


default search action
Bernd Bischl
Person information
- affiliation: LMU Munich, Department of Statistics, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [i124]Ludwig Bothmann, Philip A. Boustani, Jose M. Alvarez, Giuseppe Casalicchio, Bernd Bischl, Susanne Dandl:
Privilege Scores. CoRR abs/2502.01211 (2025) - [i123]Chris Kolb, Tobias Weber, Bernd Bischl, David Rügamer:
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries. CoRR abs/2502.02496 (2025) - [i122]Yawei Li, David Rügamer, Bernd Bischl, Mina Rezaei:
Calibrating LLMs with Information-Theoretic Evidential Deep Learning. CoRR abs/2502.06351 (2025) - [i121]Lisa Wimmer, Bernd Bischl, Ludwig Bothmann:
Trust Me, I Know the Way: Predictive Uncertainty in the Presence of Shortcut Learning. CoRR abs/2502.09137 (2025) - 2024
- [j52]Simon Wiegrebe, Philipp Kopper, Raphael Sonabend, Bernd Bischl, Andreas Bender
:
Deep learning for survival analysis: a review. Artif. Intell. Rev. 57(3): 65 (2024) - [j51]Christoph Molnar
, Gunnar König
, Bernd Bischl
, Giuseppe Casalicchio
:
Model-agnostic feature importance and effects with dependent features: a conditional subgroup approach. Data Min. Knowl. Discov. 38(5): 2903-2941 (2024) - [j50]Christian A. Scholbeck
, Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl, Christian Heumann:
Marginal effects for non-linear prediction functions. Data Min. Knowl. Discov. 38(5): 2997-3042 (2024) - [j49]Christian A. Scholbeck
, Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl, Christian Heumann:
Correction: Marginal effects for non-linear prediction functions. Data Min. Knowl. Discov. 38(6): 4234-4235 (2024) - [j48]Hilde J. P. Weerts
, Florian Pfisterer
, Matthias Feurer
, Katharina Eggensperger
, Edward Bergman
, Noor H. Awad
, Joaquin Vanschoren
, Mykola Pechenizkiy
, Bernd Bischl
, Frank Hutter
:
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML. J. Artif. Intell. Res. 79: 639-677 (2024) - [j47]Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, Joaquin Vanschoren:
AMLB: an AutoML Benchmark. J. Mach. Learn. Res. 25: 101:1-101:65 (2024) - [j46]Felix Ott
, Lucas Heublein
, David Rügamer
, Bernd Bischl
, Christopher Mutschler
:
Fusing structure from motion and simulation-augmented pose regression from optical flow for challenging indoor environments. J. Vis. Commun. Image Represent. 103: 104256 (2024) - [j45]Daniel Schalk, Bernd Bischl, David Rügamer:
Privacy-preserving and lossless distributed estimation of high-dimensional generalized additive mixed models. Stat. Comput. 34(1): 31 (2024) - [c105]Amirhossein Vahidi, Simon Schoßer, Lisa Wimmer, Yawei Li, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei:
Probabilistic Self-supervised Representation Learning via Scoring Rules Minimization. ICLR 2024 - [c104]Moritz Herrmann, F. Julian D. Lange, Katharina Eggensperger, Giuseppe Casalicchio, Marcel Wever, Matthias Feurer, David Rügamer, Eyke Hüllermeier, Anne-Laure Boulesteix, Bernd Bischl:
Position: Why We Must Rethink Empirical Research in Machine Learning. ICML 2024 - [c103]Marius Lindauer, Florian Karl, Anne Klier, Julia Moosbauer, Alexander Tornede, Andreas Müller, Frank Hutter, Matthias Feurer, Bernd Bischl:
Position: A Call to Action for a Human-Centered AutoML Paradigm. ICML 2024 - [c102]Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, David Rügamer:
Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks? ICML 2024 - [c101]Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer:
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry (Extended Abstract). IJCAI 2024: 8466-8470 - [c100]Thomas Nagler, Lennart Schneider, Bernd Bischl, Matthias Feurer:
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization. NeurIPS 2024 - [c99]Amihossein Vahidi, Lisa Wimmer, Hüseyin Anil Gündüz, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei:
Diversified Ensemble of Independent Sub-networks for Robust Self-supervised Representation Learning. ECML/PKDD (1) 2024: 38-55 - [c98]Fabian Stermann, Ilias Chalkidis, Amihossein Vahidi, Bernd Bischl, Mina Rezaei:
Attention-Driven Dropout: A Simple Method to Improve Self-supervised Contrastive Sentence Embeddings. ECML/PKDD (1) 2024: 89-106 - [c97]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
On the Robustness of Global Feature Effect Explanations. ECML/PKDD (2) 2024: 125-142 - [c96]Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer:
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction. WACV 2024: 7650-7659 - [c95]Susanne Dandl
, Kristin Blesch
, Timo Freiesleben
, Gunnar König
, Jan Kapar
, Bernd Bischl
, Marvin N. Wright
:
CountARFactuals - Generating Plausible Model-Agnostic Counterfactual Explanations with Adversarial Random Forests. xAI (3) 2024: 85-107 - [c94]Susanne Dandl, Marc Becker, Bernd Bischl, Giuseppe Casalicchio, Ludwig Bothmann:
mlr3summary: Concise and interpretable summaries for machine learning models. xAI (Late-breaking Work, Demos, Doctoral Consortium) 2024: 281-288 - [c93]Fiona Katharina Ewald
, Ludwig Bothmann
, Marvin N. Wright
, Bernd Bischl
, Giuseppe Casalicchio
, Gunnar König
:
A Guide to Feature Importance Methods for Scientific Inference. xAI (2) 2024: 440-464 - [i120]Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, David Rügamer:
Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks? CoRR abs/2402.01484 (2024) - [i119]Julian Rodemann, Federico Croppi, Philipp Arens, Yusuf Sale, Julia Herbinger, Bernd Bischl, Eyke Hüllermeier, Thomas Augustin, Conor J. Walsh, Giuseppe Casalicchio:
Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration. CoRR abs/2403.04629 (2024) - [i118]Philipp Kopper, David Rügamer, Raphael Sonabend, Bernd Bischl, Andreas Bender:
Training Survival Models using Scoring Rules. CoRR abs/2403.13150 (2024) - [i117]Vasilis Gkolemis, Christos Diou, Eirini Ntoutsi, Theodore Dalamagas, Bernd Bischl, Julia Herbinger, Giuseppe Casalicchio:
Effector: A Python package for regional explanations. CoRR abs/2404.02629 (2024) - [i116]Susanne Dandl, Kristin Blesch, Timo Freiesleben, Gunnar König, Jan Kapar, Bernd Bischl, Marvin N. Wright:
CountARFactuals - Generating plausible model-agnostic counterfactual explanations with adversarial random forests. CoRR abs/2404.03506 (2024) - [i115]Fiona Katharina Ewald, Ludwig Bothmann, Marvin N. Wright, Bernd Bischl, Giuseppe Casalicchio, Gunnar König:
A Guide to Feature Importance Methods for Scientific Inference. CoRR abs/2404.12862 (2024) - [i114]Susanne Dandl, Marc Becker, Bernd Bischl, Giuseppe Casalicchio, Ludwig Bothmann:
mlr3summary: Concise and interpretable summaries for machine learning models. CoRR abs/2404.16899 (2024) - [i113]Moritz Herrmann, F. Julian D. Lange, Katharina Eggensperger, Giuseppe Casalicchio, Marcel Wever, Matthias Feurer, David Rügamer, Eyke Hüllermeier, Anne-Laure Boulesteix, Bernd Bischl:
Position: Why We Must Rethink Empirical Research in Machine Learning. CoRR abs/2405.02200 (2024) - [i112]Thomas Nagler
, Lennart Schneider, Bernd Bischl, Matthias Feurer:
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization. CoRR abs/2405.15393 (2024) - [i111]Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, Kenji Kawaguchi:
FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models. CoRR abs/2405.18218 (2024) - [i110]Marius Lindauer, Florian Karl, Anne Klier, Julia Moosbauer, Alexander Tornede, Andreas Müller, Frank Hutter, Matthias Feurer, Bernd Bischl:
Position: A Call to Action for a Human-Centered AutoML Paradigm. CoRR abs/2406.03348 (2024) - [i109]Lukas Burk
, John Zobolas, Bernd Bischl, Andreas Bender, Marvin N. Wright, Raphael Sonabend:
A Large-Scale Neutral Comparison Study of Survival Models on Low-Dimensional Data. CoRR abs/2406.04098 (2024) - [i108]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
On the Robustness of Global Feature Effect Explanations. CoRR abs/2406.09069 (2024) - [i107]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
Efficient and Accurate Explanation Estimation with Distribution Compression. CoRR abs/2406.18334 (2024) - [i106]Hannah Schulz-Kümpel, Sebastian Fischer, Thomas Nagler, Anne-Laure Boulesteix, Bernd Bischl, Roman Hornung:
Constructing Confidence Intervals for 'the' Generalization Error - a Comprehensive Benchmark Study. CoRR abs/2409.18836 (2024) - 2023
- [j44]Felix Ott
, David Rügamer
, Lucas Heublein
, Bernd Bischl
, Christopher Mutschler
:
Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition. IEEE Access 11: 94148-94172 (2023) - [j43]Sai Rahul Kaminwar
, Jann Goschenhofer, Janek Thomas, Ingo Thon, Bernd Bischl:
Structured Verification of Machine Learning Models in Industrial Settings. Big Data 11(3): 181-198 (2023) - [j42]Mina Rezaei
, Farzin Soleymani
, Bernd Bischl
, Shekoofeh Azizi
:
Deep Bregman divergence for self-supervised representations learning. Comput. Vis. Image Underst. 235: 103801 (2023) - [j41]Daniel Schalk
, Bernd Bischl, David Rügamer:
Accelerated Componentwise Gradient Boosting Using Efficient Data Representation and Momentum-Based Optimization. J. Comput. Graph. Stat. 32(2): 631-641 (2023) - [j40]Daniel Schalk
, Verena S. Hoffmann, Bernd Bischl, Ulrich Mansmann:
dsBinVal: Conducting distributed ROC analysis using DataSHIELD. J. Open Source Softw. 8(83): 4545 (2023) - [j39]David Rügamer, Chris Kolb, Cornelius Fritz, Florian Pfisterer, Philipp Kopper, Bernd Bischl, Ruolin Shen, Christina Bukas, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, Philipp F. M. Baumann
, Lucas Kook
, Nadja Klein
, Christian L. Müller:
deepregression: A Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression. J. Stat. Softw. 105(2) (2023) - [j38]Florian Pfisterer, Siyi Wei, Sebastian J. Vollmer, Michel Lang, Bernd Bischl:
Fairness Audits and Debiasing Using \pkg{mlr3fairness}. R J. 15(1): 234-253 (2023) - [j37]Florian Karl
, Tobias Pielok
, Julia Moosbauer
, Florian Pfisterer
, Stefan Coors
, Martin Binder
, Lennart Schneider
, Janek Thomas
, Jakob Richter
, Michel Lang
, Eduardo C. Garrido-Merchán
, Jürgen Branke
, Bernd Bischl
:
Multi-Objective Hyperparameter Optimization in Machine Learning - An Overview. ACM Trans. Evol. Learn. Optim. 3(4): 16:1-16:50 (2023) - [j36]Bernd Bischl
, Martin Binder, Michel Lang
, Tobias Pielok
, Jakob Richter
, Stefan Coors
, Janek Thomas, Theresa Ullmann
, Marc Becker
, Anne-Laure Boulesteix
, Difan Deng, Marius Lindauer
:
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data. Mining. Knowl. Discov. 13(2) (2023) - [c92]Daniel Saggau, Mina Rezaei, Bernd Bischl, Ilias Chalkidis:
Efficient Document Embeddings via Self-Contrastive Bregman Divergence Learning. ACL (Findings) 2023: 12181-12190 - [c91]Emilio Dorigatti, Benjamin Schubert, Bernd Bischl, David Rügamer:
Frequentist Uncertainty Quantification in Semi-Structured Neural Networks. AISTATS 2023: 1924-1941 - [c90]Sarah Segel, Helena Graf, Alexander Tornede, Bernd Bischl, Marius Lindauer:
Symbolic Explanations for Hyperparameter Optimization. AutoML 2023: 2/1-22 - [c89]Lennart Oswald Purucker, Lennart Schneider, Marie Anastacio, Joeran Beel, Bernd Bischl, Holger H. Hoos:
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML. AutoML 2023: 10/1-34 - [c88]Amadeu Scheppach, Hüseyin Anil Gündüz, Emilio Dorigatti, Philipp C. Münch, Alice C. McHardy
, Bernd Bischl, Mina Rezaei, Martin Binder:
Neural Architecture Search for Genomic Sequence Data. CIBCB 2023: 1-10 - [c87]Raphael Patrick Prager, Konstantin Dietrich, Lennart Schneider, Lennart Schäpermeier, Bernd Bischl, Pascal Kerschke, Heike Trautmann, Olaf Mersmann:
Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features. FOGA 2023: 129-139 - [c86]Lennart Schneider
, Bernd Bischl
, Janek Thomas
:
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models. GECCO 2023: 538-547 - [c85]Ivo Couckuyt
, Sebastian Rojas-Gonzalez
, Jürgen Branke
, Bernd Bischl
:
Bayesian Optimization. GECCO Companion 2023: 895-912 - [c84]Matthias Aßenmacher, Lukas Rauch, Jann Goschenhofer, Andreas Stephan, Bernd Bischl, Benjamin Roth, Bernhard Sick:
Towards Enhancing Deep Active Learning with Weak Supervision and Constrained Clustering. IAL@PKDD/ECML 2023: 65-73 - [c83]Tobias Pielok
, Bernd Bischl, David Rügamer:
Approximate Bayesian Inference with Stein Functional Variational Gradient Descent. ICLR 2023 - [c82]Hüseyin Anil Gündüz, Sheetal Giri, Martin Binder, Bernd Bischl, Mina Rezaei:
Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA Sequences. ICMLA 2023: 566-573 - [c81]Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian Pfisterer, Bernd Bischl, Frank Hutter:
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives. IDA 2023: 130-142 - [c80]Jann Goschenhofer, Bernd Bischl, Zsolt Kira:
ConstraintMatch for Semi-constrained Clustering. IJCNN 2023: 1-10 - [c79]Tobias Weber
, Michael Ingrisch
, Bernd Bischl
, David Rügamer
:
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis. PAKDD (3) 2023: 180-191 - [c78]Lukas Rauch, Matthias Aßenmacher, Denis Huseljic, Moritz Wirth, Bernd Bischl, Bernhard Sick:
ActiveGLAE: A Benchmark for Deep Active Learning with Transformers. ECML/PKDD (1) 2023: 55-74 - [c77]Ibrahim Tolga Öztürk, Rostislav Nedelchev, Christian Heumann, Esteban Garces Arias, Marius Roger, Bernd Bischl, Matthias Aßenmacher:
How Different is Stereotypical Bias Across Languages? PKDD/ECML Workshops (1) 2023: 209-229 - [c76]Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou
, Bernd Bischl, Stephan Günnemann, David Rügamer:
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry. ECML/PKDD (1) 2023: 459-474 - [c75]Susanne Dandl
, Giuseppe Casalicchio
, Bernd Bischl
, Ludwig Bothmann
:
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. ECML/PKDD (3) 2023: 479-495 - [c74]Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, Eyke Hüllermeier:
Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures? UAI 2023: 2282-2292 - [c73]Christoph Molnar
, Timo Freiesleben
, Gunnar König
, Julia Herbinger, Tim Reisinger, Giuseppe Casalicchio
, Marvin N. Wright
, Bernd Bischl
:
Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process. xAI (1) 2023: 456-479 - [i105]Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, Christopher Mutschler:
Representation Learning for Tablet and Paper Domain Adaptation in Favor of Online Handwriting Recognition. CoRR abs/2301.06293 (2023) - [i104]Hilde J. P. Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor H. Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl, Frank Hutter:
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML. CoRR abs/2303.08485 (2023) - [i103]Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer:
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis. CoRR abs/2303.11224 (2023) - [i102]Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer:
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry. CoRR abs/2304.02902 (2023) - [i101]Susanne Dandl, Andreas Hofheinz, Martin Binder, Bernd Bischl, Giuseppe Casalicchio:
counterfactuals: An R Package for Counterfactual Explanation Methods. CoRR abs/2304.06569 (2023) - [i100]Felix Ott, Lucas Heublein, David Rügamer, Bernd Bischl, Christopher Mutschler:
Fusing Structure from Motion and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments. CoRR abs/2304.07250 (2023) - [i99]Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann:
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. CoRR abs/2305.02780 (2023) - [i98]Daniel Saggau, Mina Rezaei, Bernd Bischl, Ilias Chalkidis:
Efficient Document Embeddings via Self-Contrastive Bregman Divergence Learning. CoRR abs/2305.16031 (2023) - [i97]Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer:
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction. CoRR abs/2305.16376 (2023) - [i96]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
Decomposing Global Feature Effects Based on Feature Interactions. CoRR abs/2306.00541 (2023) - [i95]Lukas Rauch, Matthias Aßenmacher
, Denis Huseljic, Moritz Wirth, Bernd Bischl, Bernhard Sick:
ActiveGLAE: A Benchmark for Deep Active Learning with Transformers. CoRR abs/2306.10087 (2023) - [i94]Chris Kolb, Christian L. Müller, Bernd Bischl, David Rügamer:
Smoothing the Edges: A General Framework for Smooth Optimization in Sparse Regularization using Hadamard Overparametrization. CoRR abs/2307.03571 (2023) - [i93]Ibrahim Tolga Öztürk, Rostislav Nedelchev, Christian Heumann, Esteban Garces Arias, Marius Roger, Bernd Bischl, Matthias Aßenmacher:
How Different Is Stereotypical Bias Across Languages? CoRR abs/2307.07331 (2023) - [i92]Lennart Schneider, Bernd Bischl, Janek Thomas:
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models. CoRR abs/2307.08175 (2023) - [i91]Lennart Purucker, Lennart Schneider, Marie Anastacio, Joeran Beel, Bernd Bischl, Holger H. Hoos:
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML. CoRR abs/2307.08364 (2023) - [i90]Yawei Li, Yang Zhang, Kenji Kawaguchi, Ashkan Khakzar, Bernd Bischl, Mina Rezaei:
A Dual-Perspective Approach to Evaluating Feature Attribution Methods. CoRR abs/2308.08949 (2023) - [i89]Amirhossein Vahidi, Lisa Wimmer, Hüseyin Anil Gündüz, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei:
Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning. CoRR abs/2308.14705 (2023) - [i88]Amirhossein Vahidi, Simon Schoßer, Lisa Wimmer, Yawei Li, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei:
Probabilistic Self-supervised Learning via Scoring Rules Minimization. CoRR abs/2309.02048 (2023) - [i87]Holger Löwe, Christian A. Scholbeck, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio:
fmeffects: An R Package for Forward Marginal Effects. CoRR abs/2310.02008 (2023) - [i86]Yang Zhang, Yawei Li, Hannah Brown, Mina Rezaei, Bernd Bischl, Philip H. S. Torr, Ashkan Khakzar, Kenji Kawaguchi:
AttributionLab: Faithfulness of Feature Attribution Under Controllable Environments. CoRR abs/2310.06514 (2023) - [i85]Roman Hornung, Malte Nalenz, Lennart Schneider, Andreas Bender, Ludwig Bothmann, Bernd Bischl, Thomas Augustin, Anne-Laure Boulesteix:
Evaluating machine learning models in non-standard settings: An overview and new findings. CoRR abs/2310.15108 (2023) - [i84]Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer:
Unreading Race: Purging Protected Features from Chest X-ray Embeddings. CoRR abs/2311.01349 (2023) - [i83]Jann Goschenhofer, Bernd Bischl, Zsolt Kira:
ConstraintMatch for Semi-constrained Clustering. CoRR abs/2311.15395 (2023) - [i82]Christian A. Scholbeck, Julia Moosbauer, Giuseppe Casalicchio, Hoshin Gupta, Bernd Bischl, Christian Heumann:
Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis. CoRR abs/2312.13234 (2023) - 2022
- [j35]Florian Pargent
, Florian Pfisterer
, Janek Thomas
, Bernd Bischl
:
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features. Comput. Stat. 37(5): 2671-2692 (2022) - [j34]Quay Au, Julia Herbinger
, Clemens Stachl
, Bernd Bischl, Giuseppe Casalicchio
:
Grouped feature importance and combined features effect plot. Data Min. Knowl. Discov. 36(4): 1401-1450 (2022) - [j33]Felix Ott
, David Rügamer
, Lucas Heublein
, Tim Hamann
, Jens Barth
, Bernd Bischl
, Christopher Mutschler
:
Benchmarking online sequence-to-sequence and character-based handwriting recognition from IMU-enhanced pens. Int. J. Document Anal. Recognit. 25(4): 385-414 (2022) - [j32]Julia Moosbauer
, Martin Binder, Lennart Schneider
, Florian Pfisterer
, Marc Becker
, Michel Lang
, Lars Kotthoff
, Bernd Bischl
:
Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers. IEEE Trans. Evol. Comput. 26(6): 1336-1350 (2022) - [c72]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
REPID: Regional Effect Plots with implicit Interaction Detection. AISTATS 2022: 10209-10233 - [c71]Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, Bernd Bischl:
YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization. AutoML 2022: 3/1-39 - [c70]Lennart Schneider, Florian Pfisterer, Paul Kent, Jürgen Branke, Bernd Bischl, Janek Thomas:
Tackling Neural Architecture Search With Quality Diversity Optimization. AutoML 2022: 9/1-30 - [c69]Susanne Dandl
, Florian Pfisterer, Bernd Bischl:
Multi-objective counterfactual fairness. GECCO Companion 2022: 328-331 - [c68]Lennart Schneider, Florian Pfisterer, Janek Thomas, Bernd Bischl:
A collection of quality diversity optimization problems derived from hyperparameter optimization of machine learning models. GECCO Companion 2022: 2136-2142 - [c67]Mina Rezaei, Emilio Dorigatti, David Rügamer, Bernd Bischl:
Joint Debiased Representation Learning and Imbalanced Data Clustering. ICDM (Workshops) 2022: 55-62 - [c66]Felix Ott
, David Rügamer
, Lucas Heublein
, Bernd Bischl
, Christopher Mutschler
:
Representation Learning for Tablet and Paper Domain Adaptation in Favor of Online Handwriting Recognition. ICPR Workshops (1) 2022: 373-383 - [c65]Andreas Klaß, Sven M. Lorenz, Martin W. Lauer-Schmaltz, David Rügamer, Bernd Bischl, Christopher Mutschler, Felix Ott:
Uncertainty-aware Evaluation of Time-series Classification for Online Handwriting Recognition with Domain Shift. STRL@IJCAI 2022 - [c64]Mina Rezaei, Janne J. Näppi, Bernd Bischl, Hiroyuki Yoshida:
Bayesian uncertainty estimation for detection of long-tail and unseen conditions in abdominal images. Computer-Aided Diagnosis 2022 - [c63]Tobias Weber
, Michael Ingrisch
, Bernd Bischl
, David Rügamer
:
Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs. MAD@MICCAI 2022: 22-32 - [c62]Farzin Soleymani, Mohammad Eslami
, Tobias Elze, Bernd Bischl, Mina Rezaei:
Deep variational clustering framework for self-labeling large-scale medical images. Image Processing 2022 - [c61]Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, Christopher Mutschler:
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift. ACM Multimedia 2022: 5934-5943 - [c60]Mehmet Ozgur Turkoglu, Alexander Becker, Hüseyin Anil Gündüz, Mina Rezaei, Bernd Bischl, Rodrigo Caye Daudt, Stefano D'Aronco, Jan D. Wegner, Konrad Schindler:
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation. NeurIPS 2022 - [c59]Philipp Kopper, Simon Wiegrebe, Bernd Bischl, Andreas Bender
, David Rügamer:
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis. PAKDD (2) 2022: 249-261 - [c58]David Rügamer
, Andreas Bender
, Simon Wiegrebe
, Daniel Racek
, Bernd Bischl
, Christian L. Müller
, Clemens Stachl
:
Factorized Structured Regression for Large-Scale Varying Coefficient Models. ECML/PKDD (5) 2022: 20-35 - [c57]Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, Marius Lindauer:
Efficient Automated Deep Learning for Time Series Forecasting. ECML/PKDD (3) 2022: 664-680 - [c56]Lennart Schneider, Lennart Schäpermeier, Raphael Patrick Prager, Bernd Bischl, Heike Trautmann, Pascal Kerschke:
HPO ˟ ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. PPSN (1) 2022: 575-589 - [c55]Ludwig Bothmann, Sven Strickroth
, Giuseppe Casalicchio, David Rügamer, Marius Lindauer, Fabian Scheipl, Bernd Bischl:
Developing Open Source Educational Resources for Machine Learning and Data Science. Teaching ML 2022: 1-6 - [c54]Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, Christopher Mutschler:
Joint Classification and Trajectory Regression of Online Handwriting using a Multi-Task Learning Approach. WACV 2022: 1244-1254 - [i81]Christian A. Scholbeck, Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl, Christian Heumann:
Marginal Effects for Non-Linear Prediction Functions. CoRR abs/2201.08837 (2022) - [i80]Emilio Dorigatti, Jann Goschenhofer, Benjamin Schubert, Mina Rezaei, Bernd Bischl:
Positive-Unlabeled Learning with Uncertainty-aware Pseudo-label Selection. CoRR abs/2201.13192 (2022) - [i79]Felix Ott, David Rügamer, Lucas Heublein, Tim Hamann, Jens Barth, Bernd Bischl, Christopher Mutschler:
Benchmarking Online Sequence-to-Sequence and Character-based Handwriting Recognition from IMU-Enhanced Pens. CoRR abs/2202.07036 (2022) - [i78]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
REPID: Regional Effect Plots with implicit Interaction Detection. CoRR abs/2202.07254 (2022) - [i77]Philipp Kopper, Simon Wiegrebe, Bernd Bischl, Andreas Bender, David Rügamer:
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis. CoRR abs/2202.07423 (2022) - [i76]Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, Christopher Mutschler:
Cross-Modal Common Representation Learning with Triplet Loss Functions. CoRR abs/2202.07901 (2022) - [i75]Daniel Schalk, Verena S. Hoffmann, Bernd Bischl, Ulrich Mansmann:
Distributed non-disclosive validation of predictive models by a modified ROC-GLM. CoRR abs/2203.10828 (2022) - [i74]Ashkan Khakzar, Yawei Li, Yang Zhang, Mirac Sanisoglu, Seong Tae Kim, Mina Rezaei, Bernd Bischl, Nassir Navab:
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models. CoRR abs/2204.01729 (2022) - [i73]Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, Christopher Mutschler:
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift. CoRR abs/2204.03342 (2022) - [i72]Lennart Schneider, Florian Pfisterer, Janek Thomas, Bernd Bischl:
A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models. CoRR abs/2204.14061 (2022) - [i71]Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, Marius Lindauer
:
Efficient Automated Deep Learning for Time Series Forecasting. CoRR abs/2205.05511 (2022) - [i70]Ludwig Bothmann, Kristina Peters, Bernd Bischl:
What Is Fairness? Implications For FairML. CoRR abs/2205.09622 (2022) - [i69]David Rügamer, Andreas Bender, Simon Wiegrebe, Daniel Racek, Bernd Bischl, Christian L. Müller, Clemens Stachl
:
Factorized Structured Regression for Large-Scale Varying Coefficient Models. CoRR abs/2205.13080 (2022) - [i68]Mehmet Ozgur Turkoglu, Alexander Becker, Hüseyin Anil Gündüz, Mina Rezaei, Bernd Bischl, Rodrigo Caye Daudt, Stefano D'Aronco, Jan Dirk Wegner, Konrad Schindler:
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation. CoRR abs/2206.00050 (2022) - [i67]Julia Moosbauer, Giuseppe Casalicchio
, Marius Lindauer
, Bernd Bischl:
Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution. CoRR abs/2206.05447 (2022) - [i66]Florian Karl, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan Coors, Martin Binder, Lennart Schneider, Janek Thomas, Jakob Richter
, Michel Lang
, Eduardo C. Garrido-Merchán, Jürgen Branke
, Bernd Bischl:
Multi-Objective Hyperparameter Optimization - An Overview. CoRR abs/2206.07438 (2022) - [i65]Andreas Klaß, Sven M. Lorenz, Martin W. Lauer-Schmaltz, David Rügamer, Bernd Bischl, Christopher Mutschler, Felix Ott:
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift. CoRR abs/2206.08640 (2022) - [i64]Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, Joaquin Vanschoren:
AMLB: an AutoML Benchmark. CoRR abs/2207.12560 (2022) - [i63]Lennart Schneider, Florian Pfisterer, Paul Kent, Jürgen Branke
, Bernd Bischl, Janek Thomas:
Tackling Neural Architecture Search With Quality Diversity Optimization. CoRR abs/2208.00204 (2022) - [i62]Lennart Schneider, Lennart Schäpermeier, Raphael Patrick Prager, Bernd Bischl, Heike Trautmann
, Pascal Kerschke:
HPO X ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. CoRR abs/2208.00220 (2022) - [i61]Felix Ott, Nisha Lakshmana Raichur, David Rügamer, Tobias Feigl, Heiko Neumann, Bernd Bischl, Christopher Mutschler:
Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose Regression and Odometry-aided Absolute Pose Regression. CoRR abs/2208.00919 (2022) - [i60]Emilio Dorigatti, Jonas Schweisthal, Bernd Bischl, Mina Rezaei:
Robust and Efficient Imbalanced Positive-Unlabeled Learning with Self-supervision. CoRR abs/2209.02459 (2022) - [i59]Shunjie-Fabian Zheng, JaeEun Nam, Emilio Dorigatti, Bernd Bischl, Shekoofeh Azizi, Mina Rezaei:
Joint Debiased Representation and Image Clustering Learning with Self-Supervision. CoRR abs/2209.06941 (2022) - [i58]Emilio Dorigatti, Bernd Bischl, Benjamin Schubert:
Improved proteasomal cleavage prediction with positive-unlabeled learning. CoRR abs/2209.07527 (2022) - [i57]Daniel Schalk, Bernd Bischl, David Rügamer:
Privacy-Preserving and Lossless Distributed Estimation of High-Dimensional Generalized Additive Mixed Models. CoRR abs/2210.07723 (2022) - [i56]Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian Pfisterer, Bernd Bischl, Frank Hutter:
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives. CoRR abs/2212.04183 (2022) - 2021
- [j31]Ilias Gerostathopoulos
, Frantisek Plásil
, Christian Prehofer, Janek Thomas
, Bernd Bischl:
Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects. IEEE Access 9: 58079-58087 (2021) - [j30]Raphael Sonabend
, Franz J. Király
, Andreas Bender, Bernd Bischl, Michel Lang
:
mlr3proba: an R package for machine learning in survival analysis. Bioinform. 37(17): 2789-2791 (2021) - [j29]Nicole Ellenbach
, Anne-Laure Boulesteix, Bernd Bischl, Kristian Unger, Roman Hornung:
Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning. J. Classif. 38(2): 212-231 (2021) - [j28]Martin Binder, Florian Pfisterer, Michel Lang
, Lennart Schneider, Lars Kotthoff, Bernd Bischl:
mlr3pipelines - Flexible Machine Learning Pipelines in R. J. Mach. Learn. Res. 22: 184:1-184:7 (2021) - [j27]Florian Pfisterer
, Christoph Kern
, Susanne Dandl
, Matthew Sun, Michael Kim, Bernd Bischl
:
mcboost: Multi-Calibration Boosting for R. J. Open Source Softw. 6(64): 3453 (2021) - [j26]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, José Cortés
, Bernd Bischl
, Alexander Brenning
:
Monitoring Forest Health Using Hyperspectral Imagery: Does Feature Selection Improve the Performance of Machine-Learning Techniques? Remote. Sens. 13(23): 4832 (2021) - [c53]Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, Joaquin Vanschoren:
Meta-learning for symbolic hyperparameter defaults. GECCO Companion 2021: 151-152 - [c52]Florian Pfisterer, Jan N. van Rijn, Philipp Probst, Andreas C. Müller, Bernd Bischl:
Learning multiple defaults for machine learning algorithms. GECCO Companion 2021: 241-242 - [c51]Jann Goschenhofer, Rasmus Hvingelby
, David Rügamer, Janek Thomas, Moritz Wagner, Bernd Bischl:
Deep Semi-supervised Learning for Time Series Classification. ICMLA 2021: 422-428 - [c50]Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang
, Rafael Gomes Mantovani, Jan N. van Rijn, Joaquin Vanschoren:
OpenML Benchmarking Suites. NeurIPS Datasets and Benchmarks 2021 - [c49]Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl:
Explaining Hyperparameter Optimization via Partial Dependence Plots. NeurIPS 2021: 2280-2291 - [c48]Philipp Kopper, Sebastian Pölsterl, Christian Wachinger, Bernd Bischl, Andreas Bender, David Rügamer:
Semi-Structured Deep Piecewise Exponential Models. SPACA 2021: 40-53 - [d9]Florian Pfisterer
, Christoph Kern
, Susanne Dandl
, Mathew Sun, Michael P. Kim, Bernd Bischl
:
mcboost: Multi-Calibration Boosting for R. Zenodo, 2021 - [d8]Katharina Rath
, Christopher G. Albert
, Bernd Bischl
, Udo von Toussaint
:
redmod-team/SympGPR v1.0. Zenodo, 2021 - [i55]Jann Goschenhofer, Rasmus Hvingelby, David Rügamer, Janek Thomas, Moritz Wagner, Bernd Bischl:
Deep Semi-Supervised Learning for Time Series Classification. CoRR abs/2102.03622 (2021) - [i54]Florian Pargent, Florian Pfisterer, Janek Thomas, Bernd Bischl:
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features. CoRR abs/2104.00629 (2021) - [i53]David Rügamer, Ruolin Shen, Christina Bukas, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, Nadja Klein
, Chris Kolb, Florian Pfisterer, Philipp Kopper, Bernd Bischl, Christian L. Müller:
deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression. CoRR abs/2104.02705 (2021) - [i52]Quay Au, Julia Herbinger, Clemens Stachl, Bernd Bischl, Giuseppe Casalicchio:
Grouped Feature Importance and Combined Features Effect Plot. CoRR abs/2104.11688 (2021) - [i51]Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, Joaquin Vanschoren:
Meta-Learning for Symbolic Hyperparameter Defaults. CoRR abs/2106.05767 (2021) - [i50]Gunnar König, Timo Freiesleben, Bernd Bischl, Giuseppe Casalicchio, Moritz Grosse-Wentrup:
Decomposition of Global Feature Importance into Direct and Associative Components (DEDACT). CoRR abs/2106.08086 (2021) - [i49]Bernd Bischl, Martin Binder, Michel Lang
, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, Marius Lindauer:
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. CoRR abs/2107.05847 (2021) - [i48]Lennart Schneider, Florian Pfisterer, Martin Binder, Bernd Bischl:
Mutation is all you need. CoRR abs/2107.07343 (2021) - [i47]Ludwig Bothmann, Sven Strickroth
, Giuseppe Casalicchio, David Rügamer, Marius Lindauer, Fabian Scheipl, Bernd Bischl:
Developing Open Source Educational Resources for Machine Learning and Data Science. CoRR abs/2107.14330 (2021) - [i46]Christoph Molnar, Timo Freiesleben, Gunnar König, Giuseppe Casalicchio, Marvin N. Wright, Bernd Bischl:
Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process. CoRR abs/2109.01433 (2021) - [i45]Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, Bernd Bischl:
YAHPO Gym - Design Criteria and a new Multifidelity Benchmark for Hyperparameter Optimization. CoRR abs/2109.03670 (2021) - [i44]Mina Rezaei, Emilio Dorigatti, David Rügamer, Bernd Bischl:
Learning Statistical Representation with Joint Deep Embedded Clustering. CoRR abs/2109.05232 (2021) - [i43]Stefan Coors, Daniel Schalk, Bernd Bischl, David Rügamer:
Automatic Componentwise Boosting: An Interpretable AutoML System. CoRR abs/2109.05583 (2021) - [i42]Mina Rezaei, Farzin Soleymani, Bernd Bischl, Shekoofeh Azizi:
Deep Bregman Divergence for Contrastive Learning of Visual Representations. CoRR abs/2109.07455 (2021) - [i41]Farzin Soleymani, Mohammad Eslami, Tobias Elze, Bernd Bischl, Mina Rezaei:
Deep Variational Clustering Framework for Self-labeling of Large-scale Medical Images. CoRR abs/2109.10777 (2021) - [i40]Daniel Schalk, Bernd Bischl, David Rügamer:
Accelerated Componentwise Gradient Boosting using Efficient Data Representation and Momentum-based Optimization. CoRR abs/2110.03513 (2021) - [i39]Tobias Weber, Michael Ingrisch, Matthias Fabritius, Bernd Bischl, David Rügamer:
Survival-oriented embeddings for improving accessibility to complex data structures. CoRR abs/2110.11303 (2021) - [i38]Tobias Weber, Michael Ingrisch, Bernd Bischl, David Rügamer:
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation. CoRR abs/2110.11312 (2021) - [i37]Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl:
Explaining Hyperparameter Optimization via Partial Dependence Plots. CoRR abs/2111.04820 (2021) - [i36]Julia Moosbauer, Martin Binder, Lennart Schneider, Florian Pfisterer, Marc Becker, Michel Lang, Lars Kotthoff, Bernd Bischl:
Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers. CoRR abs/2111.14756 (2021) - 2020
- [j25]Andrea Bommert
, Xudong Sun, Bernd Bischl, Jörg Rahnenführer
, Michel Lang
:
Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143 (2020) - [c47]Martin Binder, Julia Moosbauer, Janek Thomas, Bernd Bischl:
Multi-objective hyperparameter tuning and feature selection using filter ensembles. GECCO 2020: 471-479 - [c46]Christoph Molnar
, Gunnar König
, Julia Herbinger
, Timo Freiesleben
, Susanne Dandl
, Christian A. Scholbeck
, Giuseppe Casalicchio
, Moritz Grosse-Wentrup
, Bernd Bischl
:
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models. xxAI@ICML 2020: 39-68 - [c45]Gunnar König, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup
:
Relative Feature Importance. ICPR 2020: 9318-9325 - [c44]Andreas Bender
, David Rügamer
, Fabian Scheipl
, Bernd Bischl
:
A General Machine Learning Framework for Survival Analysis. ECML/PKDD (3) 2020: 158-173 - [c43]Christoph Molnar
, Giuseppe Casalicchio
, Bernd Bischl
:
Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges. PKDD/ECML Workshops 2020: 417-431 - [c42]Susanne Dandl
, Christoph Molnar
, Martin Binder, Bernd Bischl
:
Multi-Objective Counterfactual Explanations. PPSN (1) 2020: 448-469 - [e1]Bernd Bischl, Oliver Guhr, Heidi Seibold, Peter Steinbach
:
Proceedings of the First Teaching Machine Learning and Artificial Intelligence Workshop, September 8+14, 2020, Virtual Conference. Proceedings of Machine Learning Research 141, PMLR 2020 [contents] - [d7]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, José Cortés
, Alexander Brenning
, Bernd Bischl
:
Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques? Version 5. Zenodo, 2020 [all versions] - [i35]Susanne Dandl, Christoph Molnar, Martin Binder, Bernd Bischl:
Multi-Objective Counterfactual Explanations. CoRR abs/2004.11165 (2020) - [i34]Christoph Molnar, Gunnar König, Bernd Bischl, Giuseppe Casalicchio:
Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional Subgroup Approach. CoRR abs/2006.04628 (2020) - [i33]Andreas Bender
, David Rügamer, Fabian Scheipl, Bernd Bischl:
A General Machine Learning Framework for Survival Analysis. CoRR abs/2006.15442 (2020) - [i32]Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben, Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup, Bernd Bischl:
Pitfalls to Avoid when Interpreting Machine Learning Models. CoRR abs/2007.04131 (2020) - [i31]Gunnar König, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup:
Relative Feature Importance. CoRR abs/2007.08283 (2020) - [i30]Raphael Sonabend, Franz J. Király, Andreas Bender
, Bernd Bischl, Michel Lang
:
mlr3proba: Machine Learning Survival Analysis in R. CoRR abs/2008.08080 (2020) - [i29]David Rügamer, Florian Pfisterer, Bernd Bischl:
Neural Mixture Distributional Regression. CoRR abs/2010.06889 (2020) - [i28]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges. CoRR abs/2010.09337 (2020) - [i27]Ashrya Agrawal, Florian Pfisterer, Bernd Bischl, Jiahao Chen, Srijan Sood, Sameena Shah, Francois Buet-Golfouse, Bilal A. Mateen, Sebastian J. Vollmer:
Debiasing classifiers: is reality at variance with expectation? CoRR abs/2011.02407 (2020) - [i26]Philipp Kopper, Sebastian Pölsterl
, Christian Wachinger, Bernd Bischl, Andreas Bender, David Rügamer:
Semi-Structured Deep Piecewise Exponential Models. CoRR abs/2011.05824 (2020)
2010 – 2019
- 2019
- [j24]Matthias Schmid
, Bernd Bischl, Hans A. Kestler
:
Proceedings of Reisensburg 2016-2017. Comput. Stat. 34(3): 943-944 (2019) - [j23]Laura Beggel
, Bernhard X. Kausler, Martin Schiegg, Michael Pfeiffer, Bernd Bischl:
Time series anomaly detection based on shapelet learning. Comput. Stat. 34(3): 945-976 (2019) - [j22]Giuseppe Casalicchio
, Jakob Bossek
, Michel Lang
, Dominik Kirchhoff, Pascal Kerschke
, Benjamin Hofner, Heidi Seibold
, Joaquin Vanschoren
, Bernd Bischl:
OpenML: An R package to connect to the machine learning platform OpenML. Comput. Stat. 34(3): 977-991 (2019) - [j21]Philipp Probst, Anne-Laure Boulesteix, Bernd Bischl:
Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn. Res. 20: 53:1-53:32 (2019) - [j20]Michel Lang
, Martin Binder, Jakob Richter
, Patrick Schratz
, Florian Pfisterer
, Stefan Coors
, Quay Au
, Giuseppe Casalicchio
, Lars Kotthoff
, Bernd Bischl
:
mlr3: A modern object-oriented machine learning framework in R. J. Open Source Softw. 4(44): 1903 (2019) - [c41]Xudong Sun, Andrea Bommert
, Florian Pfisterer, Jörg Rahnenführer
, Michel Lang
, Bernd Bischl:
High Dimensional Restrictive Federated Model Selection with Multi-objective Bayesian Optimization over Shifted Distributions. IntelliSys (1) 2019: 629-647 - [c40]Xudong Sun, Jiali Lin, Bernd Bischl:
ReinBo: Machine Learning Pipeline Conditional Hierarchy Search and Configuration with Bayesian Optimization Embedded Reinforcement Learning. PKDD/ECML Workshops (1) 2019: 68-84 - [c39]Christoph Molnar, Giuseppe Casalicchio
, Bernd Bischl:
Quantifying Model Complexity via Functional Decomposition for Better Post-hoc Interpretability. PKDD/ECML Workshops (1) 2019: 193-204 - [c38]Christian A. Scholbeck, Christoph Molnar, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio
:
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations. PKDD/ECML Workshops (1) 2019: 205-216 - [c37]Laura Beggel, Michael Pfeiffer, Bernd Bischl:
Robust Anomaly Detection in Images Using Adversarial Autoencoders. ECML/PKDD (1) 2019: 206-222 - [c36]Jann Goschenhofer, Franz Michael Josef Pfister, Kamer Ali Yuksel, Bernd Bischl, Urban Fietzek, Janek Thomas:
Wearable-Based Parkinson's Disease Severity Monitoring Using Deep Learning. ECML/PKDD (3) 2019: 400-415 - [c35]Xudong Sun, Bernd Bischl:
Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning. SSCI 2019: 110-119 - [c34]Xudong Sun, Alexej Gossmann
, Yu Wang, Bernd Bischl:
Variational Resampling Based Assessment of Deep Neural Networks under Distribution Shift. SSCI 2019: 1344-1353 - [d6]Michel Lang
, Martin Binder, Jakob Richter
, Patrick Schratz
, Florian Pfisterer
, Stefan Coors
, Quay Au
, Giuseppe Casalicchio
, Lars Kotthoff
, Bernd Bischl
:
mlr3: A modern object-oriented machine learning framework in R. Zenodo, 2019 - [d5]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, Alexander Brenning
, Bernd Bischl
:
2019-feature-selection. Version 1. Zenodo, 2019 [all versions] - [d4]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, Alexander Brenning
, Bernd Bischl
:
2019-feature-selection. Version 2. Zenodo, 2019 [all versions] - [d3]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, Alexander Brenning
, Bernd Bischl
:
2019-feature-selection. Version 3. Zenodo, 2019 [all versions] - [d2]Patrick Schratz
, Jannes Muenchow
, Eugenia Iturritxa
, Alexander Brenning
, Bernd Bischl
:
2019-feature-selection. Version 4. Zenodo, 2019 [all versions] - [i25]Laura Beggel, Michael Pfeiffer, Bernd Bischl:
Robust Anomaly Detection in Images using Adversarial Autoencoders. CoRR abs/1901.06355 (2019) - [i24]Xudong Sun, Andrea Bommert, Florian Pfisterer, Jörg Rahnenführer, Michel Lang, Bernd Bischl:
High Dimensional Restrictive Federated Model Selection with multi-objective Bayesian Optimization over shifted distributions. CoRR abs/1902.08999 (2019) - [i23]Christoph Molnar
, Giuseppe Casalicchio, Bernd Bischl:
Quantifying Interpretability of Arbitrary Machine Learning Models Through Functional Decomposition. CoRR abs/1904.03867 (2019) - [i22]Quay Au, Daniel Schalk, Giuseppe Casalicchio, Ramona Schödel, Clemens Stachl, Bernd Bischl:
Component-Wise Boosting of Targets for Multi-Output Prediction. CoRR abs/1904.03943 (2019) - [i21]Christian A. Scholbeck, Christoph Molnar
, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio:
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model Agnostic Interpretations. CoRR abs/1904.03959 (2019) - [i20]Xudong Sun, Jiali Lin, Bernd Bischl:
ReinBo: Machine Learning pipeline search and configuration with Bayesian Optimization embedded Reinforcement Learning. CoRR abs/1904.05381 (2019) - [i19]Jann Goschenhofer, Franz Michael Josef Pfister, Kamer Ali Yuksel, Bernd Bischl, Urban Fietzek, Janek Thomas:
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning. CoRR abs/1904.10829 (2019) - [i18]Xudong Sun, Yu Wang, Alexej Gossmann, Bernd Bischl:
Resampling-based Assessment of Robustness to Distribution Shift for Deep Neural Networks. CoRR abs/1906.02972 (2019) - [i17]Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, Joaquin Vanschoren:
An Open Source AutoML Benchmark. CoRR abs/1907.00909 (2019) - [i16]Xudong Sun, Bernd Bischl:
Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning. CoRR abs/1908.09381 (2019) - [i15]Florian Pfisterer, Stefan Coors, Janek Thomas, Bernd Bischl:
Multi-Objective Automatic Machine Learning with AutoxgboostMC. CoRR abs/1908.10796 (2019) - [i14]Florian Pfisterer, Janek Thomas, Bernd Bischl:
Towards Human Centered AutoML. CoRR abs/1911.02391 (2019) - [i13]Florian Pfisterer, Laura Beggel, Xudong Sun, Fabian Scheipl, Bernd Bischl:
Benchmarking time series classification - Functional data vs machine learning approaches. CoRR abs/1911.07511 (2019) - [i12]Martin Binder, Julia Moosbauer, Janek Thomas, Bernd Bischl:
Model-Agnostic Approaches to Multi-Objective Simultaneous Hyperparameter Tuning and Feature Selection. CoRR abs/1912.12912 (2019) - 2018
- [j19]Daniel Horn
, Aydin Demircioglu, Bernd Bischl, Tobias Glasmachers, Claus Weihs:
A comparative study on large scale kernelized support vector machines. Adv. Data Anal. Classif. 12(4): 867-883 (2018) - [j18]Janek Thomas
, Tobias Hepp
, Andreas Mayr
, Bernd Bischl:
Corrigendum to "Probing for Sparse and Fast Variable Selection with Model-Based Boosting". Comput. Math. Methods Medicine 2018: 2430438:1 (2018) - [j17]Hans A. Kestler
, Bernd Bischl, Matthias Schmid
:
Proceedings of Reisensburg 2014-2015. Comput. Stat. 33(3): 1125-1126 (2018) - [j16]Christoph Molnar
, Giuseppe Casalicchio, Bernd Bischl:
iml: An R package for Interpretable Machine Learning. J. Open Source Softw. 3(26): 786 (2018) - [j15]Daniel Schalk
, Janek Thomas
, Bernd Bischl
:
compboost: Modular Framework for Component-Wise Boosting. J. Open Source Softw. 3(30): 967 (2018) - [j14]Janek Thomas
, Andreas Mayr
, Bernd Bischl, Matthias Schmid
, Adam Smith
, Benjamin Hofner:
Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates. Stat. Comput. 28(3): 673-687 (2018) - [c33]Giuseppe Casalicchio
, Christoph Molnar
, Bernd Bischl:
Visualizing the Feature Importance for Black Box Models. ECML/PKDD (1) 2018: 655-670 - [c32]Hans Degroote, Patrick De Causmaecker, Bernd Bischl, Lars Kotthoff:
A Regression-Based Methodology for Online Algorithm Selection. SOCS 2018: 37-45 - [d1]Daniel Schalk
, Janek Thomas
, Bernd Bischl
:
compboost. Zenodo, 2018 - [i11]Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl:
Visualizing the Feature Importance for Black Box Models. CoRR abs/1804.06620 (2018) - [i10]Daniel Kühn, Philipp Probst, Janek Thomas, Bernd Bischl:
Automatic Exploration of Machine Learning Experiments on OpenML. CoRR abs/1806.10961 (2018) - [i9]Janek Thomas, Stefan Coors, Bernd Bischl:
Automatic Gradient Boosting. CoRR abs/1807.03873 (2018) - [i8]Florian Pfisterer, Jan N. van Rijn, Philipp Probst, Andreas C. Müller, Bernd Bischl:
Learning Multiple Defaults for Machine Learning Algorithms. CoRR abs/1811.09409 (2018) - 2017
- [j13]Janek Thomas
, Tobias Hepp
, Andreas Mayr
, Bernd Bischl:
Probing for Sparse and Fast Variable Selection with Model-Based Boosting. Comput. Math. Methods Medicine 2017: 1421409:1-1421409:8 (2017) - [j12]Michel Lang
, Bernd Bischl
, Dirk Surmann
:
batchtools: Tools for R to work on batch systems. J. Open Source Softw. 2(10): 135 (2017) - [j11]Philipp Probst, Quay Au, Giuseppe Casalicchio, Clemens Stachl, Bernd Bischl:
Multilabel Classification with R Package mlr. R J. 9(1): 352 (2017) - [c31]Daniel Horn, Melanie Dagge
, Xudong Sun, Bernd Bischl:
First Investigations on Noisy Model-Based Multi-objective Optimization. EMO 2017: 298-313 - [c30]Leslie Pérez Cáceres
, Bernd Bischl, Thomas Stützle:
Evaluating random forest models for irace. GECCO (Companion) 2017: 1146-1153 - [c29]Helena Kotthaus, Jakob Richter
, Andreas Lang, Janek Thomas, Bernd Bischl, Peter Marwedel, Jörg Rahnenführer
, Michel Lang
:
RAMBO: Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimization. LION 2017: 180-195 - [i7]Giuseppe Casalicchio, Jakob Bossek, Michel Lang
, Dominik Kirchhoff, Pascal Kerschke, Benjamin Hofner, Heidi Seibold
, Joaquin Vanschoren, Bernd Bischl:
OpenML: An R Package to Connect to the Networked Machine Learning Platform OpenML. CoRR abs/1701.01293 (2017) - [i6]Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang
, Rafael Gomes Mantovani
, Jan N. van Rijn, Joaquin Vanschoren:
OpenML Benchmarking Suites and the OpenML100. CoRR abs/1708.03731 (2017) - 2016
- [j10]Bernd Bischl, Pascal Kerschke
, Lars Kotthoff
, Marius Lindauer
, Yuri Malitsky, Alexandre Fréchette, Holger H. Hoos
, Frank Hutter, Kevin Leyton-Brown
, Kevin Tierney
, Joaquin Vanschoren
:
ASlib: A benchmark library for algorithm selection. Artif. Intell. 237: 41-58 (2016) - [j9]Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, Zachary M. Jones:
mlr: Machine Learning in R. J. Mach. Learn. Res. 17: 170:1-170:5 (2016) - [c28]Hans Degroote, Bernd Bischl, Lars Kotthoff, Patrick De Causmaecker:
Reinforcement Learning for Automatic Online Algorithm Selection - an Empirical Study. ITAT 2016: 93-101 - [c27]Jakob Richter
, Helena Kotthaus, Bernd Bischl, Peter Marwedel, Jörg Rahnenführer
, Michel Lang
:
Faster Model-Based Optimization Through Resource-Aware Scheduling Strategies. LION 2016: 267-273 - [c26]Daniel Horn, Bernd Bischl:
Multi-objective parameter configuration of machine learning algorithms using model-based optimization. SSCI 2016: 1-8 - [i5]Aydin Demircioglu, Daniel Horn, Tobias Glasmachers, Bernd Bischl, Claus Weihs:
Fast model selection by limiting SVM training times. CoRR abs/1602.03368 (2016) - [i4]Julia Schiffner, Bernd Bischl, Michel Lang, Jakob Richter, Zachary M. Jones, Philipp Probst, Florian Pfisterer, Mason Gallo, Dominik Kirchhoff, Tobias Kühn, Janek Thomas, Lars Kotthoff:
mlr Tutorial. CoRR abs/1609.06146 (2016) - 2015
- [j8]Olaf Mersmann
, Mike Preuss
, Heike Trautmann, Bernd Bischl, Claus Weihs:
Analyzing the BBOB Results by Means of Benchmarking Concepts. Evol. Comput. 23(1): 161-185 (2015) - [c25]Daniel Horn, Tobias Wagner, Dirk Biermann
, Claus Weihs, Bernd Bischl:
Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark. EMO (1) 2015: 64-78 - [c24]Dimo Brockhoff, Bernd Bischl, Tobias Wagner:
The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study. GECCO (Companion) 2015: 1159-1166 - [c23]Jakob Bossek
, Bernd Bischl, Tobias Wagner, Günter Rudolph:
Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement. GECCO 2015: 1319-1326 - [c22]Rafael Gomes Mantovani
, André Luis Debiaso Rossi
, Joaquin Vanschoren
, Bernd Bischl, André C. P. L. F. de Carvalho
:
To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning. IJCNN 2015: 1-8 - [c21]Rafael Gomes Mantovani
, André Luis Debiaso Rossi
, Joaquin Vanschoren
, Bernd Bischl, André C. P. L. F. de Carvalho
:
Effectiveness of Random Search in SVM hyper-parameter tuning. IJCNN 2015: 1-8 - [c20]Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl:
Taking machine learning research online with OpenML. BigMine 2015: 1-4 - [c19]Bernd Bischl:
Applying Model-Based Optimization to Hyperparameter Optimization in Machine Learning. MetaSel@PKDD/ECML 2015: 1 - [i3]Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, Joaquin Vanschoren:
ASlib: A Benchmark Library for Algorithm Selection. CoRR abs/1506.02465 (2015) - 2014
- [b1]Bernd Bischl:
Model and Algorithm Selection in Statistical Learning and Optimization. Technical University Dortmund, Germany, 2014 - [c18]Claus Weihs, Daniel Horn, Bernd Bischl:
Big Data Classification : Aspects on Many Features and Many Observations. ECDA 2014: 113-122 - [c17]Nadja Bauer
, Klaus Friedrichs, Bernd Bischl, Claus Weihs:
Fast Model Based Optimization of Tone Onset Detection by Instance Sampling. ECDA 2014: 461-472 - [c16]Bernd Bischl, Simon Wessing, Nadja Bauer
, Klaus Friedrichs, Claus Weihs:
MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization. LION 2014: 173-186 - [c15]Bernd Bischl, Tobias Kühn, Gero Szepannek
:
On Class Imbalance Correction for Classification Algorithms in Credit Scoring. OR 2014: 37-43 - [i2]Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, Luís Torgo
:
OpenML: networked science in machine learning. CoRR abs/1407.7722 (2014) - 2013
- [j7]Olaf Mersmann
, Bernd Bischl, Heike Trautmann, Markus Wagner
, Jakob Bossek
, Frank Neumann
:
A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69(2): 151-182 (2013) - [j6]Bernd Bischl, Julia Schiffner, Claus Weihs:
Benchmarking local classification methods. Comput. Stat. 28(6): 2599-2619 (2013) - [j5]Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, Luís Torgo
:
OpenML: networked science in machine learning. SIGKDD Explor. 15(2): 49-60 (2013) - [c14]Samadhi Nallaperuma, Markus Wagner
, Frank Neumann
, Bernd Bischl, Olaf Mersmann, Heike Trautmann:
A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. FOGA 2013: 147-160 - [c13]Stefan Hess, Tobias Wagner, Bernd Bischl:
PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection. LION 2013: 110-124 - [c12]Jan N. van Rijn, Bernd Bischl, Luís Torgo
, Bo Gao, Venkatesh Umaashankar, Simon Fischer, Patrick Winter, Bernd Wiswedel, Michael R. Berthold, Joaquin Vanschoren
:
OpenML: A Collaborative Science Platform. ECML/PKDD (3) 2013: 645-649 - 2012
- [j4]Bernd Bischl, Olaf Mersmann
, Heike Trautmann, Claus Weihs:
Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation. Evol. Comput. 20(2): 249-275 (2012) - [j3]Patrick Koch, Bernd Bischl, Oliver Flasch, Thomas Bartz-Beielstein
, Claus Weihs, Wolfgang Konen
:
Tuning and evolution of support vector kernels. Evol. Intell. 5(3): 153-170 (2012) - [c11]Bernd Bischl, Olaf Mersmann, Heike Trautmann, Mike Preuß:
Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. GECCO 2012: 313-320 - [c10]Bernd Bischl, Julia Schiffner, Claus Weihs:
Benchmarking Classification Algorithms on High-Performance Computing Clusters. GfKl 2012: 23-31 - [c9]Oliver Meyer, Bernd Bischl, Claus Weihs:
Support Vector Machines on Large Data Sets: Simple Parallel Approaches. GfKl 2012: 87-95 - [c8]Igor Vatolkin
, Bernd Bischl, Günter Rudolph, Claus Weihs:
Statistical Comparison of Classifiers for Multi-objective Feature Selection in Instrument Recognition. GfKl 2012: 171-178 - [c7]Olaf Mersmann
, Bernd Bischl, Jakob Bossek
, Heike Trautmann, Markus Wagner, Frank Neumann
:
Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness. LION 2012: 115-129 - [i1]Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Frank Neumann:
A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. CoRR abs/1208.2318 (2012) - 2011
- [j2]Holger Blume
, Bernd Bischl, Martin Botteck, Christian Igel, Rainer Martin
, Günther Rötter, Günter Rudolph
, Wolfgang M. Theimer
, Igor Vatolkin
, Claus Weihs:
Huge Music Archives on Mobile Devices. IEEE Signal Process. Mag. 28(4): 24-39 (2011) - [c6]Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, Günter Rudolph:
Exploratory landscape analysis. GECCO 2011: 829-836 - 2010
- [c5]Bernd Bischl, Markus Eichhoff, Claus Weihs:
Selecting Groups of Audio Features by Statistical Tests and the Group Lasso. Sprachkommunikation 2010: 1-4 - [c4]Julia Schiffner, Bernd Bischl, Claus Weihs:
Bias-Variance Analysis of Local Classification Methods. GfKl 2010: 49-57 - [c3]Claus Weihs, Olaf Mersmann
, Bernd Bischl, Arno Fritsch, Heike Trautmann, Till Moritz Karbach, Bernhard Spaan:
A Case Study on the Use of Statistical Classification Methods in Particle Physics. GfKl 2010: 69-77 - [c2]Bernd Bischl, Igor Vatolkin
, Mike Preuss:
Selecting Small Audio Feature Sets in Music Classification by Means of Asymmetric Mutation. PPSN (1) 2010: 314-323
2000 – 2009
- 2009
- [j1]Gero Szepannek
, Bernd Bischl, Claus Weihs:
On the combination of locally optimal pairwise classifiers. Eng. Appl. Artif. Intell. 22(1): 79-85 (2009) - 2007
- [c1]Gero Szepannek
, Bernd Bischl, Claus Weihs:
On the Combination of Locally Optimal Pairwise Classifiers. MLDM 2007: 104-116
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-13 20:23 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint