


default search action
22nd ICML 2005: Bonn, Germany
- Luc De Raedt, Stefan Wrobel:

Machine Learning, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005. ACM International Conference Proceeding Series 119, ACM 2005, ISBN 1-59593-180-5 - Pieter Abbeel, Andrew Y. Ng:

Exploration and apprenticeship learning in reinforcement learning. 1-8 - Brigham S. Anderson, Andrew Moore:

Active learning for Hidden Markov Models: objective functions and algorithms. 9-16 - Nicos Angelopoulos, James Cussens

:
Tempering for Bayesian C&RT. 17-24 - Fabrizio Angiulli

:
Fast condensed nearest neighbor rule. 25-32 - Francis R. Bach, Michael I. Jordan:

Predictive low-rank decomposition for kernel methods. 33-40 - Ron Bekkerman, Ran El-Yaniv, Andrew McCallum:

Multi-way distributional clustering via pairwise interactions. 41-48 - Alina Beygelzimer, Varsha Dani

, Thomas P. Hayes, John Langford, Bianca Zadrozny:
Error limiting reductions between classification tasks. 49-56 - Hendrik Blockeel

, David Page, Ashwin Srinivasan:
Multi-instance tree learning. 57-64 - Michael H. Bowling, Ali Ghodsi, Dana F. Wilkinson:

Action respecting embedding. 65-72 - Markus Breitenbach, Gregory Z. Grudic:

Clustering through ranking on manifolds. 73-80 - Will Bridewell, Narges Bani Asadi, Pat Langley, Ljupco Todorovski:

Reducing overfitting in process model induction. 81-88 - Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, Gregory N. Hullender:

Learning to rank using gradient descent. 89-96 - John Burge, Terran Lane:

Learning class-discriminative dynamic Bayesian networks. 97-104 - Sylvain Calinon, Aude Billard

:
Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM. 105-112 - Michael Carney, Padraig Cunningham

, Jim Dowling, Ciaran Lee:
Predicting probability distributions for surf height using an ensemble of mixture density networks. 113-120 - Yu-Han Chang, Leslie Pack Kaelbling:

Hedged learning: regret-minimization with learning experts. 121-128 - Li Cheng

, Feng Jiao, Dale Schuurmans, Shaojun Wang:
Variational Bayesian image modelling. 129-136 - Wei Chu, Zoubin Ghahramani:

Preference learning with Gaussian processes. 137-144 - Wei Chu, S. Sathiya Keerthi:

New approaches to support vector ordinal regression. 145-152 - Corinna Cortes, Mehryar Mohri, Jason Weston:

A general regression technique for learning transductions. 153-160 - Jacob W. Crandall, Michael A. Goodrich

:
Learning to compete, compromise, and cooperate in repeated general-sum games. 161-168 - Hal Daumé III, Daniel Marcu:

Learning as search optimization: approximate large margin methods for structured prediction. 169-176 - Fernando De la Torre, Takeo Kanade:

Multimodal oriented discriminant analysis. 177-184 - Adam Drake, Dan Ventura:

A practical generalization of Fourier-based learning. 185-192 - Kurt Driessens, Saso Dzeroski

:
Combining model-based and instance-based learning for first order regression. 193-200 - Yaakov Engel, Shie Mannor

, Ron Meir:
Reinforcement learning with Gaussian processes. 201-208 - Roberto Esposito

, Lorenza Saitta:
Experimental comparison between bagging and Monte Carlo ensemble classification. 209-216 - Thomas Finley, Thorsten Joachims:

Supervised clustering with support vector machines. 217-224 - Holger Fröhlich, Jörg K. Wegner

, Florian Sieker, Andreas Zell:
Optimal assignment kernels for attributed molecular graphs. 225-232 - Pierre Geurts, Louis Wehenkel

:
Closed-form dual perturb and combine for tree-based models. 233-240 - Mark A. Girolami

, Simon Rogers:
Hierarchic Bayesian models for kernel learning. 241-248 - Karen A. Glocer, Damian Eads, James Theiler:

Online feature selection for pixel classification. 249-256 - Eugene Grois, David C. Wilkins:

Learning strategies for story comprehension: a reinforcement learning approach. 257-264 - Carlos Guestrin, Andreas Krause, Ajit Paul Singh:

Near-optimal sensor placements in Gaussian processes. 265-272 - Gunjan Gupta, Joydeep Ghosh:

Robust one-class clustering using hybrid global and local search. 273-280 - Xiaofei He, Deng Cai, Wanli Min:

Statistical and computational analysis of locality preserving projection. 281-288 - Matthias Hein, Jean-Yves Audibert:

Intrinsic dimensionality estimation of submanifolds in Rd. 289-296 - Katherine A. Heller, Zoubin Ghahramani:

Bayesian hierarchical clustering. 297-304 - Mark Herbster, Massimiliano Pontil, Lisa Wainer:

Online learning over graphs. 305-312 - Simon I. Hill, Arnaud Doucet:

Adapting two-class support vector classification methods to many class problems. 313-320 - Shen-Shyang Ho:

A martingale framework for concept change detection in time-varying data streams. 321-327 - Eugene Ie, Jason Weston, William Stafford Noble, Christina S. Leslie:

Multi-class protein fold recognition using adaptive codes. 329-336 - Okhtay Ilghami, Héctor Muñoz-Avila, Dana S. Nau, David W. Aha

:
Learning approximate preconditions for methods in hierarchical plans. 337-344 - Neil Ireson, Fabio Ciravegna

, Mary Elaine Califf, Dayne Freitag, Nicholas Kushmerick, Alberto Lavelli:
Evaluating machine learning for information extraction. 345-352 - Rong Jin, Joyce Y. Chai, Luo Si:

Learn to weight terms in information retrieval using category information. 353-360 - Rong Jin, Jian Zhang:

A smoothed boosting algorithm using probabilistic output codes. 361-368 - Yushi Jing, Vladimir Pavlovic

, James M. Rehg:
Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes. 369-376 - Thorsten Joachims:

A support vector method for multivariate performance measures. 377-384 - Thorsten Joachims, John E. Hopcroft:

Error bounds for correlation clustering. 385-392 - Sébastien Jodogne

, Justus H. Piater
:
Interactive learning of mappings from visual percepts to actions. 393-400 - Anders Jonsson, Andrew G. Barto:

A causal approach to hierarchical decomposition of factored MDPs. 401-408 - Matti Kääriäinen, John Langford:

A comparison of tight generalization error bounds. 409-416 - S. Sathiya Keerthi:

Generalized LARS as an effective feature selection tool for text classification with SVMs. 417-424 - Rinat Khoussainov, Andreas Heß, Nicholas Kushmerick:

Ensembles of biased classifiers. 425-432 - Mikko Koivisto, Kismat Sood:

Computational aspects of Bayesian partition models. 433-440 - Stanley Kok, Pedro M. Domingos:

Learning the structure of Markov logic networks. 441-448 - Jeremy Z. Kolter, Marcus A. Maloof:

Using additive expert ensembles to cope with concept drift. 449-456 - Brian Kulis, Sugato Basu, Inderjit S. Dhillon, Raymond J. Mooney:

Semi-supervised graph clustering: a kernel approach. 457-464 - Thomas Navin Lal, Michael Schröder, N. Jeremy Hill, Hubert Preißl, Thilo Hinterberger, Jürgen Mellinger, Martin Bogdan, Wolfgang Rosenstiel, Thomas Hofmann, Niels Birbaumer, Bernhard Schölkopf:

A brain computer interface with online feedback based on magnetoencephalography. 465-472 - John Langford, Bianca Zadrozny:

Relating reinforcement learning performance to classification performance. 473-480 - François Laviolette, Mario Marchand

:
PAC-Bayes risk bounds for sample-compressed Gibbs classifiers. 481-488 - Quoc V. Le, Alexander J. Smola, Stéphane Canu

:
Heteroscedastic Gaussian process regression. 489-496 - Rui Leite

, Pavel Brazdil
:
Predicting relative performance of classifiers from samples. 497-503 - Xuejun Liao, Ya Xue, Lawrence Carin

:
Logistic regression with an auxiliary data source. 505-512 - Yan Liu, Eric P. Xing, Jaime G. Carbonell:

Predicting protein folds with structural repeats using a chain graph model. 513-520 - Philip M. Long, Vinay Varadan, Sarah Gilman, Mark Treshock, Rocco A. Servedio:

Unsupervised evidence integration. 521-528 - Daniel Lowd, Pedro M. Domingos:

Naive Bayes models for probability estimation. 529-536 - Sofus A. Macskassy, Foster J. Provost, Saharon Rosset:

ROC confidence bands: an empirical evaluation. 537-544 - Rasmus Elsborg Madsen, David Kauchak, Charles Elkan:

Modeling word burstiness using the Dirichlet distribution. 545-552 - Sridhar Mahadevan:

Proto-value functions: developmental reinforcement learning. 553-560 - Shie Mannor

, Dori Peleg, Reuven Y. Rubinstein:
The cross entropy method for classification. 561-568 - H. Brendan McMahan, Maxim Likhachev, Geoffrey J. Gordon:

Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees. 569-576 - Marina Meila:

Comparing clusterings: an axiomatic view. 577-584 - Sauro Menchetti, Fabrizio Costa

, Paolo Frasconi:
Weighted decomposition kernels. 585-592 - Jeff Michels, Ashutosh Saxena, Andrew Y. Ng:

High speed obstacle avoidance using monocular vision and reinforcement learning. 593-600 - Sriraam Natarajan, Prasad Tadepalli

:
Dynamic preferences in multi-criteria reinforcement learning. 601-608 - Sriraam Natarajan, Prasad Tadepalli

, Eric Altendorf, Thomas G. Dietterich, Alan Fern, Angelo C. Restificar:
Learning first-order probabilistic models with combining rules. 609-616 - DucDung Nguyen, Tu Bao Ho:

An efficient method for simplifying support vector machines. 617-624 - Alexandru Niculescu-Mizil, Rich Caruana:

Predicting good probabilities with supervised learning. 625-632 - Santiago Ontañón, Enric Plaza:

Recycling data for multi-agent learning. 633-640 - Jean-François Paiement, Douglas Eck, Samy Bengio, David Barber

:
A graphical model for chord progressions embedded in a psychoacoustic space. 641-648 - Lucas Paletta

, Gerald Fritz, Christin Seifert
:
Q-learning of sequential attention for visual object recognition from informative local descriptors. 649-656 - Franz Pernkopf

, Jeff A. Bilmes:
Discriminative versus generative parameter and structure learning of Bayesian network classifiers. 657-664 - Tadeusz Pietraszek:

Optimizing abstaining classifiers using ROC analysis. 665-672 - Barnabás Póczos, András Lörincz:

Independent subspace analysis using geodesic spanning trees. 673-680 - Ganesh Ramakrishnan, Krishna Prasad Chitrapura, Raghu Krishnapuram, Pushpak Bhattacharyya:

A model for handling approximate, noisy or incomplete labeling in text classification. 681-688 - Carl Edward Rasmussen, Joaquin Quiñonero Candela:

Healing the relevance vector machine through augmentation. 689-696 - Soumya Ray

, Mark Craven:
Supervised versus multiple instance learning: an empirical comparison. 697-704 - Soumya Ray, David Page:

Generalized skewing for functions with continuous and nominal attributes. 705-712 - Jason D. M. Rennie, Nathan Srebro:

Fast maximum margin matrix factorization for collaborative prediction. 713-719 - Khashayar Rohanimanesh, Sridhar Mahadevan:

Coarticulation: an approach for generating concurrent plans in Markov decision processes. 720-727 - Bernard Rosell, Lisa Hellerstein, Soumya Ray, David Page:

Why skewing works: learning difficult Boolean functions with greedy tree learners. 728-735 - Dan Roth, Wen-tau Yih:

Integer linear programming inference for conditional random fields. 736-743 - Juho Rousu, Craig Saunders, Sándor Szedmák, John Shawe-Taylor

:
Learning hierarchical multi-category text classification models. 744-751 - Jarkko Salojärvi, Kai Puolamäki, Samuel Kaski:

Expectation maximization algorithms for conditional likelihoods. 752-759 - Sajama, Alon Orlitsky:

Estimating and computing density based distance metrics. 760-767 - Sajama, Alon Orlitsky:

Supervised dimensionality reduction using mixture models. 768-775 - Bernhard Schölkopf, Florian Steinke, Volker Blanz:

Object correspondence as a machine learning problem. 776-783 - Fei Sha, Lawrence K. Saul:

Analysis and extension of spectral methods for nonlinear dimensionality reduction. 784-791 - Amnon Shashua, Tamir Hazan:

Non-negative tensor factorization with applications to statistics and computer vision. 792-799 - Sajid M. Siddiqi, Andrew W. Moore:

Fast inference and learning in large-state-space HMMs. 800-807 - Ricardo Bezerra de Andrade e Silva, Richard Scheines:

New d-separation identification results for learning continuous latent variable models. 808-815 - Özgür Simsek

, Alicia P. Wolfe, Andrew G. Barto:
Identifying useful subgoals in reinforcement learning by local graph partitioning. 816-823 - Vikas Sindhwani, Partha Niyogi, Mikhail Belkin:

Beyond the point cloud: from transductive to semi-supervised learning. 824-831 - Rohit Singh, Nathan P. Palmer, David K. Gifford, Bonnie Berger, Ziv Bar-Joseph:

Active learning for sampling in time-series experiments with application to gene expression analysis. 832-839 - Edward Lloyd Snelson, Zoubin Ghahramani:

Compact approximations to Bayesian predictive distributions. 840-847 - Sören Sonnenburg, Gunnar Rätsch

, Bernhard Schölkopf:
Large scale genomic sequence SVM classifiers. 848-855 - Alexander L. Strehl, Michael L. Littman:

A theoretical analysis of Model-Based Interval Estimation. 856-863 - Qiang Sun, Gerald DeJong:

Explanation-Augmented SVM: an approach to incorporating domain knowledge into SVM learning. 864-871 - Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu:

Unifying the error-correcting and output-code AdaBoost within the margin framework. 872-879 - Csaba Szepesvári, Rémi Munos:

Finite time bounds for sampling based fitted value iteration. 880-887 - Brian Tanner, Richard S. Sutton:

TD(lambda) networks: temporal-difference networks with eligibility traces. 888-895 - Benjamin Taskar, Vassil Chatalbashev, Daphne Koller, Carlos Guestrin:

Learning structured prediction models: a large margin approach. 896-903 - Marc Toussaint, Sethu Vijayakumar:

Learning discontinuities with products-of-sigmoids for switching between local models. 904-911 - Ivor W. Tsang

, James T. Kwok, Kimo T. Lai:
Core Vector Regression for very large regression problems. 912-919 - Koji Tsuda:

Propagating distributions on a hypergraph by dual information regularization. 920-927 - Sriharsha Veeramachaneni, Diego Sona, Paolo Avesani:

Hierarchical Dirichlet model for document classification. 928-935 - Christian Walder, Olivier Chapelle, Bernhard Schölkopf:

Implicit surface modelling as an eigenvalue problem. 936-939 - Chang Wang, Stephen D. Scott:

New kernels for protein structural motif discovery and function classification. 940-947 - Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng:

Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. 948-955 - Tao Wang, Daniel J. Lizotte

, Michael H. Bowling, Dale Schuurmans:
Bayesian sparse sampling for on-line reward optimization. 956-963 - Eric Wiewiora:

Learning predictive representations from a history. 964-971 - David Williams, Xuejun Liao, Ya Xue, Lawrence Carin:

Incomplete-data classification using logistic regression. 972-979 - Britton Wolfe, Michael R. James, Satinder Singh:

Learning predictive state representations in dynamical systems without reset. 980-987 - Jianxin Wu, Matthew D. Mullin, James M. Rehg:

Linear Asymmetric Classifier for cascade detectors. 988-995 - Mingrui Wu, Bernhard Schölkopf, Gökhan H. Bakir:

Building Sparse Large Margin Classifiers. 996-1003 - Zhao Xu, Volker Tresp, Kai Yu, Shipeng Yu, Hans-Peter Kriegel:

Dirichlet enhanced relational learning. 1004-1011 - Kai Yu, Volker Tresp, Anton Schwaighofer:

Learning Gaussian processes from multiple tasks. 1012-1019 - Harry Zhang, Liangxiao Jiang, Jiang Su:

Augmenting naive Bayes for ranking. 1020-1027 - Ding Zhou, Jia Li, Hongyuan Zha:

A new Mallows distance based metric for comparing clusterings. 1028-1035 - Dengyong Zhou, Jiayuan Huang, Bernhard Schölkopf:

Learning from labeled and unlabeled data on a directed graph. 1036-1043 - Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, Wei-Ying Ma

:
2D Conditional Random Fields for Web information extraction. 1044-1051 - Xiaojin Zhu, John D. Lafferty:

Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. 1052-1059 - Alexander Zien, Joaquin Quiñonero Candela:

Large margin non-linear embedding. 1060-1067

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














