default search action
Seong Tae Kim 0001
Person information
- unicode name: 김성태
- affiliation: Kyung Hee University, South Korea
- affiliation (former): Technical University of Munich, Department of Informatics, Germany
- affiliation (former): KAIST, Image and Video Systems Laboratory, Daejeon, South Korea
Other persons with the same name
- Seong-Tae Kim (aka: Seong Tae Kim) — disambiguation page
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j15]Chu Myaet Thwal, Minh N. H. Nguyen, Ye Lin Tun, Seong Tae Kim, My T. Thai, Choong Seon Hong:
OnDev-LCT: On-Device Lightweight Convolutional Transformers towards federated learning. Neural Networks 170: 635-649 (2024) - [c37]Minkuk Kim, Hyeon Bae Kim, Jinyoung Moon, Jinwoo Choi, Seong Tae Kim:
Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval. CVPR 2024: 13894-13904 - [i34]Chu Myaet Thwal, Minh N. H. Nguyen, Ye Lin Tun, Seong Tae Kim, My T. Thai, Choong Seon Hong:
OnDev-LCT: On-Device Lightweight Convolutional Transformers towards federated learning. CoRR abs/2401.11652 (2024) - [i33]Yong Hyun Ahn, Hyeon Bae Kim, Seong Tae Kim:
WWW: A Unified Framework for Explaining What, Where and Why of Neural Networks by Interpretation of Neuron Concepts. CoRR abs/2402.18956 (2024) - [i32]Minkuk Kim, Hyeon Bae Kim, Jinyoung Moon, Jinwoo Choi, Seong Tae Kim:
Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval. CoRR abs/2404.07610 (2024) - [i31]Hyeon Bae Kim, Yong Hyun Ahn, Seong Tae Kim:
Mask-Free Neuron Concept Annotation for Interpreting Neural Networks in Medical Domain. CoRR abs/2407.11375 (2024) - [i30]Youngmin Oh, Hyung-Il Kim, Seong Tae Kim, Jung Uk Kim:
MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection. CoRR abs/2407.16448 (2024) - 2023
- [j14]Felix Buchert, Nassir Navab, Seong Tae Kim:
Toward Label-Efficient Neural Network Training: Diversity-Based Sampling in Semi-Supervised Active Learning. IEEE Access 11: 5193-5205 (2023) - [j13]Samra Irshad, Douglas P. S. Gomes, Seong Tae Kim:
Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained Deep Neural Networks. IEEE Access 11: 35097-35110 (2023) - [j12]Ah-Hyung Shin, Seong Tae Kim, Gyeong-Moon Park:
Time Series Anomaly Detection Using Transformer-Based GAN With Two-Step Masking. IEEE Access 11: 74035-74047 (2023) - [j11]Michelle Xiao-Lin Foo, Seong Tae Kim, Magdalini Paschali, Leili Goli, Egon Burian, Marcus R. Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler:
Interactive Segmentation for COVID-19 Infection Quantification on Longitudinal CT Scans. IEEE Access 11: 77596-77607 (2023) - [j10]Enki Cho, Minkuk Kim, Hyung-Il Kim, Jinyoung Moon, Seong Tae Kim:
Exploiting recollection effects for memory-based video object segmentation. Image Vis. Comput. 140: 104866 (2023) - [j9]Muhammad Asif Razzaq, Jamil Hussain, Jaehun Bang, Cam-Hao Hua, Fahad Ahmed Satti, Ubaid Ur Rehman, Hafiz Syed Muhammad Bilal, Seong Tae Kim, Sungyoung Lee:
A Hybrid Multimodal Emotion Recognition Framework for UX Evaluation Using Generalized Mixture Functions. Sensors 23(9): 4373 (2023) - [c36]Yong Hyun Ahn, Gyeong-Moon Park, Seong Tae Kim:
LINe: Out-of-Distribution Detection by Leveraging Important Neurons. CVPR 2023: 19852-19862 - [c35]Jung Uk Kim, Seong Tae Kim:
Towards Robust Audio-Based Vehicle Detection Via Importance-Aware Audio-Visual Learning. ICASSP 2023: 1-5 - [i29]Yong Hyun Ahn, Gyeong-Moon Park, Seong Tae Kim:
LINe: Out-of-Distribution Detection by Leveraging Important Neurons. CoRR abs/2303.13995 (2023) - [i28]Chaoning Zhang, Chenshuang Zhang, Chenghao Li, Yu Qiao, Sheng Zheng, Sumit Kumar Dam, Mengchun Zhang, Jung Uk Kim, Seong Tae Kim, Jinwoo Choi, Gyeong-Moon Park, Sung-Ho Bae, Lik-Hang Lee, Pan Hui, In So Kweon, Choong Seon Hong:
One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era. CoRR abs/2304.06488 (2023) - 2022
- [j8]Junho Kim, Seongyeop Kim, Seong Tae Kim, Yong Man Ro:
Robust Perturbation for Visual Explanation: Cross-Checking Mask Optimization to Avoid Class Distortion. IEEE Trans. Image Process. 31: 301-313 (2022) - [c34]Felix Buchert, Nassir Navab, Seong Tae Kim:
Exploiting Diversity of Unlabeled Data for Label-Efficient Semi-Supervised Active Learning. ICPR 2022: 2063-2069 - [i27]Tobias Czempiel, Coco Rogers, Matthias Keicher, Magdalini Paschali, Rickmer Braren, Egon Burian, Marcus R. Makowski, Nassir Navab, Thomas Wendler, Seong Tae Kim:
Longitudinal Self-Supervision for COVID-19 Pathology Quantification. CoRR abs/2203.10804 (2022) - [i26]Ashkan Khakzar, Yawei Li, Yang Zhang, Mirac Sanisoglu, Seong Tae Kim, Mina Rezaei, Bernd Bischl, Nassir Navab:
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models. CoRR abs/2204.01729 (2022) - [i25]Felix Buchert, Nassir Navab, Seong Tae Kim:
Exploiting Diversity of Unlabeled Data for Label-Efficient Semi-Supervised Active Learning. CoRR abs/2207.12302 (2022) - [i24]Samra Irshad, Douglas P. S. Gomes, Seong Tae Kim:
Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained Deep Neural Networks. CoRR abs/2210.04285 (2022) - 2021
- [j7]Seong Tae Kim, Umut Küçükaslan, Nassir Navab:
Longitudinal Brain MR Image Modeling Using Personalized Memory for Alzheimer's Disease. IEEE Access 9: 143212-143221 (2021) - [j6]Jung Uk Kim, Seong-Tae Kim, Hong Joo Lee, Sangmin Lee, Yong Man Ro:
CUA Loss: Class Uncertainty-Aware Gradient Modulation for Robust Object Detection. IEEE Trans. Circuits Syst. Video Technol. 31(9): 3529-3543 (2021) - [c33]Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja, Christian Rupprecht, Seong Tae Kim, Nassir Navab:
Neural Response Interpretation Through the Lens of Critical Pathways. CVPR 2021: 13528-13538 - [c32]Tetiana Klymenko, Seong Tae Kim, Kirsten Lauber, Christopher Kurz, Guillaume Landry, Nassir Navab, Shadi Albarqouni:
Butterfly-Net: Spatial-Temporal Architecture For Medical Image Segmentation. ISBI 2021: 616-620 - [c31]Seong Tae Kim, Leili Goli, Magdalini Paschali, Ashkan Khakzar, Matthias Keicher, Tobias Czempiel, Egon Burian, Rickmer Braren, Nassir Navab, Thomas Wendler:
Longitudinal Quantitative Assessment of COVID-19 Infection Progression from Chest CTs. MICCAI (7) 2021: 273-282 - [c30]Ashkan Khakzar, Yang Zhang, Wejdene Mansour, Yuezhi Cai, Yawei Li, Yucheng Zhang, Seong Tae Kim, Nassir Navab:
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features. MICCAI (3) 2021: 391-401 - [c29]Ashkan Khakzar, Sabrina Musatian, Jonas Buchberger, Icxel Valeriano Quiroz, Nikolaus Pinger, Soroosh Baselizadeh, Seong Tae Kim, Nassir Navab:
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models. MICCAI (3) 2021: 499-508 - [c28]Tobias Czempiel, Magdalini Paschali, Daniel Ostler, Seong Tae Kim, Benjamin Busam, Nassir Navab:
OperA: Attention-Regularized Transformers for Surgical Phase Recognition. MICCAI (4) 2021: 604-614 - [c27]Yang Zhang, Ashkan Khakzar, Yawei Li, Azade Farshad, Seong Tae Kim, Nassir Navab:
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information. NeurIPS 2021: 20040-20051 - [i23]Tobias Czempiel, Magdalini Paschali, Daniel Ostler, Seong-Tae Kim, Benjamin Busam, Nassir Navab:
OperA: Attention-Regularized Transformers for Surgical Phase Recognition. CoRR abs/2103.03873 (2021) - [i22]Seong-Tae Kim, Leili Goli, Magdalini Paschali, Ashkan Khakzar, Matthias Keicher, Tobias Czempiel, Egon Burian, Rickmer Braren, Nassir Navab, Thomas Wendler:
Longitudinal Quantitative Assessment of COVID-19 Infection Progression from Chest CTs. CoRR abs/2103.07240 (2021) - [i21]Aadhithya Sankar, Matthias Keicher, Rami Eisawy, Abhijeet Parida, Franz Pfister, Seong-Tae Kim, Nassir Navab:
GLOWin: A Flow-based Invertible Generative Framework for Learning Disentangled Feature Representations in Medical Images. CoRR abs/2103.10868 (2021) - [i20]Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja, Christian Rupprecht, Seong Tae Kim, Nassir Navab:
Neural Response Interpretation through the Lens of Critical Pathways. CoRR abs/2103.16886 (2021) - [i19]Ashkan Khakzar, Yang Zhang, Wejdene Mansour, Yuezhi Cai, Yawei Li, Yucheng Zhang, Seong Tae Kim, Nassir Navab:
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features. CoRR abs/2104.00411 (2021) - [i18]Ashkan Khakzar, Sabrina Musatian, Jonas Buchberger, Icxel Valeriano Quiroz, Nikolaus Pinger, Soroosh Baselizadeh, Seong Tae Kim, Nassir Navab:
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models. CoRR abs/2104.02481 (2021) - [i17]Michelle Xiao-Lin Foo, Seong Tae Kim, Magdalini Paschali, Leili Goli, Egon Burian, Marcus R. Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler:
Interactive Segmentation for COVID-19 Infection Quantification on Longitudinal CT scans. CoRR abs/2110.00948 (2021) - [i16]Yang Zhang, Ashkan Khakzar, Yawei Li, Azade Farshad, Seong Tae Kim, Nassir Navab:
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information. CoRR abs/2110.01471 (2021) - 2020
- [j5]Leslie Ching Ow Tiong, Seong Tae Kim, Yong Man Ro:
Multimodal facial biometrics recognition: Dual-stream convolutional neural networks with multi-feature fusion layers. Image Vis. Comput. 102: 103977 (2020) - [j4]Maria Tirindelli, Maria Victorova, Javier Esteban, Seong Tae Kim, David Navarro-Alarcon, Yong-Ping Zheng, Nassir Navab:
Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next "Level". IEEE Robotics Autom. Lett. 5(4): 5661-5668 (2020) - [j3]Hong Joo Lee, Seong Tae Kim, Hakmin Lee, Yong Man Ro:
Lightweight and Effective Facial Landmark Detection using Adversarial Learning with Face Geometric Map Generative Network. IEEE Trans. Circuits Syst. Video Technol. 30(3): 771-780 (2020) - [c26]Hakmin Lee, Hong Joo Lee, Seong Tae Kim, Yong Man Ro:
Robust Ensemble Model Training via Random Layer Sampling Against Adversarial Attack. BMVC 2020 - [c25]Stefan Denner, Ashkan Khakzar, Moiz Sajid, Mahdi Saleh, Ziga Spiclin, Seong-Tae Kim, Nassir Navab:
Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation. BrainLes@MICCAI (1) 2020: 111-121 - [c24]Jung Uk Kim, Seong Tae Kim, Eun Sung Kim, Sang-Keun Moon, Yong Man Ro:
Towards High-Performance Object Detection: Task-Specific Design Considering Classification and Localization Separation. ICASSP 2020: 4317-4321 - [c23]Tobias Czempiel, Magdalini Paschali, Matthias Keicher, Walter Simson, Hubertus Feussner, Seong Tae Kim, Nassir Navab:
TeCNO: Surgical Phase Recognition with Multi-stage Temporal Convolutional Networks. MICCAI (3) 2020: 343-352 - [i15]Maria Tirindelli, Maria Victorova, Javier Esteban, Seong Tae Kim, David Navarro-Alarcon, Yong-Ping Zheng, Nassir Navab:
Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next "Level". CoRR abs/2002.11404 (2020) - [i14]Tobias Czempiel, Magdalini Paschali, Matthias Keicher, Walter Simson, Hubertus Feussner, Seong Tae Kim, Nassir Navab:
TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks. CoRR abs/2003.10751 (2020) - [i13]Seong Tae Kim, Farrukh Mushtaq, Nassir Navab:
Confident Coreset for Active Learning in Medical Image Analysis. CoRR abs/2004.02200 (2020) - [i12]Stefan Denner, Ashkan Khakzar, Moiz Sajid, Mahdi Saleh, Ziga Spiclin, Seong Tae Kim, Nassir Navab:
Spatio-temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation. CoRR abs/2004.03675 (2020) - [i11]Hong Joo Lee, Seong Tae Kim, Hakmin Lee, Nassir Navab, Yong Man Ro:
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation. CoRR abs/2005.10754 (2020) - [i10]Hakmin Lee, Hong Joo Lee, Seong Tae Kim, Yong Man Ro:
Robust Ensemble Model Training via Random Layer Sampling Against Adversarial Attack. CoRR abs/2005.10757 (2020) - [i9]Abinav Ravi Venkatakrishnan, Seong Tae Kim, Rami Eisawy, Franz Pfister, Nassir Navab:
Self-Supervised Out-of-Distribution Detection in Brain CT Scans. CoRR abs/2011.05428 (2020)
2010 – 2019
- 2019
- [j2]Leslie Ching Ow Tiong, Seong Tae Kim, Yong Man Ro:
Implementation of multimodal biometric recognition via multi-feature deep learning networks and feature fusion. Multim. Tools Appl. 78(16): 22743-22772 (2019) - [j1]Seong Tae Kim, Yong Man Ro:
Attended Relation Feature Representation of Facial Dynamics for Facial Authentication. IEEE Trans. Inf. Forensics Secur. 14(7): 1768-1778 (2019) - [c22]Hyebin Lee, Seong Tae Kim, Yong Man Ro:
Building a Breast-Sentence Dataset: Its Usefulness for Computer-Aided Diagnosis. ICCV Workshops 2019: 440-449 - [c21]Jae-Hyeok Lee, Seong Tae Kim, Yong Man Ro:
Probenet: Probing Deep Networks. ICIP 2019: 3821-3825 - [c20]Seong Tae Kim, Jae-Hyeok Lee, Yong Man Ro:
Visual evidence for interpreting diagnostic decision of deep neural network in computer-aided diagnosis. Medical Imaging: Computer-Aided Diagnosis 2019: 109500K - [c19]Hyebin Lee, Seong Tae Kim, Yong Man Ro:
Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis. iMIMIC/ML-CDS@MICCAI 2019: 21-29 - [c18]Hakmin Lee, Seong Tae Kim, Jae-Hyeok Lee, Yong Man Ro:
Realistic Breast Mass Generation Through BIRADS Category. MICCAI (6) 2019: 703-711 - [i8]Hyebin Lee, Seong Tae Kim, Yong Man Ro:
Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis. CoRR abs/1906.03922 (2019) - [i7]Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja, Seong Tae Kim, Nassir Navab:
Explaining Neural Networks via Perturbing Important Learned Features. CoRR abs/1911.11081 (2019) - 2018
- [c17]Jae-Hyeok Lee, Seong Tae Kim, Hakmin Lee, Yong Man Ro:
Feature2Mass: Visual Feature Processing in Latent Space for Realistic Labeled Mass Generation. ECCV Workshops (6) 2018: 326-334 - [c16]Seong Tae Kim, Yong Man Ro:
Facial Dynamics Interpreter Network: What Are the Important Relations Between Local Dynamics for Facial Trait Estimation? ECCV (12) 2018: 475-491 - [c15]Seong Tae Kim, Hakmin Lee, Hak Gu Kim, Yong Man Ro:
ICADx: interpretable computer aided diagnosis of breast masses. Medical Imaging: Computer-Aided Diagnosis 2018: 1057522 - [c14]Tae Kwan Lee, Wissam J. Baddar, Seong Tae Kim, Yong Man Ro:
Convolution with Logarithmic Filter Groups for Efficient Shallow CNN. MMM (1) 2018: 117-129 - [c13]Hong Joo Lee, Wissam J. Baddar, Hak Gu Kim, Seong Tae Kim, Yong Man Ro:
Teacher and Student Joint Learning for Compact Facial Landmark Detection Network. MMM (1) 2018: 493-504 - [i6]Seong Tae Kim, Hakmin Lee, Hak Gu Kim, Yong Man Ro:
ICADx: Interpretable computer aided diagnosis of breast masses. CoRR abs/1805.08960 (2018) - [i5]Jae-Hyeok Lee, Seong Tae Kim, Hakmin Lee, Yong Man Ro:
Feature2Mass: Visual Feature Processing in Latent Space for Realistic Labeled Mass Generation. CoRR abs/1809.06147 (2018) - 2017
- [c12]Seong Tae Kim, Yeoreum Choi, Yong Man Ro:
Multi-Scale Facial Scanning via Spatial Lstm for Latent Facial Feature Representation. BIOSIG 2017: 127-135 - [c11]Geonmo Gu, Seong Tae Kim, Yong Man Ro:
Adaptive attention fusion network for visual question answering. ICME 2017: 997-1002 - [i4]Seong Tae Kim, Yong Man Ro:
EvaluationNet: Can Human Skill be Evaluated by Deep Networks? CoRR abs/1705.11077 (2017) - [i3]Tae Kwan Lee, Wissam J. Baddar, Seong Tae Kim, Yong Man Ro:
Convolution with Logarithmic Filter Groups for Efficient Shallow CNN. CoRR abs/1707.09855 (2017) - [i2]Geonmo Gu, Seong Tae Kim, Ki Hyun Kim, Wissam J. Baddar, Yong Man Ro:
Differential Generative Adversarial Networks: Synthesizing Non-linear Facial Variations with Limited Number of Training Data. CoRR abs/1711.10267 (2017) - [i1]Seong Tae Kim, Yong Man Ro:
Interpretable Facial Relational Network Using Relational Importance. CoRR abs/1711.10688 (2017) - 2016
- [c10]Seong-Tae Kim, Dae Hoe Kim, Yong Man Ro:
Facial dynamic modelling using long short-term memory network: Analysis and application to face authentication. BTAS 2016: 1-6 - [c9]Dae Hoe Kim, Seong-Tae Kim, Yong Man Ro:
Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis. ICASSP 2016: 927-931 - [c8]Seong-Tae Kim, Dae Hoe Kim, Yong Man Ro:
Spatio-temporal representation for face authentication by using multi-task learning with human attributes. ICIP 2016: 2996-3000 - [c7]Wissam J. Baddar, Jisoo Son, Dae Hoe Kim, Seong-Tae Kim, Yong Man Ro:
A deep facial landmarks detection with facial contour and facial components constraint. ICIP 2016: 3209-3213 - 2015
- [c6]Seong-Tae Kim, Dae Hoe Kim, Dong Jin Ji, Yong Man Ro:
Region matching based on local structure information in ipsilateral digital breast tomosynthesis views. ICIP 2015: 252-256 - [c5]Dae Hoe Kim, Seong-Tae Kim, Wissam J. Baddar, Yong Man Ro:
Feature extraction from bilateral dissimilarity in digital breast tomosynthesis reconstructed volume. ICIP 2015: 4521-4524 - [c4]Seong Tae Kim, Dae Hoe Kim, Yong Man Ro:
Combination of conspicuity improved synthetic mammograms and digital breast tomosynthesis: a promising approach for mass detection. Medical Imaging: Computer-Aided Diagnosis 2015: 941419 - [c3]Dae Hoe Kim, Seong Tae Kim, Yong Man Ro:
Feature extraction from inter-view similarity of DBT projection views. Medical Imaging: Computer-Aided Diagnosis 2015: 941425 - 2014
- [c2]Seong-Tae Kim, Dae Hoe Kim, Eun Suk Cha, Yong Man Ro:
Mass detection based on pooled mass probability map of 3D reconstructed slices in digital breast tomosynthesis. BHI 2014: 57-60 - [c1]Seong-Tae Kim, Dae Hoe Kim, Yong Man Ro:
Generation of conspicuity-improved synthetic image from digital breast tomosynthesis. DSP 2014: 395-399
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-11 17:28 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint