


Остановите войну!
for scientists:
Hendrik Blockeel
Person information

- affiliation: Catholic University of Leuven, Belgium
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [c111]Florian Busch, Moritz Kulessa, Eneldo Loza Mencía, Hendrik Blockeel:
Combining Predictions Under Uncertainty: The Case of Random Decision Trees. DS 2021: 78-93 - [i23]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
SaDe: Learning Models that Provably Satisfy Domain Constraints. CoRR abs/2112.00552 (2021) - 2020
- [c110]Elia Van Wolputte
, Hendrik Blockeel
:
Missing Value Imputation with MERCS: A Faster Alternative to MissForest. DS 2020: 502-516 - [c109]Jonas Schouterden
, Jesse Davis
, Hendrik Blockeel
:
Multi-directional Rule Set Learning. DS 2020: 517-532 - [c108]Jonas Soenen
, Sebastijan Dumancic
, Toon van Craenendonck
, Hendrik Blockeel
:
Tackling Noise in Active Semi-supervised Clustering. ECML/PKDD (2) 2020: 121-136 - [c107]Evgeniya Korneva, Hendrik Blockeel
:
Towards Better Evaluation of Multi-target Regression Models. PKDD/ECML Workshops 2020: 353-362 - [i22]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
Feature Interactions in XGBoost. CoRR abs/2007.05758 (2020)
2010 – 2019
- 2019
- [c106]Sebastijan Dumancic, Tias Guns
, Wannes Meert
, Hendrik Blockeel
:
Learning Relational Representations with Auto-encoding Logic Programs. IJCAI 2019: 6081-6087 - [c105]Jonas Schouterden
, Jesse Davis
, Hendrik Blockeel
:
LazyBum: Decision Tree Learning Using Lazy Propositionalization. ILP 2019: 98-113 - [i21]Sebastijan Dumancic, Tias Guns, Wannes Meert, Hendrik Blockeel:
Learning Relational Representations with Auto-encoding Logic Programs. CoRR abs/1903.12577 (2019) - [i20]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
LazyBum: Decision tree learning using lazy propositionalization. CoRR abs/1909.05044 (2019) - 2018
- [j48]Hendrik Blockeel
:
Declarative data analysis. Int. J. Data Sci. Anal. 6(3): 217-223 (2018) - [j47]Leander Schietgat, Celine Vens
, Ricardo Cerri
, Carlos N. Fischer
, Eduardo P. Costa, Jan Ramon, Claudia M. A. Carareto
, Hendrik Blockeel
:
A machine learning based framework to identify and classify long terminal repeat retrotransposons. PLoS Comput. Biol. 14(4) (2018) - [c104]Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel:
MERCS: Multi-Directional Ensembles of Regression and Classification Trees. AAAI 2018: 4276-4283 - [c103]Evgeniya Korneva, Hendrik Blockeel
:
Model Selection for Multi-directional Ensemble of Regression and Classification Trees. BNCAI 2018: 52-64 - [c102]Toon van Craenendonck, Wannes Meert
, Sebastijan Dumancic, Hendrik Blockeel
:
COBRASTS: A New Approach to Semi-supervised Clustering of Time Series. DS 2018: 179-193 - [c101]Luc De Raedt
, Hendrik Blockeel
, Samuel Kolb, Stefano Teso, Gust Verbruggen:
Elements of an Automatic Data Scientist. IDA 2018: 3-14 - [c100]Toon van Craenendonck, Sebastijan Dumancic, Elia Van Wolputte, Hendrik Blockeel
:
COBRAS: Interactive Clustering with Pairwise Queries. IDA 2018: 353-366 - [c99]Toon van Craenendonck, Wannes Meert
, Sebastijan Dumancic, Hendrik Blockeel
:
Interactive Time Series Clustering with COBRASTS. ECML/PKDD (3) 2018: 654-657 - [i19]Toon van Craenendonck, Sebastijan Dumancic, Hendrik Blockeel:
COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints. CoRR abs/1801.09955 (2018) - [i18]Toon van Craenendonck, Sebastijan Dumancic, Elia Van Wolputte, Hendrik Blockeel:
COBRAS: Fast, Iterative, Active Clustering with Pairwise Constraints. CoRR abs/1803.11060 (2018) - [i17]Toon van Craenendonck, Wannes Meert, Sebastijan Dumancic, Hendrik Blockeel:
COBRAS-TS: A new approach to Semi-Supervised Clustering of Time Series. CoRR abs/1805.00779 (2018) - 2017
- [j46]Toon van Craenendonck
, Hendrik Blockeel
:
Constraint-based clustering selection. Mach. Learn. 106(9-10): 1497-1521 (2017) - [j45]Sebastijan Dumancic
, Hendrik Blockeel
:
An expressive dissimilarity measure for relational clustering using neighbourhood trees. Mach. Learn. 106(9-10): 1523-1545 (2017) - [c98]Sebastijan Dumancic
, Hendrik Blockeel
:
Clustering-Based Relational Unsupervised Representation Learning with an Explicit Distributed Representation. IJCAI 2017: 1631-1637 - [c97]Toon van Craenendonck, Sebastijan Dumancic
, Hendrik Blockeel:
COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints. IJCAI 2017: 2871-2877 - [c96]Hendrik Blockeel:
PU-learning Disjunctive Concepts in ILP. ILP (Late Breaking Papers) 2017: 6-10 - [c95]Sebastijan Dumancic
, Hendrik Blockeel
:
Demystifying Relational Latent Representations. ILP 2017: 63-77 - [r13]Hendrik Blockeel:
Bias Specification Language. Encyclopedia of Machine Learning and Data Mining 2017: 125-128 - [r12]Hendrik Blockeel:
Hypothesis Language. Encyclopedia of Machine Learning and Data Mining 2017: 625-629 - [r11]Hendrik Blockeel:
Hypothesis Space. Encyclopedia of Machine Learning and Data Mining 2017: 629-632 - [r10]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multi-Instance Learning. Encyclopedia of Machine Learning and Data Mining 2017: 864-875 - [r9]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multiple-Instance Learning. Encyclopedia of Machine Learning and Data Mining 2017: 882-892 - [r8]Hendrik Blockeel:
Observation Language. Encyclopedia of Machine Learning and Data Mining 2017: 917-920 - [r7]Jan Struyf, Hendrik Blockeel:
Relational Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1090-1096 - [i16]Sebastijan Dumancic, Hendrik Blockeel:
Demystifying Relational Latent Representations. CoRR abs/1705.05785 (2017) - 2016
- [j44]Gitte Vanwinckelen, Vinicius Tragante do Ó, Daan Fierens, Hendrik Blockeel
:
Instance-level accuracy versus bag-level accuracy in multi-instance learning. Data Min. Knowl. Discov. 30(2): 313-341 (2016) - [j43]Hossein Rahmani, Hendrik Blockeel
, Andreas Bender:
Using a Human Drug Network for generating novel hypotheses about drugs. Intell. Data Anal. 20(1): 183-197 (2016) - [c94]Sebastijan Dumancic
, Hendrik Blockeel
:
An Efficient and Expressive Similarity Measure for Relational Clustering Using Neighbourhood Trees. ECAI 2016: 1674-1675 - [c93]Leonor Becerra-Bonache, Hendrik Blockeel
, María Galván, François Jacquenet:
Relational Grounded Language Learning. ECAI 2016: 1764-1765 - [c92]Aäron Verachtert, Hendrik Blockeel, Jesse Davis:
Dynamic Early Stopping for Naive Bayes. IJCAI 2016: 2082-2088 - [c91]Hendrik Blockeel:
Identifying Non-Redundant Literals in Clauses with Uniqueness Propagation. ILP (Short Papers) 2016: 8-13 - [c90]Hendrik Blockeel, Svetlana Valevich:
A Simple Framework for Theta-Subsumption Testing in Prolog. ILP (Short Papers) 2016: 14-19 - [c89]Leonor Becerra-Bonache, Hendrik Blockeel
, María Galván, François Jacquenet:
Learning Language Models from Images with ReGLL. ECML/PKDD (3) 2016: 55-58 - [i15]Sebastijan Dumancic, Hendrik Blockeel:
An expressive dissimilarity measure for relational clustering using neighbourhood trees. CoRR abs/1604.08934 (2016) - [i14]Sebastijan Dumancic, Hendrik Blockeel:
Unsupervised Relational Representation Learning via Clustering: Preliminary Results. CoRR abs/1606.08658 (2016) - [i13]Sebastijan Dumancic, Wannes Meert, Hendrik Blockeel:
Theory reconstruction: a representation learning view on predicate invention. CoRR abs/1606.08660 (2016) - [i12]Toon van Craenendonck, Hendrik Blockeel:
Constraint-Based Clustering Selection. CoRR abs/1609.07272 (2016) - 2015
- [j42]Hossein Rahmani, Hendrik Blockeel
, Andreas Bender:
Using a Human Disease Network for augmenting prior knowledge about diseases. Intell. Data Anal. 19(4): 897-916 (2015) - [j41]Hendrik Blockeel
:
Data Mining: From Procedural to Declarative Approaches. New Gener. Comput. 33(2): 115-135 (2015) - [j40]Maurice Bruynooghe, Hendrik Blockeel
, Bart Bogaerts
, Broes De Cat, Stef De Pooter, Joachim Jansen, Anthony Labarre
, Jan Ramon, Marc Denecker, Sicco Verwer:
Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3. Theory Pract. Log. Program. 15(6): 783-817 (2015) - [c88]Leonor Becerra-Bonache, Hendrik Blockeel
, María Galván, François Jacquenet:
A First-Order-Logic Based Model for Grounded Language Learning. IDA 2015: 49-60 - [c87]Denny Verbeeck, Hendrik Blockeel
:
Slower Can Be Faster: The iRetis Incremental Model Tree Learner. IDA 2015: 322-333 - [c86]Toon van Craenendonck, Hendrik Blockeel:
Limitations of Using Constraint Set Utility in Semi-Supervised Clustering. MetaSel@PKDD/ECML 2015: 27-42 - [c85]Antoine Adam, Hendrik Blockeel:
Dealing with Overlapping Clustering: A Constraint-based Approach to Algorithm Selection. MetaSel@PKDD/ECML 2015: 43-54 - 2014
- [c84]Gitte Vanwinckelen, Hendrik Blockeel:
Look before you leap: Some insights into learner evaluation with cross-validation. SSDM@ECML/PKDD 2014: 3-20 - [e7]Hendrik Blockeel
, Matthijs van Leeuwen, Veronica Vinciotti
:
Advances in Intelligent Data Analysis XIII - 13th International Symposium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Proceedings. Lecture Notes in Computer Science 8819, Springer 2014, ISBN 978-3-319-12570-1 [contents] - [i11]Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. CoRR abs/1402.0565 (2014) - 2013
- [j39]Hendrik Blockeel
, Kristian Kersting, Siegfried Nijssen, Filip Zelezný
:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Data Min. Knowl. Discov. 27(3): 291-293 (2013) - [j38]Pirooz Shamsinejadbabaki, Mohamad Saraee, Hendrik Blockeel
:
Causality-based cost-effective action mining. Intell. Data Anal. 17(6): 1075-1091 (2013) - [j37]Nima Taghipour, Daan Fierens, Jesse Davis
, Hendrik Blockeel
:
Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. J. Artif. Intell. Res. 47: 393-439 (2013) - [j36]Robert Brijder
, Hendrik Blockeel
:
On the inference of non-confluent NLC graph grammars. J. Log. Comput. 23(4): 799-814 (2013) - [j35]Hendrik Blockeel
, Kristian Kersting, Siegfried Nijssen, Filip Zelezný
:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Mach. Learn. 93(1): 1-3 (2013) - [c83]Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:
On the Completeness of Lifted Variable Elimination. AAAI Workshop: Statistical Relational Artificial Intelligence 2013 - [c82]Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:
Completeness Results for Lifted Variable Elimination. AISTATS 2013: 572-580 - [c81]Pan Hu, Celine Vens, Bart Verstrynge, Hendrik Blockeel
:
Generalizing from Example Clusters. Discovery Science 2013: 64-78 - [c80]Denny Verbeeck, Francis Maes, Kurt De Grave, Hendrik Blockeel
:
Multi-objective optimization with surrogate trees. GECCO 2013: 679-686 - [c79]Celine Vens, Bart Verstrynge, Hendrik Blockeel
:
Semi-supervised Clustering with Example Clusters. KDIR/KMIS 2013: 45-51 - [c78]Eduardo P. Costa, Sicco Verwer, Hendrik Blockeel
:
Estimating Prediction Certainty in Decision Trees. IDA 2013: 138-149 - [c77]Nima Taghipour, Jesse Davis
, Hendrik Blockeel
:
Generalized Counting for Lifted Variable Elimination. ILP 2013: 107-122 - [c76]Nima Taghipour, Jesse Davis, Hendrik Blockeel:
First-order Decomposition Trees. NIPS 2013: 1052-1060 - [c75]Antoine Adam, Hendrik Blockeel
, Sander Govers
, Abram Aertsen
:
SCCQL : A Constraint-Based Clustering System. ECML/PKDD (3) 2013: 681-684 - [p5]Hendrik Blockeel
:
Statistical Relational Learning. Handbook on Neural Information Processing 2013: 241-281 - [e6]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I. Lecture Notes in Computer Science 8188, Springer 2013, ISBN 978-3-642-40987-5 [contents] - [e5]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II. Lecture Notes in Computer Science 8189, Springer 2013, ISBN 978-3-642-40990-5 [contents] - [e4]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III. Lecture Notes in Computer Science 8190, Springer 2013, ISBN 978-3-642-40993-6 [contents] - [i10]Nima Taghipour, Jesse Davis, Hendrik Blockeel:
First-Order Decomposition Trees. CoRR abs/1306.0751 (2013) - [i9]Maurice Bruynooghe, Hendrik Blockeel, Bart Bogaerts, Broes De Cat, Stef De Pooter, Joachim Jansen, Anthony Labarre, Jan Ramon, Marc Denecker, Sicco Verwer:
Predicate Logic as a Modeling Language: Modeling and Solving some Machine Learning and Data Mining Problems with IDP3. CoRR abs/1309.6883 (2013) - 2012
- [j34]Hendrik Blockeel
, Toon Calders, Élisa Fromont, Bart Goethals
, Adriana Prado, Céline Robardet:
An inductive database system based on virtual mining views. Data Min. Knowl. Discov. 24(1): 247-287 (2012) - [j33]Joris Maervoet, Celine Vens, Greet Vanden Berghe, Hendrik Blockeel
, Patrick De Causmaecker
:
Outlier detection in relational data: A case study in geographical information systems. Expert Syst. Appl. 39(5): 4718-4728 (2012) - [j32]Hossein Rahmani, Hendrik Blockeel
, Andreas Bender:
Predicting Genes Involved in Human Cancer Using Network Contextual Information. J. Integr. Bioinform. 9(1) (2012) - [j31]Joaquin Vanschoren
, Hendrik Blockeel
, Bernhard Pfahringer, Geoffrey Holmes
:
Experiment databases - A new way to share, organize and learn from experiments. Mach. Learn. 87(2): 127-158 (2012) - [c74]Hendrik Blockeel
, Bart Bogaerts
, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre
, Jan Ramon, Sicco Verwer:
Modeling Machine Learning and Data Mining Problems with FO(·). ICLP (Technical Communications) 2012: 14-25 - [c73]Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination with Arbitrary Constraints. AISTATS 2012: 1194-1202 - [i8]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
A Revised Publication Model for ECML PKDD. CoRR abs/1207.6324 (2012) - [i7]Nima Taghipour, Daan Fierens, Guy Van den Broeck
, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination: A Novel Operator and Completeness Results. CoRR abs/1208.3809 (2012) - 2011
- [j30]Werner Uwents, Gabriele Monfardini, Hendrik Blockeel
, Marco Gori, Franco Scarselli
:
Neural networks for relational learning: an experimental comparison. Mach. Learn. 82(3): 315-349 (2011) - [j29]Hendrik Blockeel
, Karsten M. Borgwardt, Luc De Raedt
, Pedro M. Domingos, Kristian Kersting, Xifeng Yan:
Guest editorial to the special issue on inductive logic programming, mining and learning in graphs and statistical relational learning. Mach. Learn. 83(2): 133-135 (2011) - [c72]Hossein Rahmani, Hendrik Blockeel
, Andreas Bender:
Collaboration-Based Function Prediction in Protein-Protein Interaction Networks. IDA 2011: 318-327 - [c71]Beau Piccart, Andy Georges
, Hendrik Blockeel
, Lieven Eeckhout:
Ranking commercial machines through data transposition. IISWC 2011: 3-14 - [c70]Beau Piccart, Hendrik Blockeel
, Andy Georges
, Lieven Eeckhout:
Predictive Learning in Two-Way Datasets. ILP (Late Breaking Papers) 2011: 61-68 - [c69]Tijn Witsenburg, Hendrik Blockeel
:
K-Means Based Approaches to Clustering Nodes in Annotated Graphs. ISMIS 2011: 346-357 - [c68]Tijn Witsenburg, Hendrik Blockeel
:
Improving the Accuracy of Similarity Measures by Using Link Information. ISMIS 2011: 501-512 - [c67]Robert Brijder
, Hendrik Blockeel
:
Characterizing Compressibility of Disjoint Subgraphs with NLC Grammars. LATA 2011: 167-178 - [i6]Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, Henk Vandecasteele:
Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs. CoRR abs/1106.1803 (2011) - 2010
- [j28]Leander Schietgat, Celine Vens, Jan Struyf, Hendrik Blockeel
, Dragi Kocev
, Saso Dzeroski
:
Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinform. 11: 2 (2010) - [j27]Kristien Van Loon, Fabian Güiza Grandas
, Geert Meyfroidt, Jean-Marie Aerts, Jan Ramon, Hendrik Blockeel
, Maurice Bruynooghe, Greta Van den Berghe
, Daniel Berckmans
:
Prediction of Clinical Conditions after Coronary Bypass Surgery using Dynamic Data Analysis. J. Medical Syst. 34(3): 229-239 (2010) - [j26]Daan Fierens, Jan Ramon, Hendrik Blockeel
, Maurice Bruynooghe:
A comparison of pruning criteria for probability trees. Mach. Learn. 78(1-2): 251-285 (2010) - [c66]Celine Vens, Eduardo P. Costa, Hendrik Blockeel
:
Top-Down Induction of Phylogenetic Trees. EvoBIO 2010: 62-73 - [c65]Arno J. Knobbe
, Hendrik Blockeel
, Arne Koopman, Toon Calders, Bas Obladen, Carlos Bosma, Hessel Galenkamp, Eddy Koenders, Joost N. Kok:
InfraWatch: Data Management of Large Systems for Monitoring Infrastructural Performance. IDA 2010: 91-102 - [c64]Wannes Meert
, Nima Taghipour, Hendrik Blockeel:
First-Order Bayes-Ball. ECML/PKDD (2) 2010: 369-384 - [c63]Hossein Rahmani, Behrooz Nobakht, Hendrik Blockeel:
Collaboration-based Social Tag Prediction in the Graph of Annotated Web Pages. NyNaK 2010 - [c62]Beau Piccart, Jan Struyf, Hendrik Blockeel:
Alleviating the Sparsity Problem in Collaborative Filtering by Using an Adapted Distance and a Graph-Based Method. SDM 2010: 189-198 - [c61]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Predicting the functions of proteins in Protein-Protein Interaction networks from global information. MLSB 2010: 82-97 - [p4]Hendrik Blockeel
, Toon Calders, Élisa Fromont, Bart Goethals
, Adriana Prado, Céline Robardet:
A Practical Comparative Study Of Data Mining Query Languages. Inductive Databases and Constraint-Based Data Mining 2010: 59-77 - [p3]Hendrik Blockeel
, Toon Calders, Élisa Fromont, Adriana Prado, Bart Goethals
, Céline Robardet:
Inductive Querying with Virtual Mining Views. Inductive Databases and Constraint-Based Data Mining 2010: 265-287 - [p2]Joaquin Vanschoren
, Hendrik Blockeel
:
Experiment Databases. Inductive Databases and Constraint-Based Data Mining 2010: 335-361 - [p1]Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel
, Dragi Kocev, Saso Dzeroski:
Predicting Gene Function using Predictive Clustering Trees. Inductive Databases and Constraint-Based Data Mining 2010: 365-387 - [r6]Hendrik Blockeel
:
Bias Specification Language. Encyclopedia of Machine Learning 2010: 98-100 - [r5]Hendrik Blockeel:
Hypothesis Language. Encyclopedia of Machine Learning 2010: 507-511 - [r4]Hendrik Blockeel
:
Hypothesis Space. Encyclopedia of Machine Learning 2010: 511-513 - [r3]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multi-Instance Learning. Encyclopedia of Machine Learning 2010: 701-710 - [r2]Hendrik Blockeel
:
Observation Language. Encyclopedia of Machine Learning 2010: 733-735 - [r1]Jan Struyf, Hendrik Blockeel:
Relational Learning. Encyclopedia of Machine Learning 2010: 851-857
2000 – 2009
- 2009
- [c60]Wannes Meert
, Jan Struyf, Hendrik Blockeel
:
CP-Logic Theory Inference with Contextual Variable Elimination and Comparison to BDD Based Inference Methods. ILP 2009: 96-109 - [c59]Kristien Van Loon, Fabian Güiza Grandas
, Geert Meyfroidt, Jean-Marie Aerts, Jan Ramon, Hendrik Blockeel
, Maurice Bruynooghe, Greta Van den Berghe
, Daniel Berckmans:
Dynamic Data Analysis and Data Mining for Prediction of Clinical Stability. MIE 2009: 590-594 - [c58]Joaquin Vanschoren
, Hendrik Blockeel
:
A Community-Based Platform for Machine Learning Experimentation. ECML/PKDD (2) 2009: 750-754 - [i5]Hendrik Blockeel, Robert Brijder:
Non-Confluent NLC Graph Grammar Inference by Compressing Disjoint Subgraphs. CoRR abs/0901.4876 (2009) - 2008
- [j25]Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel
:
Learning directed probabilistic logical models: ordering-search versus structure-search. Ann. Math. Artif. Intell. 54(1-3): 99-133 (2008) - [j24]Wannes Meert, Jan Struyf, Hendrik Blockeel:
Learning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques. Fundam. Informaticae 89(1): 131-160 (2008) - [j23]Jan Ramon, Tom Croonenborghs, Daan Fierens, Hendrik Blockeel
, Maurice Bruynooghe:
Generalized ordering-search for learning directed probabilistic logical models. Mach. Learn. 70(2-3): 169-188 (2008) - [j22]Hendrik Blockeel
, Jude W. Shavlik, Prasad Tadepalli
:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007). Mach. Learn. 73(1): 1-2 (2008) - [j21]Celine Vens, Jan Struyf, Leander Schietgat, Saso Dzeroski
, Hendrik Blockeel
:
Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2): 185-214 (2008) - [c57]Beau Piccart, Jan Struyf, Hendrik Blockeel
:
Empirical Asymmetric Selective Transfer in Multi-objective Decision Trees. Discovery Science 2008: 64-75 - [c56]Werner Uwents, Hendrik Blockeel
:
A Comparison between Neural Network Methods for Learning Aggregate Functions. Discovery Science 2008: 88-99 - [c55]