


Остановите войну!
for scientists:
Saso Dzeroski
Person information

- affiliation: Jožef Stefan Institute, Department of Intelligent Systems
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j104]Bijit Roy
, Tomaz Stepisnik, The Pooled Resource Open-Access A. L. S. Clinical Trials Consortium, Celine Vens, Saso Dzeroski
:
Survival analysis with semi-supervised predictive clustering trees. Comput. Biol. Medicine 141: 105001 (2022) - [j103]Blaz Skrlj, Saso Dzeroski
, Nada Lavrac, Matej Petkovic
:
ReliefE: feature ranking in high-dimensional spaces via manifold embeddings. Mach. Learn. 111(1): 273-317 (2022) - [i21]Jure Brence, Dragan Mihailovic, Viktor Kabanov, Ljupco Todorovski, Saso Dzeroski, Jaka Vodeb:
Boosting the Performance of Quantum Annealers using Machine Learning. CoRR abs/2203.02360 (2022) - [i20]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Carola Doerr, Peter Korosec, Tome Eftimov:
The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants. CoRR abs/2204.07431 (2022) - 2021
- [j102]Martin Breskvar
, Saso Dzeroski
:
Multi-Target Regression Rules With Random Output Selections. IEEE Access 9: 10509-10522 (2021) - [j101]Matej Petkovic
, Ivica Slavkov, Dragi Kocev
, Saso Dzeroski
:
Biomarker discovery by feature ranking: Evaluation on a case study of embryonal tumors. Comput. Biol. Medicine 128: 104143 (2021) - [j100]Stevanche Nikoloski
, Dragi Kocev
, Jurica Levatic, David P. Wall, Saso Dzeroski
:
Exploiting partially-labeled data in learning predictive clustering trees for multi-target regression: A case study of water quality assessment in Ireland. Ecol. Informatics 61: 101161 (2021) - [j99]Rok Piltaver, Mitja Lustrek, Saso Dzeroski
, Martin Gjoreski
, Matjaz Gams:
Learning comprehensible and accurate hybrid trees. Expert Syst. Appl. 164: 113980 (2021) - [j98]Matej Petkovic
, Dragi Kocev
, Blaz Skrlj
, Saso Dzeroski
:
Ensemble- and distance-based feature ranking for unsupervised learning. Int. J. Intell. Syst. 36(7): 3068-3086 (2021) - [j97]Jure Brence
, Ljupco Todorovski
, Saso Dzeroski
:
Probabilistic grammars for equation discovery. Knowl. Based Syst. 224: 107077 (2021) - [c163]Urh Primozic
, Blaz Skrlj
, Saso Dzeroski
, Matej Petkovic
:
Unsupervised Feature Ranking via Attribute Networks. DS 2021: 334-343 - [c162]Ana Kostovska, Diederick Vermetten, Carola Doerr, Saso Dzeroski, Pance Panov, Tome Eftimov:
OPTION: optimization algorithm benchmarking ontology. GECCO Companion 2021: 239-240 - [c161]Stefan Popov
, Janja Snoj Tratnik
, Martin Breskvar
, Darja Mazej, Milena Horvat
, Saso Dzeroski
:
Modeling the Association Between Prenatal Exposure to Mercury and Neurodevelopment of Children. ICT Innovations 2021: 85-97 - [c160]Stefan Popov, Katja Kavkler, Saso Dzeroski
:
Using Machine Learning to Identify Factors Contributing to Mould in the Celje Ceiling Painting. MIPRO 2021: 217-222 - [c159]Stefan Popov, Janja Snoj Tratnik, Martin Breskvar, Darja Mazej, Milena Horvat, Saso Dzeroski
:
Relating Prenatal Hg Exposure and Neurological Development in Children with Machine Learning. MIPRO 2021: 389-394 - [i19]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic:
ReliefE: Feature Ranking in High-dimensional Spaces via Manifold Embeddings. CoRR abs/2101.09577 (2021) - [i18]Jasmin Bogatinovski, Ljupco Todorovski, Saso Dzeroski, Dragi Kocev:
Comprehensive Comparative Study of Multi-Label Classification Methods. CoRR abs/2102.07113 (2021) - [i17]Ana Kostovska, Diederick Vermetten, Carola Doerr, Saso Dzeroski, Pance Panov, Tome Eftimov:
OPTION: OPTImization Algorithm Benchmarking ONtology. CoRR abs/2104.11889 (2021) - [i16]Jasmin Bogatinovski, Ljupco Todorovski, Saso Dzeroski, Dragi Kocev:
Explaining the Performance of Multi-label Classification Methods with Data Set Properties. CoRR abs/2106.15411 (2021) - [i15]Ana Kostovska, Matej Petkovic, Tomaz Stepisnik, Luke Lucas, Timothy Finn, José Antonio Martinez Heras, Pance Panov, Saso Dzeroski, Alessandro Donati, Nikola Simidjievski, Dragi Kocev:
GalaxAI: Machine learning toolbox for interpretable analysis of spacecraft telemetry data. CoRR abs/2108.01407 (2021) - [i14]Urh Primozic, Blaz Skrlj, Saso Dzeroski, Matej Petkovic:
Unsupervised Feature Ranking via Attribute Networks. CoRR abs/2111.13273 (2021) - 2020
- [j96]Nikola Simidjievski
, Ljupco Todorovski
, Jus Kocijan
, Saso Dzeroski
:
Equation Discovery for Nonlinear System Identification. IEEE Access 8: 29930-29943 (2020) - [j95]Tomaz Stepisnik, Aljaz Osojnik
, Saso Dzeroski
, Dragi Kocev
:
Option predictive clustering trees for multi-target regression. Comput. Sci. Inf. Syst. 17(2): 459-486 (2020) - [j94]Jovan Tanevski
, Ljupco Todorovski, Saso Dzeroski
:
Combinatorial search for selecting the structure of models of dynamical systems with equation discovery. Eng. Appl. Artif. Intell. 89: 103423 (2020) - [j93]Jurica Levatic, Michelangelo Ceci
, Tomaz Stepisnik, Saso Dzeroski
, Dragi Kocev
:
Semi-supervised regression trees with application to QSAR modelling. Expert Syst. Appl. 158: 113569 (2020) - [j92]Matej Petkovic
, Dragi Kocev
, Saso Dzeroski
:
Feature ranking for multi-target regression. Mach. Learn. 109(6): 1179-1204 (2020) - [j91]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Incremental predictive clustering trees for online semi-supervised multi-target regression. Mach. Learn. 109(11): 2121-2139 (2020) - [j90]Matej Petkovic
, Saso Dzeroski
, Dragi Kocev
:
Multi-label feature ranking with ensemble methods. Mach. Learn. 109(11): 2141-2159 (2020) - [j89]Ivica Slavkov, Matej Petkovic
, Pierre Geurts, Dragi Kocev
, Saso Dzeroski
:
Error curves for evaluating the quality of feature rankings. PeerJ Comput. Sci. 6: e310 (2020) - [j88]Maja Somrak, Saso Dzeroski
, Ziga Kokalj
:
Learning to Classify Structures in ALS-Derived Visualizations of Ancient Maya Settlements with CNN. Remote. Sens. 12(14): 2215 (2020) - [c158]Ilin Tolovski, Saso Dzeroski
, Pance Panov
:
Semantic Annotation of Predictive Modelling Experiments. DS 2020: 124-139 - [c157]Ana Kostovska
, Saso Dzeroski
, Pance Panov
:
Semantic Description of Data Mining Datasets: An Ontology-Based Annotation Schema. DS 2020: 140-155 - [c156]Jure Brence
, Jovan Tanevski
, Jennifer Adams
, Edward Malina
, Saso Dzeroski
:
Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite. DS 2020: 217-230 - [c155]Vedrana Vidulin, Saso Dzeroski
:
Hierarchy Decomposition Pipeline: A Toolbox for Comparison of Model Induction Algorithms on Hierarchical Multi-label Classification Problems. DS 2020: 486-501 - [c154]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic
:
Feature Importance Estimation with Self-Attention Networks. ECAI 2020: 1491-1498 - [c153]Matej Petkovic
, Michelangelo Ceci
, Kristian Kersting
, Saso Dzeroski
:
Estimating the Importance of Relational Features by Using Gradient Boosting. ISMIS 2020: 362-371 - [c152]Martin Breskvar
, Saso Dzeroski
:
Predicting Associations Between Proteins and Multiple Diseases. ISMIS 2020: 383-392 - [i13]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic:
Feature Importance Estimation with Self-Attention Networks. CoRR abs/2002.04464 (2020) - [i12]Matej Mihelcic, Saso Dzeroski, Tomislav Smuc:
Multi-view redescription mining using tree-based multi-target prediction models. CoRR abs/2006.12227 (2020) - [i11]Matej Petkovic, Saso Dzeroski, Dragi Kocev:
Feature Ranking for Semi-supervised Learning. CoRR abs/2008.03937 (2020) - [i10]Matej Petkovic, Dragi Kocev, Blaz Skrlj, Saso Dzeroski:
Ensemble- and Distance-Based Feature Ranking for Unsupervised Learning. CoRR abs/2011.11679 (2020) - [i9]Jure Brence, Ljupco Todorovski, Saso Dzeroski:
Probabilistic Grammars for Equation Discovery. CoRR abs/2012.00428 (2020)
2010 – 2019
- 2019
- [j87]Franklin Parrales Bravo
, Alberto A. Del Barrio García
, Ana Beatriz Gago Veiga, María Mercedes Gallego de la Sacristana, Marina Ruiz Piñero, Angel Guerrero Peral, Saso Dzeroski
, José L. Ayala:
SMURF: Systematic Methodology for Unveiling Relevant Factors in Retrospective Data on Chronic Disease Treatments. IEEE Access 7: 92598-92614 (2019) - [j86]Stevanche Nikoloski
, Dragi Kocev
, Saso Dzeroski
:
Data-Driven Structuring of the Output Space Improves the Performance of Multi-Target Regressors. IEEE Access 7: 145177-145198 (2019) - [j85]Ziga Luksic
, Jovan Tanevski
, Saso Dzeroski
, Ljupco Todorovski
:
Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems. IEEE Access 7: 181829-181841 (2019) - [j84]Gjorgi Peev, Nikola Simidjievski, Saso Dzeroski:
Aiding the Task of Process-Based Modeling with ProBMoTViz. Int. J. Web Appl. 11(1): 27-38 (2019) - [c151]Aljaz Osojnik
, Pance Panov, Saso Dzeroski
:
Utilizing Hierarchies in Tree-Based Online Structured Output Prediction. DS 2019: 87-95 - [c150]Bozhidar Stevanoski, Dragi Kocev
, Aljaz Osojnik
, Ivica Dimitrovski, Saso Dzeroski
:
Predicting Thermal Power Consumption of the Mars Express Satellite with Data Stream Mining. DS 2019: 186-201 - [c149]Matej Petkovic
, Saso Dzeroski
, Dragi Kocev
:
Ensemble-Based Feature Ranking for Semi-supervised Classification. DS 2019: 290-305 - [c148]Ilin Tolovski, Ana Kostovska, Nikola Simidjievski, Ljupco Todorovski, Saso Dzeroski, Pance Panov:
Towards reusable process-based models of dynamical systems: A case study in the domain of aquatic ecosystems. MIPRO 2019: 1110-1115 - [e14]Petra Kralj Novak, Tomislav Smuc, Saso Dzeroski:
Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings. Lecture Notes in Computer Science 11828, Springer 2019, ISBN 978-3-030-33777-3 [contents] - [i8]Ziga Luksic, Jovan Tanevski, Saso Dzeroski, Ljupco Todorovski:
Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems. CoRR abs/1906.09088 (2019) - [i7]Nikola Simidjievski, Ljupco Todorovski, Jus Kocijan, Saso Dzeroski:
Equation Discovery for Nonlinear System Identification. CoRR abs/1907.00821 (2019) - 2018
- [j83]Ivica Slavkov, Jana Karcheska, Dragi Kocev
, Saso Dzeroski
:
HMC-ReliefF: Feature ranking for hierarchical multi-label classification. Comput. Sci. Inf. Syst. 15(1): 187-209 (2018) - [j82]Ivica Slavkov, Matej Petkovic, Dragi Kocev, Saso Dzeroski:
Quantitative Score for Assessing the Quality of Feature Rankings. Informatica (Slovenia) 42(1) (2018) - [j81]Jurica Levatic
, Dragi Kocev
, Michelangelo Ceci
, Saso Dzeroski
:
Semi-supervised trees for multi-target regression. Inf. Sci. 450: 109-127 (2018) - [j80]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc
:
Redescription mining augmented with random forest of multi-target predictive clustering trees. J. Intell. Inf. Syst. 50(1): 63-96 (2018) - [j79]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2): 315-339 (2018) - [j78]Martin Breskvar
, Dragi Kocev
, Saso Dzeroski
:
Ensembles for multi-target regression with random output selections. Mach. Learn. 107(11): 1673-1709 (2018) - [c147]Matej Petkovic
, Dragi Kocev
, Saso Dzeroski
:
Feature Ranking with Relief for Multi-label Classification: Does Distance Matter? DS 2018: 51-65 - [c146]Matej Mihelcic
, Saso Dzeroski
, Tomislav Smuc:
Extending Redescription Mining to Multiple Views. DS 2018: 292-307 - [c145]Jihed Khiari
, Luís Moreira-Matias, Ammar Shaker, Bernard Zenko, Saso Dzeroski
:
MetaBags: Bagged Meta-Decision Trees for Regression. ECML/PKDD (1) 2018: 637-652 - [i6]Jihed Khiari, Luís Moreira-Matias, Ammar Shaker, Bernard Zenko, Saso Dzeroski:
MetaBags: Bagged Meta-Decision Trees for Regression. CoRR abs/1804.06207 (2018) - [i5]Matej Petkovic, Redouane Boumghar, Martin Breskvar, Saso Dzeroski, Dragi Kocev, Jurica Levatic, Luke Lucas, Aljaz Osojnik, Bernard Zenko, Nikola Simidjievski:
Machine learning for predicting thermal power consumption of the Mars Express Spacecraft. CoRR abs/1809.00542 (2018) - 2017
- [j77]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc
:
A framework for redescription set construction. Expert Syst. Appl. 68: 196-215 (2017) - [j76]Gjorgji Madjarov, Dejan Gjorgjevikj, Ivica Dimitrovski, Saso Dzeroski
:
Erratum to: The use of data-derived label hierarchies in multi-label classification. J. Intell. Inf. Syst. 48(2): 475-476 (2017) - [j75]Jurica Levatic
, Michelangelo Ceci
, Dragi Kocev
, Saso Dzeroski
:
Semi-supervised classification trees. J. Intell. Inf. Syst. 49(3): 461-486 (2017) - [j74]Jurica Levatic
, Michelangelo Ceci
, Dragi Kocev
, Saso Dzeroski
:
Self-training for multi-target regression with tree ensembles. Knowl. Based Syst. 123: 41-60 (2017) - [j73]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Multi-label classification via multi-target regression on data streams. Mach. Learn. 106(6): 745-770 (2017) - [c144]Mate Bestek, Dragi Kocev
, Saso Dzeroski
, Andrej Brodnik
, Rade Iljaz:
Modelling Time-Series of Glucose Measurements from Diabetes Patients Using Predictive Clustering Trees. AIME 2017: 95-104 - [c143]Ziga Luksic, Jovan Tanevski
, Saso Dzeroski
, Ljupco Todorovski:
General Meta-Model Framework for Surrogate-Based Numerical Optimization. DS 2017: 51-66 - [c142]Martin Breskvar
, Dragi Kocev
, Saso Dzeroski
:
Multi-label Classification Using Random Label Subset Selections. DS 2017: 108-115 - [c141]Tomaz Stepisnik Perdih, Aljaz Osojnik
, Saso Dzeroski
, Dragi Kocev
:
Option Predictive Clustering Trees for Hierarchical Multi-label Classification. DS 2017: 116-123 - [c140]Matej Petkovic
, Saso Dzeroski
, Dragi Kocev
:
Feature Ranking for Multi-target Regression with Tree Ensemble Methods. DS 2017: 171-185 - [c139]Valentin Gjorgjioski, Dragi Kocev
, Andrej Boncina, Saso Dzeroski
, Marko Debeljak:
Predictive Clustering of Multi-dimensional Time Series Applied to Forest Growing Stock Data for Different Tree Sizes. ICT Innovations 2017: 186-195 - [c138]Vanja Mileski, Saso Dzeroski
, Dragi Kocev
:
Predictive Clustering Trees for Hierarchical Multi-Target Regression. IDA 2017: 223-234 - [c137]Jurica Levatic, Maria Brbic
, Tomaz Stepisnik Perdih, Dragi Kocev
, Vedrana Vidulin, Tomislav Smuc, Fran Supek, Saso Dzeroski
:
Phenotype Prediction with Semi-supervised Classification Trees. NFMCP@PKDD/ECML 2017: 138-150 - [c136]Stevanche Nikoloski
, Dragi Kocev
, Saso Dzeroski
:
Structuring the Output Space in Multi-label Classification by Using Feature Ranking. NFMCP@PKDD/ECML 2017: 151-166 - [c135]Ivica Dimitrovski, Dragi Kocev
, Suzana Loskovska, Saso Dzeroski
:
Image Representation, Annotation and Retrieval with Predictive Clustering Trees. ECML/PKDD (3) 2017: 363-367 - [c134]Jovan Tanevski
, Nikola Simidjievski
, Ljupco Todorovski, Saso Dzeroski
:
Process-Based Modeling and Design of Dynamical Systems. ECML/PKDD (3) 2017: 378-382 - [e13]Michelangelo Ceci, Jaakko Hollmén, Ljupco Todorovski, Celine Vens, Saso Dzeroski:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I. Lecture Notes in Computer Science 10534, Springer 2017, ISBN 978-3-319-71248-2 [contents] - [e12]Michelangelo Ceci, Jaakko Hollmén, Ljupco Todorovski, Celine Vens, Saso Dzeroski:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part II. Lecture Notes in Computer Science 10535, Springer 2017, ISBN 978-3-319-71245-1 [contents] - [e11]Yasemin Altun, Kamalika Das, Taneli Mielikäinen, Donato Malerba, Jerzy Stefanowski
, Jesse Read, Marinka Zitnik, Michelangelo Ceci, Saso Dzeroski:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part III. Lecture Notes in Computer Science 10536, Springer 2017, ISBN 978-3-319-71272-7 [contents] - [i4]Matej Mihelcic, Goran Simic, Mirjana Babic Leko, Nada Lavrac, Saso Dzeroski, Tomislav Smuc:
Using Redescription Mining to Relate Clinical and Biological Characteristics of Cognitively Impaired and Alzheimer's Disease Patients. CoRR abs/1702.06831 (2017) - [i3]Nikola Simidjievski, Jovan Tanevski, Bernard Zenko, Zoran Levnajic, Ljupco Todorovski, Saso Dzeroski:
Decoupling approximation robustly reconstructs directed dynamical networks. CoRR abs/1712.03100 (2017) - 2016
- [j72]Jovan Tanevski
, Ljupco Todorovski, Saso Dzeroski
:
Learning stochastic process-based models of dynamical systems from knowledge and data. BMC Syst. Biol. 10: 30 (2016) - [j71]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Modeling dynamical systems with data stream mining. Comput. Sci. Inf. Syst. 13(2): 453-473 (2016) - [j70]Ivica Dimitrovski, Dragi Kocev
, Suzana Loskovska, Saso Dzeroski
:
Improving bag-of-visual-words image retrieval with predictive clustering trees. Inf. Sci. 329: 851-865 (2016) - [j69]Pance Panov
, Larisa N. Soldatova, Saso Dzeroski
:
Generic ontology of datatypes. Inf. Sci. 329: 900-920 (2016) - [j68]Gjorgji Madjarov, Dejan Gjorgjevikj, Ivica Dimitrovski, Saso Dzeroski
:
The use of data-derived label hierarchies in multi-label classification. J. Intell. Inf. Syst. 47(1): 57-90 (2016) - [j67]Saso Dzeroski
, Dragi Kocev
, Pance Panov
:
Special issue on discovery science. Mach. Learn. 105(1): 1-2 (2016) - [j66]Darko Aleksovski, Jus Kocijan
, Saso Dzeroski
:
Ensembles of Fuzzy Linear Model Trees for the Identification of Multioutput Systems. IEEE Trans. Fuzzy Syst. 24(4): 916-929 (2016) - [c133]Aljaz Osojnik
, Saso Dzeroski
, Dragi Kocev
:
Option Predictive Clustering Trees for Multi-target Regression. DS 2016: 118-133 - [c132]Nikola Simidjievski
, Ljupco Todorovski, Saso Dzeroski
:
Learning Ensembles of Process-Based Models by Bagging of Random Library Samples. DS 2016: 245-260 - [c131]Matej Petkovic
, Pance Panov
, Saso Dzeroski
:
A Comparison of Different Data Transformation Approaches in the Feature Ranking Context. DS 2016: 310-324 - [c130]Saso Dzeroski:
Learning from Massive, Incompletely annotated & Structured Data. EGC 2016: 7-8 - [c129]Michelangelo Ceci, Gianvito Pio, Vladimir Kuzmanovski, Saso Dzeroski:
Semi-Supervised Multi-View Learning for Gene Network Reconstruction. SEBD 2016: 198-205 - [c128]Agnieszka Lawrynowicz, Diego Esteves, Pance Panov, Tommaso Soru, Saso Dzeroski, Joaquin Vanschoren:
An Algorithm, Implementation and Execution Ontology Design Pattern. WOP@ISWC 2016: 55-68 - [i2]Matej Mihelcic, Saso Dzeroski, Nada Lavrac, Tomislav Smuc:
A framework for redescription set construction. CoRR abs/1606.03935 (2016) - 2015
- [j65]Darko Aleksovski, Jus Kocijan
, Saso Dzeroski
:
Model-Tree Ensembles for noise-tolerant system identification. Adv. Eng. Informatics 29(1): 1-15 (2015) - [j64]Jovan Tanevski
, Ljupco Todorovski, Yannis Kalaidzidis
, Saso Dzeroski
:
Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Syst. Biol. 9: 31 (2015) - [j63]Ivica Dimitrovski, Dragi Kocev
, Ivan Kitanovski, Suzana Loskovska, Saso Dzeroski
:
Improved medical image modality classification using a combination of visual and textual features. Comput. Medical Imaging Graph. 39: 14-26 (2015) - [j62]Nikola Simidjievski
, Ljupco Todorovski, Saso Dzeroski
:
Predicting long-term population dynamics with bagging and boosting of process-based models. Expert Syst. Appl. 42(22): 8484-8496 (2015) - [j61]Elena Ikonomovska, João Gama
, Saso Dzeroski
:
Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150: 458-470 (2015) - [j60]Jurica Levatic
, Dragi Kocev
, Saso Dzeroski
:
The importance of the label hierarchy in hierarchical multi-label classification. J. Intell. Inf. Syst. 45(2): 247-271 (2015) - [c127]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Multi-label Classification via Multi-target Regression on Data Streams. Discovery Science 2015: 170-185 - [c126]Pance Panov, Larisa N. Soldatova, Saso Dzeroski:
Representing bioinformatics datatypes using the OntoDT ontology. ICBO 2015 - [c125]Larisa N. Soldatova, Pance Panov
, Saso Dzeroski
:
Ontology Engineering: From an Art to a Craft - The Case of the Data Mining Ontologies. OWLED 2015: 174-181 - [c124]Aljaz Osojnik
, Pance Panov
, Saso Dzeroski
:
Comparison of Tree-Based Methods for Multi-target Regression on Data Streams. NFMCP 2015: 17-31 - [c123]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc:
Redescription Mining with Multi-target Predictive Clustering Trees. NFMCP 2015: 125-143 - [c122]Jurica Levatic, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski:
Semi-supervised learning for multi-target regression (Discussion paper). SEBD 2015: 240-247 - 2014
- [j59]Pance Panov
, Larisa N. Soldatova, Saso Dzeroski
:
Ontology of core data mining entities. Data Min. Knowl. Discov. 28(5-6): 1222-1265 (2014) - [j58]Mateja Skerjanec
, Natasa Atanasova, Darko Cerepnalkoski, Saso Dzeroski
, Boris Kompare:
Development of a knowledge library for automated watershed modeling. Environ. Model. Softw. 54: 60-72 (2014) - [j57]Ivica Dimitrovski, Dragi Kocev
, Suzana Loskovska, Saso Dzeroski
:
Fast and efficient visual codebook construction for multi-label annotation using predictive clustering trees. Pattern Recognit. Lett. 38: 38-45 (2014) - [c121]Rok Piltaver, Mitja Lustrek, Jernej Zupancic, Saso Dzeroski
, Matjaz Gams:
Multi-objective learning of hybrid classifiers. ECAI 2014: 717-722 - [c120]Darko Aleksovski, Jus Kocijan
, Saso Dzeroski
:
Model Tree Ensembles for the Identification of Multiple-Output Systems. ECC 2014: 750-755 - [c119]Jurica Levatic
, Michelangelo Ceci
, Dragi Kocev
, Saso Dzeroski
:
Semi-supervised Learning for Multi-target Regression. NFMCP 2014: 3-18 - [c118]Gjorgji Madjarov, Ivica Dimitrovski, Dejan Gjorgjevikj
, Saso Dzeroski
:
Evaluation of Different Data-Derived Label Hierarchies in Multi-label Classification. NFMCP 2014: 19-37 - [e10]Saso Dzeroski
, Pance Panov
, Dragi Kocev
, Ljupco Todorovski:
Discovery Science - 17th International Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings. Lecture Notes in Computer Science 8777, Springer 2014, ISBN 978-3-319-11811-6 [contents] - 2013
- [j56]