and analysis of defect development in digital imagers. Digital Photography 2009: 72500 - 2008
- [c19]Jenny Leung, Glenn H. Chapman, Israel Koren, Zahava Koren:
Automatic Detection of In-field eld Defect Growth in Image Sensors. DFT 2008: 305-313 - 2007
- [c18]Jenny Leung, Jozsef Dudas, Glenn H. Chapman, Israel Koren, Zahava Koren:
Quantitative Analysis of In-Field Defects in Image Sensor Arrays. DFT 2007: 526-534 - [c17]Jozsef Dudas, Linda Wu, Cory Jung, Glenn H. Chapman, Zahava Koren, Israel Koren:
Identification of in-field defect development in digital image sensors. Digital Photography 2007: 65020Y - 2006
- [c16]Jozsef Dudas, Cory Jung, Linda Wu, Glenn H. Chapman, Israel Koren, Zahava Koren:
On-Line Mapping of In-Field Defects in Image Sensor Arrays. DFT 2006: 439-447 - 2005
- [c15]Glenn H. Chapman, Israel Koren, Zahava Koren, Jozsef Dudas, Cory Jung:
On-Line Identification of Faults in Fault-Tolerant Imagers. DFT 2005: 149-157 - 2004
- [j10]Glenn H. Chapman, Sunjaya Djaja, Desmond Y. H. Cheung, Yves Audet, Israel Koren, Zahava Koren:
A Self-Correcting Active Pixel Sensor Using Hardware and Software Correction. IEEE Des. Test Comput. 21(6): 544-551 (2004) - [c14]E. Ciocca, Israel Koren, Zahava Koren, C. Mani Krishna, Daniel S. Katz:
Application-Level Fault Tolerance in the Orbital Thermal Imaging Spectrometer. PRDC 2004: 43-48 - 2003
- [c13]Jayakrishnan Nair, Zahava Koren, Israel Koren, C. Mani Krishna:
Pre-Processing Input Data to Augment Fault Tolerance in Space Applications. DSN 2003: 491-500 - 2002
- [c12]Zahava Koren, J. Rajagopal, C. Mani Krishna, Israel Koren, W. Wang, J. Loman:
Using Rational Approximations for Evaluating the Reliablity of Highly Reliable Systems. IPDPS 2002 - 2001
- [c11]Israel Koren, Zahava Koren, Glenn H. Chapman:
Advanced Fault-Tolerance Techniques for a Color Digital Camera-on-a-Chip. DFT 2001: 3-10 - 2000
- [j9]Israel Koren, Zahava Koren:
Incorporating Yield Enhancement into the Floorplanning Process. IEEE Trans. Computers 49(6): 532-541 (2000) - [c10]Israel Koren, Zahava Koren, Glenn H. Chapman:
A Self-Correcting Active Pixel Camera. DFT 2000: 56- - [c9]Vijay Lakamraju, Zahava Koren, C. Mani Krishna:
Synthesis of Interconnection Networks: A Novel Approach. DSN 2000: 501-509
1990 – 1999
- 1998
- [j8]Israel Koren, Zahava Koren:
Defect tolerance in VLSI circuits: techniques and yield analysis. Proc. IEEE 86(9): 1819-1838 (1998) - [c8]Israel Koren, Zahava Koren:
Yield and Routing Objectives in Floorplanning. DFT 1998: 28-36 - [c7]Vijay Lakamraju, Zahava Koren, Israel Koren, C. Mani Krishna:
Measuring the Vulnerability of Interconnection Networks in Embedded Systems. IPPS/SPDP Workshops 1998: 919-924 - [c6]Zahava Koren, Israel Koren, C. Mani Krishna:
Surge Handling as a Measure of Real-Time System Dependability. IPPS/SPDP Workshops 1998: 1106-1116 - 1997
- [j7]Zahava Koren, Israel Koren:
On the effect of floorplanning on the yield of large area integrated circuits. IEEE Trans. Very Large Scale Integr. Syst. 5(1): 3-14 (1997) - [c5]Israel Koren, Zahava Koren:
Analysis of a Hybrid Defect-Tolerance Scheme for High-Density Memory ICs. DFT 1997: 166-174 - 1994
- [j6]Régis Leveugle, Zahava Koren, Israel Koren, Gabriele Saucier, Norbert Wehn:
The Hyeti Defect Tolerant Microprocessor: A Practical Experiment and its Cost-Effectiveness Analysis. IEEE Trans. Computers 43(12): 1398-1406 (1994) - [j5]Israel Koren, Zahava Koren, Charles H. Stapper:
A statistical study of defect maps of large area VLSI IC's. IEEE Trans. Very Large Scale Integr. Syst. 2(2): 249-256 (1994) - 1993
- [j4]Israel Koren, Zahava Koren, Charles H. Stapper:
A Unified Negative-Binomial Distribution for Yield Analysis of Defect-Tolerant Circuits. IEEE Trans. Computers 42(6): 724-734 (1993) - [c4]Zahava Koren, Israel Koren:
Does the Floorplan of a Chip Affect Its Yield? DFT 1993: 159-166 - 1991
- [j3]Israel Koren, Zahava Koren:
Discrete and Continuous Models for the Performance of Reconfigurable Multistage Systems. IEEE Trans. Computers 40(9): 1024-1033 (1991) - [c3]Aura Ganz, Zahava Koren:
WDM Passive Star-Protocols and Performance Analysis. INFOCOM 1991: 991-1000
1980 – 1989
- 1988
- [j2]Imrich Chlamtac, Aura Ganz, Zahava Koren:
Prioritized demand assignment protocols and their evaluation. IEEE Trans. Commun. 36(2): 133-143 (1988) - [c2]Israel Koren, Zahava Koren:
On the Bandwidth of a Multi-Stage Network in the Presence of Faulty Components. ICDCS 1988: 26-32 - 1986
- [j1]Israel Koren, Zahava Koren, Stephen Y. H. Su:
Analysis of a Class of Recovery Procedures. IEEE Trans. Computers 35(8): 703-712 (1986) - [c1]Zahava Koren, Imrich Chlamtac, Aura Ganz:
A model for evaluating demand assignment protocols with arbitrary workloads. SIGCOMM 1986: 40-44
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-25 05:53 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint