


default search action
Michael Bendersky
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [i66]Alireza Salemi, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, Tao Chen, Zhuowan Li, Michael Bendersky, Hamed Zamani:
Reasoning-Enhanced Self-Training for Long-Form Personalized Text Generation. CoRR abs/2501.04167 (2025) - 2024
- [c110]Weize Kong, Spurthi Amba Hombaiah, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
PRewrite: Prompt Rewriting with Reinforcement Learning. ACL (Short Papers) 2024: 594-601 - [c109]Alireza Salemi, Sheshera Mysore, Michael Bendersky, Hamed Zamani:
LaMP: When Large Language Models Meet Personalization. ACL (1) 2024: 7370-7392 - [c108]Jing Nathan Yan, Tianqi Liu, Justin T. Chiu, Jiaming Shen, Zhen Qin, Yue Yu, Charumathi Lakshmanan, Yair Kurzion, Alexander M. Rush, Jialu Liu, Michael Bendersky:
Predicting Text Preference Via Structured Comparative Reasoning. ACL (1) 2024: 10040-10060 - [c107]Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
Bridging the Preference Gap between Retrievers and LLMs. ACL (1) 2024: 10438-10451 - [c106]Yue Yu, Jiaming Shen, Tianqi Liu, Zhen Qin, Jing Nathan Yan, Jialu Liu, Chao Zhang, Michael Bendersky:
Explanation-aware Soft Ensemble Empowers Large Language Model In-context Learning. ACL (1) 2024: 14002-14024 - [c105]Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui Wang, Zhen Qin, Feng Han, Jialu Liu, Simon Baumgartner, Michael Bendersky, Chao Zhang:
PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs. ACL (Findings) 2024: 15623-15636 - [c104]Le Yan, Zhen Qin, Honglei Zhuang, Rolf Jagerman, Xuanhui Wang, Michael Bendersky, Harrie Oosterhuis:
Consolidating Ranking and Relevance Predictions of Large Language Models through Post-Processing. EMNLP 2024: 410-423 - [c103]Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach. EMNLP (Industry Track) 2024: 881-893 - [c102]Jiaming Shen, Tianqi Liu, Jialu Liu, Zhen Qin, Jay Pavagadhi, Simon Baumgartner, Michael Bendersky:
Multilingual Fine-Grained News Headline Hallucination Detection. EMNLP (Findings) 2024: 7862-7875 - [c101]Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu:
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity. ICML 2024 - [c100]Harrie Oosterhuis
, Rolf Jagerman
, Zhen Qin
, Xuanhui Wang
, Michael Bendersky
:
Reliable Confidence Intervals for Information Retrieval Evaluation Using Generative A.I. KDD 2024: 2307-2317 - [c99]Rongzhi Zhang
, Jiaming Shen
, Tianqi Liu
, Jialu Liu
, Michael Bendersky
, Marc Najork
, Chao Zhang
:
Knowledge Distillation with Perturbed Loss: From a Vanilla Teacher to a Proxy Teacher. KDD 2024: 4278-4289 - [c98]Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, Michael Bendersky:
Beyond Yes and No: Improving Zero-Shot LLM Rankers via Scoring Fine-Grained Relevance Labels. NAACL (Short Papers) 2024: 358-370 - [c97]Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, Michael Bendersky:
Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting. NAACL-HLT (Findings) 2024: 1504-1518 - [c96]Aditi Chaudhary, Karthik Raman, Michael Bendersky:
It's All Relative! - A Synthetic Query Generation Approach for Improving Zero-Shot Relevance Prediction. NAACL-HLT (Findings) 2024: 1645-1664 - [c95]Kazuma Hashimoto, Karthik Raman, Michael Bendersky:
Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning. NAACL-HLT 2024: 3973-3990 - [c94]Minghan Li
, Honglei Zhuang
, Kai Hui
, Zhen Qin
, Jimmy Lin
, Rolf Jagerman
, Xuanhui Wang
, Michael Bendersky
:
Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers? SIGIR 2024: 2321-2326 - [c93]Hamed Zamani
, Michael Bendersky
:
Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization. SIGIR 2024: 2641-2646 - [c92]Michael Bendersky
, Cheng Li
, Qiaozhu Mei
, Vanessa Murdock
, Jie Tang
, Hongning Wang
, Hamed Zamani
, Mingyang Zhang
, Xingjian Zhang
:
The Second Workshop on Large Language Models for Individuals, Groups, and Society. SIGIR 2024: 3062-3064 - [c91]Michael Bendersky
, Cheng Li
, Qiaozhu Mei
, Vanessa Murdock
, Jie Tang
, Hongning Wang
, Hamed Zamani
, Mingyang Zhang
:
WSDM 2024 Workshop on Large Language Models for Individuals, Groups, and Society. WSDM 2024: 1206-1207 - [c90]Cheng Li
, Mingyang Zhang
, Qiaozhu Mei
, Weize Kong
, Michael Bendersky
:
Learning to Rewrite Prompts for Personalized Text Generation. WWW 2024: 3367-3378 - [p1]Michael Bendersky, Donald Metzler, Marc Najork
, Xuanhui Wang:
Searching Personal Collections. Information Retrieval: Advanced Topics and Techniques 2024: 515-538 - [i65]Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
Bridging the Preference Gap between Retrievers and LLMs. CoRR abs/2401.06954 (2024) - [i64]Weize Kong, Spurthi Amba Hombaiah, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
PRewrite: Prompt Rewriting with Reinforcement Learning. CoRR abs/2401.08189 (2024) - [i63]Tao Chen, Siqi Zuo, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
Unlocking the 'Why' of Buying: Introducing a New Dataset and Benchmark for Purchase Reason and Post-Purchase Experience. CoRR abs/2402.13417 (2024) - [i62]Le Yan, Zhen Qin, Honglei Zhuang, Rolf Jagerman
, Xuanhui Wang, Michael Bendersky, Harrie Oosterhuis:
Consolidating Ranking and Relevance Predictions of Large Language Models through Post-Processing. CoRR abs/2404.11791 (2024) - [i61]Hamed Zamani, Michael Bendersky:
Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization. CoRR abs/2405.02816 (2024) - [i60]Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui Wang, Zhen Qin, Feng Han, Jialu Liu, Simon Baumgartner, Michael Bendersky, Chao Zhang:
PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs. CoRR abs/2406.02886 (2024) - [i59]Harrie Oosterhuis, Rolf Jagerman
, Zhen Qin, Xuanhui Wang, Michael Bendersky:
Reliable Confidence Intervals for Information Retrieval Evaluation Using Generative A.I. CoRR abs/2407.02464 (2024) - [i58]Haoyang Wen, Honglei Zhuang, Hamed Zamani, Alexander Hauptmann, Michael Bendersky:
Multimodal Reranking for Knowledge-Intensive Visual Question Answering. CoRR abs/2407.12277 (2024) - [i57]Jiaming Shen, Tianqi Liu, Jialu Liu, Zhen Qin, Jay Pavagadhi, Simon Baumgartner, Michael Bendersky:
Multilingual Fine-Grained News Headline Hallucination Detection. CoRR abs/2407.15975 (2024) - [i56]Jiaming Shen, Ran Xu, Yennie Jun, Zhen Qin, Tianqi Liu, Carl Yang, Yi Liang, Simon Baumgartner, Michael Bendersky:
Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation. CoRR abs/2407.16008 (2024) - [i55]Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, Michael Bendersky:
Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach. CoRR abs/2407.16833 (2024) - [i54]Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuanhui Wang, Michael Bendersky:
Inference Scaling for Long-Context Retrieval Augmented Generation. CoRR abs/2410.04343 (2024) - [i53]Yi Liang, You Wu, Honglei Zhuang, Li Chen, Jiaming Shen, Yiling Jia, Zhen Qin, Sumit Sanghai, Xuanhui Wang, Carl Yang, Michael Bendersky:
Integrating Planning into Single-Turn Long-Form Text Generation. CoRR abs/2410.06203 (2024) - [i52]Jianhong Tu, Zhuohao Ni, Nicholas Crispino, Zihao Yu, Michael Bendersky, Beliz Gunel, Ruoxi Jia, Xin Liu, Lingjuan Lyu, Dawn Song, Chenguang Wang:
MLAN: Language-Based Instruction Tuning Improves Zero-Shot Generalization of Multimodal Large Language Models. CoRR abs/2411.10557 (2024) - [i51]Michael Bendersky, Donald Metzler, Marc Najork
, Xuanhui Wang:
Searching Personal Collections. CoRR abs/2412.12330 (2024) - 2023
- [j10]Eyal Brill, Michael Bendersky
:
A Graphical Calibration Method for a Water Quality Model Considering Process Variability Versus Delay Time: Theory and a Case Study. Comput. 11(10): 200 (2023) - [c89]Jeffrey M. Dudek
, Weize Kong
, Cheng Li
, Mingyang Zhang
, Michael Bendersky
:
Learning Sparse Lexical Representations Over Specified Vocabularies for Retrieval. CIKM 2023: 3865-3869 - [c88]Aijun Bai
, Rolf Jagerman
, Zhen Qin
, Le Yan
, Pratyush Kar
, Bing-Rong Lin
, Xuanhui Wang
, Michael Bendersky
, Marc Najork
:
Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance. CIKM 2023: 4502-4508 - [c87]Aditi Chaudhary, Karthik Raman, Krishna Srinivasan, Kazuma Hashimoto, Mike Bendersky, Marc Najork:
Exploring the Viability of Synthetic Query Generation for Relevance Prediction. eCom@SIGIR 2023 - [c86]Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, Marc Najork
, Matt Colen, Sergey Levi, Vladimir Ofitserov, Tanvir Amin:
Creator Context for Tweet Recommendation. EMNLP (Industry Track) 2023: 353-363 - [c85]Vasilisa Bashlovkina
, Riley Matthews
, Zhaobin Kuang
, Simon Baumgartner
, Michael Bendersky
:
SMILE: Evaluation and Domain Adaptation for Social Media Language Understanding. KDD 2023: 3737-3749 - [c84]Karan Samel
, Cheng Li
, Weize Kong
, Tao Chen
, Mingyang Zhang
, Shaleen Kumar Gupta
, Swaraj Khadanga
, Wensong Xu
, Xingyu Wang
, Kashyap Kolipaka
, Michael Bendersky
, Marc Najork
:
End-to-End Query Term Weighting. KDD 2023: 4778-4786 - [c83]Yunan Zhang
, Le Yan
, Zhen Qin
, Honglei Zhuang
, Jiaming Shen
, Xuanhui Wang
, Michael Bendersky
, Marc Najork
:
Towards Disentangling Relevance and Bias in Unbiased Learning to Rank. KDD 2023: 5618-5627 - [c82]Ruicheng Xian, Honglei Zhuang, Zhen Qin, Hamed Zamani, Jing Lu, Ji Ma, Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky:
Learning List-Level Domain-Invariant Representations for Ranking. NeurIPS 2023 - [c81]Hamed Zamani
, Michael Bendersky
:
Multivariate Representation Learning for Information Retrieval. SIGIR 2023: 163-173 - [c80]Honglei Zhuang
, Zhen Qin
, Rolf Jagerman
, Kai Hui
, Ji Ma
, Jing Lu
, Jianmo Ni
, Xuanhui Wang
, Michael Bendersky
:
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses. SIGIR 2023: 2308-2313 - [c79]Weize Kong
, Jeffrey M. Dudek
, Cheng Li
, Mingyang Zhang
, Michael Bendersky
:
SparseEmbed: Learning Sparse Lexical Representations with Contextual Embeddings for Retrieval. SIGIR 2023: 2399-2403 - [c78]Qingyao Ai
, Xuanhui Wang
, Michael Bendersky
:
Metric-agnostic Ranking Optimization. SIGIR 2023: 2669-2680 - [c77]Michael Bendersky
, Danqi Chen
, Fernando Diaz
, Hamed Zamani
:
SIGIR 2023 Workshop on Retrieval Enhanced Machine Learning (REML @ SIGIR 2023). SIGIR 2023: 3468-3471 - [c76]Xiang Deng
, Vasilisa Bashlovkina
, Feng Han
, Simon Baumgartner
, Michael Bendersky
:
What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis. WWW (Companion Volume) 2023: 107-110 - [c75]Cheng Li
, Yaping Qi
, Hayk Zakaryan
, Mingyang Zhang
, Michael Bendersky
, Yonghua Wu
, Marc Najork
:
Job Type Extraction for Service Businesses. WWW (Companion Volume) 2023: 401-405 - [c74]Xiang Deng
, Vasilisa Bashlovkina
, Feng Han
, Simon Baumgartner
, Michael Bendersky
:
LLMs to the Moon? Reddit Market Sentiment Analysis with Large Language Models. WWW (Companion Volume) 2023: 1014-1019 - [c73]Jiaming Shen
, Jialu Liu
, Daniel Finnie, Negar Rahmati
, Mike Bendersky
, Marc Najork
:
"Why is this misleading?": Detecting News Headline Hallucinations with Explanations. WWW 2023: 1662-1672 - [i50]Jiaming Shen, Jialu Liu, Daniel Finnie, Negar Rahmati, Michael Bendersky, Marc Najork
:
"Why is this misleading?": Detecting News Headline Hallucinations with Explanations. CoRR abs/2302.05852 (2023) - [i49]Qingyao Ai, Xuanhui Wang, Michael Bendersky:
Metric-agnostic Ranking Optimization. CoRR abs/2304.08062 (2023) - [i48]Alireza Salemi, Sheshera Mysore, Michael Bendersky, Hamed Zamani:
LaMP: When Large Language Models Meet Personalization. CoRR abs/2304.11406 (2023) - [i47]Hamed Zamani, Michael Bendersky:
Multivariate Representation Learning for Information Retrieval. CoRR abs/2304.14522 (2023) - [i46]Rolf Jagerman
, Honglei Zhuang, Zhen Qin, Xuanhui Wang, Michael Bendersky:
Query Expansion by Prompting Large Language Models. CoRR abs/2305.03653 (2023) - [i45]Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Jialu Liu, Michael Bendersky, Marc Najork
, Chao Zhang:
Do Not Blindly Imitate the Teacher: Using Perturbed Loss for Knowledge Distillation. CoRR abs/2305.05010 (2023) - [i44]Aditi Chaudhary, Karthik Raman, Krishna Srinivasan, Kazuma Hashimoto, Mike Bendersky, Marc Najork
:
Exploring the Viability of Synthetic Query Generation for Relevance Prediction. CoRR abs/2305.11944 (2023) - [i43]Le Yan, Zhen Qin, Gil I. Shamir, Dong Lin, Xuanhui Wang, Mike Bendersky:
Learning to Rank when Grades Matter. CoRR abs/2306.08650 (2023) - [i42]Zhen Qin, Rolf Jagerman
, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, Michael Bendersky:
Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting. CoRR abs/2306.17563 (2023) - [i41]Vasilisa Bashlovkina, Riley Matthews, Zhaobin Kuang, Simon Baumgartner, Michael Bendersky:
SMILE: Evaluation and Domain Adaptation for Social Media Language Understanding. CoRR abs/2307.00135 (2023) - [i40]Cheng Li, Mingyang Zhang, Qiaozhu Mei, Yaqing Wang, Spurthi Amba Hombaiah, Yi Liang, Michael Bendersky:
Teach LLMs to Personalize - An Approach inspired by Writing Education. CoRR abs/2308.07968 (2023) - [i39]Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan, Kazuma Hashimoto, Karthik Raman, Michael Bendersky:
Ambiguity-Aware In-Context Learning with Large Language Models. CoRR abs/2309.07900 (2023) - [i38]Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, Michael Bendersky:
Automatic Prompt Rewriting for Personalized Text Generation. CoRR abs/2310.00152 (2023) - [i37]Yaqing Wang, Jiepu Jiang, Mingyang Zhang, Cheng Li, Yi Liang, Qiaozhu Mei, Michael Bendersky:
Automated Evaluation of Personalized Text Generation using Large Language Models. CoRR abs/2310.11593 (2023) - [i36]Yaqing Wang, Jialin Wu, Tanmaya Dabral, Jiageng Zhang, Geoff Brown, Chun-Ta Lu, Frederick Liu, Yi Liang, Bo Pang, Michael Bendersky, Radu Soricut:
Non-Intrusive Adaptation: Input-Centric Parameter-efficient Fine-Tuning for Versatile Multimodal Modeling. CoRR abs/2310.12100 (2023) - [i35]Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, Michael Bendersky:
Beyond Yes and No: Improving Zero-Shot LLM Rankers via Scoring Fine-Grained Relevance Labels. CoRR abs/2310.14122 (2023) - [i34]Yue Yu, Jiaming Shen, Tianqi Liu, Zhen Qin, Jing Nathan Yan, Jialu Liu, Chao Zhang, Michael Bendersky:
Explanation-aware Soft Ensemble Empowers Large Language Model In-context Learning. CoRR abs/2311.07099 (2023) - [i33]Aditi Chaudhary, Karthik Raman, Michael Bendersky:
It's All Relative! - A Synthetic Query Generation Approach for Improving Zero-Shot Relevance Prediction. CoRR abs/2311.07930 (2023) - [i32]Jing Nathan Yan, Tianqi Liu, Justin T. Chiu, Jiaming Shen, Zhen Qin, Yue Yu, Yao Zhao, Charu Lakshmanan, Yair Kurzion, Alexander M. Rush, Jialu Liu, Michael Bendersky:
On What Basis? Predicting Text Preference Via Structured Comparative Reasoning. CoRR abs/2311.08390 (2023) - [i31]Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin, Jimmy Lin, Rolf Jagerman
, Xuanhui Wang, Michael Bendersky:
Generate, Filter, and Fuse: Query Expansion via Multi-Step Keyword Generation for Zero-Shot Neural Rankers. CoRR abs/2311.09175 (2023) - [i30]Kazuma Hashimoto, Karthik Raman, Michael Bendersky:
Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning. CoRR abs/2311.09619 (2023) - [i29]Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, Marc Najork
, Matt Colen, Sergey Levi, Vladimir Ofitserov, Tanvir Amin:
Creator Context for Tweet Recommendation. CoRR abs/2311.17650 (2023) - 2022
- [c72]Tao Chen, Mingyang Zhang, Jing Lu, Michael Bendersky, Marc Najork
:
Out-of-Domain Semantics to the Rescue! Zero-Shot Hybrid Retrieval Models. ECIR (1) 2022: 95-110 - [c71]Krishna Srinivasan, Karthik Raman, Anupam Samanta, Lingrui Liao, Luca Bertelli, Michael Bendersky:
QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation. EMNLP (Industry Track) 2022: 492-501 - [c70]Hamed Zamani, Michael Bendersky, Donald Metzler, Honglei Zhuang, Xuanhui Wang:
Stochastic Retrieval-Conditioned Reranking. ICTIR 2022: 81-91 - [c69]Rolf Jagerman
, Xuanhui Wang, Honglei Zhuang, Zhen Qin, Michael Bendersky, Marc Najork
:
Rax: Composable Learning-to-Rank Using JAX. KDD 2022: 3051-3060 - [c68]Weize Kong, Swaraj Khadanga, Cheng Li, Shaleen Kumar Gupta
, Mingyang Zhang, Wensong Xu, Michael Bendersky:
Multi-Aspect Dense Retrieval. KDD 2022: 3178-3186 - [c67]Le Yan, Zhen Qin, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Scale Calibration of Deep Ranking Models. KDD 2022: 4300-4309 - [c66]Rolf Jagerman
, Zhen Qin, Xuanhui Wang, Michael Bendersky, Marc Najork
:
On Optimizing Top-K Metrics for Neural Ranking Models. SIGIR 2022: 2303-2307 - [c65]Le Yan, Zhen Qin, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Revisiting Two-tower Models for Unbiased Learning to Rank. SIGIR 2022: 2410-2414 - [c64]Hamed Zamani, Fernando Diaz
, Mostafa Dehghani, Donald Metzler, Michael Bendersky:
Retrieval-Enhanced Machine Learning. SIGIR 2022: 2875-2886 - [c63]Michael Bendersky, Xuanhui Wang, Marc Najork
, Donald Metzler:
Search and Discovery in Personal Email Collections. WSDM 2022: 1617-1619 - [i28]Tao Chen, Mingyang Zhang, Jing Lu, Michael Bendersky, Marc Najork:
Out-of-Domain Semantics to the Rescue! Zero-Shot Hybrid Retrieval Models. CoRR abs/2201.10582 (2022) - [i27]Hamed Zamani, Fernando Diaz
, Mostafa Dehghani, Donald Metzler, Michael Bendersky:
Retrieval-Enhanced Machine Learning. CoRR abs/2205.01230 (2022) - [i26]Kai Hui, Tao Chen, Zhen Qin, Honglei Zhuang, Fernando Diaz
, Mike Bendersky, Don Metzler:
Retrieval Augmentation for T5 Re-ranker using External Sources. CoRR abs/2210.05145 (2022) - [i25]Honglei Zhuang, Zhen Qin, Rolf Jagerman
, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, Michael Bendersky:
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses. CoRR abs/2210.10634 (2022) - [i24]Krishna Srinivasan, Karthik Raman, Anupam Samanta, Lingrui Liao, Luca Bertelli, Mike Bendersky:
QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation. CoRR abs/2210.15718 (2022) - [i23]Aijun Bai, Rolf Jagerman
, Zhen Qin, Pratyush Kar, Bing-Rong Lin, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Regression Compatible Listwise Objectives for Calibrated Ranking. CoRR abs/2211.01494 (2022) - [i22]Ruicheng Xian, Honglei Zhuang, Zhen Qin, Hamed Zamani, Jing Lu, Ji Ma, Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky:
Learning List-Level Domain-Invariant Representations for Ranking. CoRR abs/2212.10764 (2022) - [i21]Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon Baumgartner, Michael Bendersky:
What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis. CoRR abs/2212.11311 (2022) - [i20]Yunan Zhang, Le Yan, Zhen Qin, Honglei Zhuang, Jiaming Shen, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Towards Disentangling Relevance and Bias in Unbiased Learning to Rank. CoRR abs/2212.13937 (2022) - 2021
- [j9]Michael Bendersky, Xuanhui Wang, Marc Najork
, Donald Metzler:
Search and Discovery in Personal Email Collections. Found. Trends Inf. Retr. 15(1): 1-133 (2021) - [j8]Michael Bendersky, Israel David, Dor Elboim:
Fire support with Gaussian estimation of environmental conditions based on single or multiple target registration. J. Oper. Res. Soc. 72(9): 2112-2121 (2021) - [c62]Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, Marc Najork
:
Natural Language Understanding with Privacy-Preserving BERT. CIKM 2021: 1488-1497 - [c61]Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork:
Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees? ICLR 2021 - [c60]Honglei Zhuang, Zhen Qin, Shuguang Han, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Ensemble Distillation for BERT-Based Ranking Models. ICTIR 2021: 131-136 - [c59]Spurthi Amba Hombaiah, Tao Chen
, Mingyang Zhang, Michael Bendersky, Marc Najork
:
Dynamic Language Models for Continuously Evolving Content. KDD 2021: 2514-2524 - [c58]Zhen Qin, Honglei Zhuang, Rolf Jagerman
, Xinyu Qian, Po Hu, Dan Chary Chen, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Bootstrapping Recommendations at Chrome Web Store. KDD 2021: 3483-3491 - [c57]Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, Marc Najork
:
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning. SIGIR 2021: 2443-2449 - [c56]Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushetsky, Yonghui Wu, Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, Hai Qian:
Interpretable Ranking with Generalized Additive Models. WSDM 2021: 499-507 - [c55]Rolf Jagerman
, Weize Kong, Rama Kumar Pasumarthi, Zhen Qin, Michael Bendersky, Marc Najork
:
Improving Cloud Storage Search with User Activity. WSDM 2021: 508-516 - [c54]Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky:
Diversification-Aware Learning to Rank using Distributed Representation. WWW 2021: 127-136 - [c53]Honglei Zhuang, Zhen Qin, Xuanhui Wang, Michael Bendersky, Xinyu Qian, Po Hu, Dan Chary Chen:
Cross-Positional Attention for Debiasing Clicks. WWW 2021: 788-797 - [i19]Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, Marc Najork
:
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning. CoRR abs/2103.01913 (2021) - [i18]Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, Marc Najork
:
Privacy-Adaptive BERT for Natural Language Understanding. CoRR abs/2104.07504 (2021) - [i17]Te-Lin Wu, Cheng Li, Mingyang Zhang, Tao Chen, Spurthi Amba Hombaiah, Michael Bendersky:
LAMPRET: Layout-Aware Multimodal PreTraining for Document Understanding. CoRR abs/2104.08405 (2021) - [i16]Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, Marc Najork:
Dynamic Language Models for Continuously Evolving Content. CoRR abs/2106.06297 (2021) - [i15]Zhen Qin, Le Yan, Yi Tay, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork:
Born Again Neural Rankers. CoRR abs/2109.15285 (2021) - [i14]Nan Wang, Zhen Qin, Le Yan, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork:
Rank4Class: A Ranking Formulation for Multiclass Classification. CoRR abs/2112.09727 (2021) - 2020
- [c52]Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, Marc Najork
:
Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Long-Form Document Matching. CIKM 2020: 1725-1734 - [c51]Jiecao Chen, Liu Yang, Karthik Raman, Michael Bendersky, Jung-Jung Yeh, Yun Zhou, Marc Najork
, Danyang Cai, Ehsan Emadzadeh:
DiPair: Fast and Accurate Distillation for Trillion-ScaleText Matching and Pair Modeling. EMNLP (Findings) 2020: 2925-2937 - [c50]Rama Kumar Pasumarthi, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Permutation Equivariant Document Interaction Network for Neural Learning to Rank. ICTIR 2020: 145-148 - [c49]Weize Kong, Michael Bendersky, Marc Najork
, Brandon Vargo, Mike Colagrosso:
Learning to Cluster Documents into Workspaces Using Large Scale Activity Logs. KDD 2020: 2416-2424 - [c48]Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Feature Transformation for Neural Ranking Models. SIGIR 2020: 1649-1652 - [c47]Sebastian Bruch
, Shuguang Han, Michael Bendersky, Marc Najork
:
A Stochastic Treatment of Learning to Rank Scoring Functions. WSDM 2020: 61-69 - [c46]Shuguang Han, Michael Bendersky, Przemek Gajda, Sergey Novikov, Marc Najork
, Bernhard Brodowsky, Alexandrin Popescul:
Adversarial Bandits Policy for Crawling Commercial Web Content. WWW 2020: 407-417 - [c45]Zhen Qin, Zhongliang Li, Michael Bendersky, Donald Metzler:
Matching Cross Network for Learning to Rank in Personal Search. WWW 2020: 2835-2841 - [i13]Shuguang Han, Xuanhui Wang, Mike Bendersky, Marc Najork
:
Learning-to-Rank with BERT in TF-Ranking. CoRR abs/2004.08476 (2020) - [i12]Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, Marc Najork
:
Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Document Matching. CoRR abs/2004.12297 (2020) - [i11]Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushetsky, Yonghui Wu, Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, Hai Qian:
Interpretable Learning-to-Rank with Generalized Additive Models. CoRR abs/2005.02553 (2020) - [i10]Michael Bendersky, Honglei Zhuang, Ji Ma, Shuguang Han, Keith B. Hall, Ryan T. McDonald:
RRF102: Meeting the TREC-COVID Challenge with a 100+ Runs Ensemble. CoRR abs/2010.00200 (2020) - [i9]Saar Kuzi, Mingyang Zhang, Cheng Li, Michael Bendersky, Marc Najork
:
Leveraging Semantic and Lexical Matching to Improve the Recall of Document Retrieval Systems: A Hybrid Approach. CoRR abs/2010.01195 (2020) - [i8]Jiecao Chen, Liu Yang, Karthik Raman, Michael Bendersky, Jung-Jung Yeh, Yun Zhou, Marc Najork
, Danyang Cai, Ehsan Emadzadeh:
DiPair: Fast and Accurate Distillation for Trillion-Scale Text Matching and Pair Modeling. CoRR abs/2010.03099 (2020)
2010 – 2019
- 2019
- [c44]Sebastian Bruch
, Xuanhui Wang, Michael Bendersky, Marc Najork
:
An Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary Relevance. ICTIR 2019: 75-78 - [c43]Qingyao Ai
, Xuanhui Wang, Sebastian Bruch
, Nadav Golbandi, Michael Bendersky, Marc Najork
:
Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks. ICTIR 2019: 85-92 - [c42]Rama Kumar Pasumarthi, Sebastian Bruch
, Michael Bendersky, Xuanhui Wang:
Neural Learning to Rank using TensorFlow Ranking: A Hands-on Tutorial. ICTIR 2019: 253-254 - [c41]Rama Kumar Pasumarthi, Sebastian Bruch
, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork
, Jan Pfeifer, Nadav Golbandi, Rohan Anil, Stephan Wolf
:
TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank. KDD 2019: 2970-2978 - [c40]Brandon Tran, Maryam Karimzadehgan, Rama Kumar Pasumarthi, Michael Bendersky, Donald Metzler:
Domain Adaptation for Enterprise Email Search. SIGIR 2019: 25-34 - [c39]Cheng Li, Mingyang Zhang, Michael Bendersky, Hongbo Deng, Donald Metzler, Marc Najork
:
Multi-view Embedding-based Synonyms for Email Search. SIGIR 2019: 575-584 - [c38]Sebastian Bruch
, Masrour Zoghi, Michael Bendersky, Marc Najork
:
Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks. SIGIR 2019: 1241-1244 - [c37]Claudio Lucchese, Franco Maria Nardini
, Rama Kumar Pasumarthi, Sebastian Bruch
, Michael Bendersky, Xuanhui Wang, Harrie Oosterhuis, Rolf Jagerman
, Maarten de Rijke
:
Learning to Rank in Theory and Practice: From Gradient Boosting to Neural Networks and Unbiased Learning. SIGIR 2019: 1419-1420 - [c36]Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork
:
Addressing Trust Bias for Unbiased Learning-to-Rank. WWW 2019: 4-14 - [c35]Shuguang Han, Bernhard Brodowsky, Przemek Gajda, Sergey Novikov, Mike Bendersky, Marc Najork
, Robin Dua, Alexandrin Popescul:
Predictive Crawling for Commercial Web Content. WWW 2019: 627-637 - [c34]Jyun-Yu Jiang, Mingyang Zhang, Cheng Li, Michael Bendersky, Nadav Golbandi, Marc Najork
:
Semantic Text Matching for Long-Form Documents. WWW 2019: 795-806 - [c33]Jai Prakash Gupta, Zhen Qin, Michael Bendersky, Donald Metzler:
Personalized Online Spell Correction for Personal Search. WWW 2019: 2785-2791 - [i7]Brandon Tran, Maryam Karimzadehgan, Rama Kumar Pasumarthi, Michael Bendersky, Donald Metzler:
Domain Adaptation for Enterprise Email Search. CoRR abs/1906.07897 (2019) - [i6]Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
:
Self-Attentive Document Interaction Networks for Permutation Equivariant Ranking. CoRR abs/1910.09676 (2019) - 2018
- [c32]Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, Marc Najork
:
The LambdaLoss Framework for Ranking Metric Optimization. CIKM 2018: 1313-1322 - [c31]Jiaming Shen, Maryam Karimzadehgan, Michael Bendersky, Zhen Qin, Donald Metzler:
Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering. CIKM 2018: 2127-2135 - [c30]Michael Bendersky, Xuanhui Wang, Marc Najork
, Donald Metzler:
Learning with Sparse and Biased Feedback for Personal Search. IJCAI 2018: 5219-5223 - [c29]John Foley, Mingyang Zhang, Michael Bendersky, Marc Najork
:
Semantic Location in Email Query Suggestion. SIGIR 2018: 977-980 - [c28]Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, Marc Najork
:
Position Bias Estimation for Unbiased Learning to Rank in Personal Search. WSDM 2018: 610-618 - [i5]Jiaming Shen, Maryam Karimzadehgan, Michael Bendersky, Zhen Qin, Donald Metzler:
Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering. CoRR abs/1809.05618 (2018) - [i4]Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork
:
Offline Comparison of Ranking Functions using Randomized Data. CoRR abs/1810.05252 (2018) - [i3]Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Marc Najork
:
Learning Groupwise Scoring Functions Using Deep Neural Networks. CoRR abs/1811.04415 (2018) - [i2]Rama Kumar Pasumarthi, Xuanhui Wang, Cheng Li, Sebastian Bruch, Michael Bendersky, Marc Najork
, Jan Pfeifer, Nadav Golbandi, Rohan Anil, Stephan Wolf:
TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank. CoRR abs/1812.00073 (2018) - 2017
- [c27]Cheng Li, Michael Bendersky, Vijay Garg, Sujith Ravi:
Related Event Discovery. WSDM 2017: 355-364 - [c26]Michael Bendersky, Xuanhui Wang, Donald Metzler, Marc Najork
:
Learning from User Interactions in Personal Search via Attribute Parameterization. WSDM 2017: 791-799 - [c25]Hamed Zamani, Michael Bendersky, Xuanhui Wang, Mingyang Zhang:
Situational Context for Ranking in Personal Search. WWW 2017: 1531-1540 - 2016
- [j7]Michael Bendersky, Israel David:
Deciding kidney-offer admissibility dependent on patients' lifetime failure rate. Eur. J. Oper. Res. 251(2): 686-693 (2016) - [c24]Xuanhui Wang, Michael Bendersky, Donald Metzler, Marc Najork
:
Learning to Rank with Selection Bias in Personal Search. SIGIR 2016: 115-124 - [c23]James B. Wendt
, Michael Bendersky, Lluis Garcia Pueyo, Vanja Josifovski, Balint Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen Cartright, Sujith Ravi:
Hierarchical Label Propagation and Discovery for Machine Generated Email. WSDM 2016: 317-326 - [i1]Harrie Oosterhuis, Sujith Ravi, Michael Bendersky:
Semantic Video Trailers. CoRR abs/1609.01819 (2016) - 2015
- [j6]Manish Gupta, Michael Bendersky:
Information Retrieval with Verbose Queries. Found. Trends Inf. Retr. 9(3-4): 91-208 (2015) - [j5]Boris Kriheli, Eugene Levner, Michael Bendersky, Eduard H. Yakubov:
A Fast Algorithm for Scheduling Detection-and-Rescue Operations Based on Data from Wireless Sensor Networks. Res. Comput. Sci. 104: 9-21 (2015) - [c22]John Foley, Michael Bendersky, Vanja Josifovski:
Learning to Extract Local Events from the Web. SIGIR 2015: 423-432 - [c21]Manish Gupta, Michael Bendersky:
Information Retrieval with Verbose Queries. SIGIR 2015: 1121-1124 - 2014
- [c20]Michael Bendersky, Lluis Garcia Pueyo, Jeremiah J. Harmsen, Vanja Josifovski, Dima Lepikhin:
Up next: retrieval methods for large scale related video suggestion. KDD 2014: 1769-1778 - 2013
- [c19]Van Dang, Michael Bendersky, W. Bruce Croft:
Two-Stage Learning to Rank for Information Retrieval. ECIR 2013: 423-434 - 2012
- [j4]Michael Bendersky:
Information retrieval with query hypergraphs. SIGIR Forum 46(2): 111 (2012) - [c18]Michael Bendersky, David A. Smith:
A Dictionary of Wisdom and Wit: Learning to Extract Quotable Phrases. CLfL@NAACL-HLT 2012: 69-77 - [c17]Michael Bendersky, W. Bruce Croft:
Modeling higher-order term dependencies in information retrieval using query hypergraphs. SIGIR 2012: 941-950 - [c16]Michael Bendersky, Donald Metzler, W. Bruce Croft:
Effective query formulation with multiple information sources. WSDM 2012: 443-452 - 2011
- [c15]Michael Bendersky, W. Bruce Croft, David A. Smith:
Joint Annotation of Search Queries. ACL 2011: 102-111 - [c14]Michael Bendersky, Donald Metzler, W. Bruce Croft:
Parameterized concept weighting in verbose queries. SIGIR 2011: 605-614 - [c13]Michael Bendersky, W. Bruce Croft, Yanlei Diao:
Quality-biased ranking of web documents. WSDM 2011: 95-104 - 2010
- [j3]Michael Bendersky, Oren Kurland:
Utilizing passage-based language models for ad hoc document retrieval. Inf. Retr. 13(2): 157-187 (2010) - [j2]W. Bruce Croft, Michael Bendersky, Hang Li, Gu Xu:
Query representation and understanding workshop. SIGIR Forum 44(2): 48-53 (2010) - [j1]Eyal Krikon, Oren Kurland, Michael Bendersky:
Utilizing inter-passage and inter-document similarities for reranking search results. ACM Trans. Inf. Syst. 29(1): 3:1-3:28 (2010) - [c12]Michael Bendersky, W. Bruce Croft, David A. Smith:
Structural annotation of search queries using pseudo-relevance feedback. CIKM 2010: 1537-1540 - [c11]Van Dang, Michael Bendersky, W. Bruce Croft:
Learning to rank query reformulations. SIGIR 2010: 807-808 - [c10]Michael Bendersky, David Fisher, W. Bruce Croft:
TREC 2010 Web Track Notebook: Term Dependence, Spam Filtering and Quality Bias. TREC 2010 - [c9]Michael Bendersky, Donald Metzler, W. Bruce Croft:
Learning concept importance using a weighted dependence model. WSDM 2010: 31-40 - [c8]Michael Bendersky, Evgeniy Gabrilovich
, Vanja Josifovski, Donald Metzler:
The anatomy of an ad: structured indexing and retrieval for sponsored search. WWW 2010: 101-110
2000 – 2009
- 2009
- [c7]Eyal Krikon, Oren Kurland, Michael Bendersky:
Utilizing inter-passage and inter-document similarities for re-ranking search results. CIKM 2009: 1597-1600 - [c6]Michael Bendersky, W. Bruce Croft, David A. Smith:
Two-stage query segmentation for information retrieval. SIGIR 2009: 810-811 - [c5]Michael Bendersky, W. Bruce Croft:
Analysis of long queries in a large scale search log. WSCD@WSDM 2009: 8-14 - [c4]Michael Bendersky, W. Bruce Croft:
Finding text reuse on the web. WSDM 2009: 262-271 - 2008
- [c3]Michael Bendersky, Oren Kurland:
Utilizing Passage-Based Language Models for Document Retrieval. ECIR 2008: 162-174 - [c2]Michael Bendersky, W. Bruce Croft:
Discovering key concepts in verbose queries. SIGIR 2008: 491-498 - [c1]Michael Bendersky, Oren Kurland:
Re-ranking search results using document-passage graphs. SIGIR 2008: 853-854
Coauthor Index
aka: Don Metzler

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-04-18 00:05 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint