


Остановите войну!
for scientists:


default search action
Maks Ovsjanikov
Maksim Ovsjanikov
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j56]Robin Magnet
, Maks Ovsjanikov
:
Scalable and Efficient Functional Map Computations on Dense Meshes. Comput. Graph. Forum 42(2): 89-101 (2023) - [j55]Lei Li
, Hongbo Fu
, Maks Ovsjanikov:
WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration. IEEE Trans. Vis. Comput. Graph. 29(7): 3368-3379 (2023) - [c58]Souhaib Attaiki, Maks Ovsjanikov:
Understanding and Improving Features Learned in Deep Functional Maps. CVPR 2023: 1316-1326 - [c57]Panos Achlioptas, Maks Ovsjanikov, Leonidas J. Guibas, Sergey Tulyakov:
Affection: Learning Affective Explanations for Real-World Visual Data. CVPR 2023: 6641-6651 - [c56]Souhaib Attaiki, Lei Li, Maks Ovsjanikov:
Generalizable Local Feature Pre-training for Deformable Shape Analysis. CVPR 2023: 13650-13661 - [c55]Maysam Behmanesh, Maximilian Krahn, Maks Ovsjanikov:
TIDE: Time Derivative Diffusion for Deep Learning on Graphs. ICML 2023: 2015-2030 - [i56]Souhaib Attaiki, Maks Ovsjanikov:
NCP: Neural Correspondence Prior for Effective Unsupervised Shape Matching. CoRR abs/2301.05839 (2023) - [i55]Robin Magnet, Maks Ovsjanikov:
Scalable and Efficient Functional Map Computations on Dense Meshes. CoRR abs/2303.05965 (2023) - [i54]Souhaib Attaiki, Lei Li, Maks Ovsjanikov:
Generalizable Local Feature Pre-training for Deformable Shape Analysis. CoRR abs/2303.15104 (2023) - [i53]Souhaib Attaiki, Maks Ovsjanikov:
Understanding and Improving Features Learned in Deep Functional Maps. CoRR abs/2303.16527 (2023) - [i52]Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, Peter Wonka:
SATR: Zero-Shot Semantic Segmentation of 3D Shapes. CoRR abs/2304.04909 (2023) - [i51]Ahmed Abdelreheem, Abdelrahman Eldesokey, Maks Ovsjanikov, Peter Wonka:
Zero-Shot 3D Shape Correspondence. CoRR abs/2306.03253 (2023) - [i50]Mingze Sun, Shiwei Mao, Puhua Jiang, Maks Ovsjanikov, Ruqi Huang:
Spatially and Spectrally Consistent Deep Functional Maps. CoRR abs/2308.08871 (2023) - [i49]Nissim Maruani, Roman Klokov, Maks Ovsjanikov, Pierre Alliez, Mathieu Desbrun:
VoroMesh: Learning Watertight Surface Meshes with Voronoi Diagrams. CoRR abs/2308.14616 (2023) - 2022
- [j54]Nicolas Donati, Etienne Corman, Simone Melzi, Maks Ovsjanikov:
Complex Functional Maps: A Conformal Link Between Tangent Bundles. Comput. Graph. Forum 41(1): 317-334 (2022) - [j53]Luca Moschella
, Simone Melzi, Luca Cosmo
, Filippo Maggioli, Or Litany, Maks Ovsjanikov, Leonidas J. Guibas, Emanuele Rodolà:
Learning Spectral Unions of Partial Deformable 3D Shapes. Comput. Graph. Forum 41(2): 407-417 (2022) - [j52]Mikhail Panine
, Maxime Kirgo
, Maks Ovsjanikov
:
Non-Isometric Shape Matching via Functional Maps on Landmark-Adapted Bases. Comput. Graph. Forum 41(6): 394-417 (2022) - [j51]Nicholas Sharp
, Souhaib Attaiki
, Keenan Crane
, Maks Ovsjanikov
:
DiffusionNet: Discretization Agnostic Learning on Surfaces. ACM Trans. Graph. 41(3): 27:1-27:16 (2022) - [c54]Lei Li
, Souhaib Attaiki, Maks Ovsjanikov:
SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence. 3DV 2022: 144-154 - [c53]Robin Magnet
, Jing Ren, Olga Sorkine-Hornung, Maks Ovsjanikov:
Smooth Non-Rigid Shape Matching via Effective Dirichlet Energy Optimization. 3DV 2022: 495-504 - [c52]Nicolas Donati, Etienne Corman, Maks Ovsjanikov:
Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching. CVPR 2022: 732-741 - [c51]Mariem Mezghanni, Théo Bodrito, Malika Boulkenafed, Maks Ovsjanikov:
Physical Simulation Layer for Accurate 3D Modeling. CVPR 2022: 13504-13513 - [c50]Ramana Sundararaman, Gautam Pai, Maks Ovsjanikov:
Implicit Field Supervision for Robust Non-rigid Shape Matching. ECCV (3) 2022: 344-362 - [c49]Emanuele Rodolà, Luca Cosmo, Maks Ovsjanikov, Arianna Rampini, Simone Melzi, Michael M. Bronstein, Riccardo Marin:
Inverse Computational Spectral Geometry. Eurographics (Tutorials) 2022 - [c48]Abhishek Sharma, Maks Ovsjanikov:
Matrix Decomposition on Graphs: A Simplified Functional View. ICASSP 2022: 3358-3362 - [c47]Lei Li, Nicolas Donati, Maks Ovsjanikov:
Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching. NeurIPS 2022 - [c46]Souhaib Attaiki, Maks Ovsjanikov:
NCP: Neural Correspondence Prior for Effective Unsupervised Shape Matching. NeurIPS 2022 - [c45]Ramana Sundararaman, Riccardo Marin, Emanuele Rodolà, Maks Ovsjanikov:
Reduced Representation of Deformation Fields for Effective Non-rigid Shape Matching. NeurIPS 2022 - [i48]Ramana Sundararaman, Gautam Pai, Maks Ovsjanikov:
Implicit field supervision for robust non-rigid shape matching. CoRR abs/2203.07694 (2022) - [i47]Nicolas Donati, Etienne Corman, Maks Ovsjanikov:
Deep Orientation-Aware Functional Maps: Tackling Symmetry Issues in Shape Matching. CoRR abs/2204.13453 (2022) - [i46]Mikhail Panine, Maxime Kirgo, Maks Ovsjanikov:
Non-Isometric Shape Matching via Functional Maps on Landmark-Adapted Bases. CoRR abs/2205.04800 (2022) - [i45]Lei Li, Souhaib Attaiki, Maks Ovsjanikov:
SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence. CoRR abs/2209.07806 (2022) - [i44]Panos Achlioptas, Maks Ovsjanikov, Leonidas J. Guibas, Sergey Tulyakov:
Affection: Learning Affective Explanations for Real-World Visual Data. CoRR abs/2210.01946 (2022) - [i43]Robin Magnet, Jing Ren, Olga Sorkine-Hornung, Maks Ovsjanikov:
Smooth Non-Rigid Shape Matching via Effective Dirichlet Energy Optimization. CoRR abs/2210.02870 (2022) - [i42]Lei Li, Nicolas Donati, Maks Ovsjanikov:
Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching. CoRR abs/2210.06373 (2022) - [i41]Ramana Sundararaman, Riccardo Marin, Emanuele Rodolà, Maks Ovsjanikov:
Reduced Representation of Deformation Fields for Effective Non-rigid Shape Matching. CoRR abs/2211.14604 (2022) - [i40]Adrien Poulenard, Maks Ovsjanikov, Leonidas J. Guibas:
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution. CoRR abs/2211.15903 (2022) - [i39]Maximilian Krahn, Maysam Behmanesh, Maks Ovsjanikov:
TIDE: Time Derivative Diffusion for Deep Learning on Graphs. CoRR abs/2212.02483 (2022) - 2021
- [j50]Maxime Kirgo
, Simone Melzi
, Giuseppe Patanè
, Emanuele Rodolà
, Maks Ovsjanikov
:
Wavelet-based Heat Kernel Derivatives: Towards Informative Localized Shape Analysis. Comput. Graph. Forum 40(1): 165-179 (2021) - [j49]Filippo Maggioli
, Simone Melzi
, Maksim Ovsjanikov
, Michael M. Bronstein
, Emanuele Rodolà
:
Orthogonalized Fourier Polynomials for Signal Approximation and Transfer. Comput. Graph. Forum 40(2): 435-447 (2021) - [j48]Jing Ren, Simone Melzi, Peter Wonka, Maks Ovsjanikov:
Discrete Optimization for Shape Matching. Comput. Graph. Forum 40(5): 81-96 (2021) - [j47]Riccardo Marin
, Arianna Rampini, Umberto Castellani, Emanuele Rodolà, Maks Ovsjanikov, Simone Melzi
:
Spectral Shape Recovery and Analysis Via Data-driven Connections. Int. J. Comput. Vis. 129(10): 2745-2760 (2021) - [j46]Jing Ren
, Biao Zhang, Bojian Wu, Jianqiang Huang, Lubin Fan, Maks Ovsjanikov, Peter Wonka:
Intuitive and efficient roof modeling for reconstruction and synthesis. ACM Trans. Graph. 40(6): 249:1-249:17 (2021) - [j45]Marie-Julie Rakotosaona, Noam Aigerman, Niloy J. Mitra, Maks Ovsjanikov, Paul Guerrero:
Differentiable surface triangulation. ACM Trans. Graph. 40(6): 267:1-267:13 (2021) - [c44]Souhaib Attaiki, Gautam Pai, Maks Ovsjanikov:
DPFM: Deep Partial Functional Maps. 3DV 2021: 175-185 - [c43]Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J. Mitra, Maks Ovsjanikov:
Learning Delaunay Surface Elements for Mesh Reconstruction. CVPR 2021: 22-31 - [c42]Gautam Pai, Jing Ren
, Simone Melzi, Peter Wonka, Maks Ovsjanikov:
Fast Sinkhorn Filters: Using Matrix Scaling for Non-Rigid Shape Correspondence With Functional Maps. CVPR 2021: 384-393 - [c41]Mariem Mezghanni, Malika Boulkenafed, André Lieutier, Maks Ovsjanikov:
Physically-Aware Generative Network for 3D Shape Modeling. CVPR 2021: 9330-9341 - [c40]Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov
, Mohamed Elhoseiny
, Leonidas J. Guibas:
ArtEmis: Affective Language for Visual Art. CVPR 2021: 11569-11579 - [c39]Robin Magnet
, Maks Ovsjanikov:
DWKS : A Local Descriptor of Deformations Between Meshes and Point Clouds. ICCV 2021: 3773-3782 - [i38]Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov
, Mohamed Elhoseiny
, Leonidas J. Guibas:
ArtEmis: Affective Language for Visual Art. CoRR abs/2101.07396 (2021) - [i37]Abhishek Sharma, Maks Ovsjanikov:
Matrix Decomposition on Graphs: A Functional View. CoRR abs/2102.03233 (2021) - [i36]Luca Moschella, Simone Melzi, Luca Cosmo, Filippo Maggioli, Or Litany, Maks Ovsjanikov, Leonidas J. Guibas, Emanuele Rodolà:
Spectral Unions of Partial Deformable 3D Shapes. CoRR abs/2104.00514 (2021) - [i35]Lei Li, Hongbo Fu, Maks Ovsjanikov:
UPDesc: Unsupervised Point Descriptor Learning for Robust Registration. CoRR abs/2108.02740 (2021) - [i34]Jing Ren
, Biao Zhang, Bojian Wu, Jianqiang Huang, Lubin Fan, Maks Ovsjanikov, Peter Wonka:
Intuitive and Efficient Roof Modeling for Reconstruction and Synthesis. CoRR abs/2109.07683 (2021) - [i33]Marie-Julie Rakotosaona, Noam Aigerman, Niloy J. Mitra, Maks Ovsjanikov, Paul Guerrero:
Differentiable Surface Triangulation. CoRR abs/2109.10695 (2021) - [i32]Abhishek Sharma, Maks Ovsjanikov:
Learning Canonical Embedding for Non-rigid Shape Matching. CoRR abs/2110.02994 (2021) - [i31]Souhaib Attaiki, Gautam Pai, Maks Ovsjanikov:
DPFM: Deep Partial Functional Maps. CoRR abs/2110.09994 (2021) - [i30]Abhishek Sharma, Maks Ovsjanikov:
Joint Symmetry Detection and Shape Matching for Non-Rigid Point Cloud. CoRR abs/2112.02713 (2021) - [i29]Riccardo Marin, Souhaib Attaiki, Simone Melzi, Emanuele Rodolà, Maks Ovsjanikov:
Why you should learn functional basis. CoRR abs/2112.07289 (2021) - [i28]Nicolas Donati, Etienne Corman, Simone Melzi, Maks Ovsjanikov:
Complex Functional Maps : a Conformal Link Between Tangent Bundles. CoRR abs/2112.09546 (2021) - 2020
- [j44]Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero
, Niloy J. Mitra, Maks Ovsjanikov:
PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds. Comput. Graph. Forum 39(1): 185-203 (2020) - [j43]Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy Boubekeur, Maks Ovsjanikov:
Spectral Mesh Simplification. Comput. Graph. Forum 39(2): 315-324 (2020) - [j42]Ruqi Huang, Jing Ren
, Peter Wonka, Maks Ovsjanikov:
Consistent ZoomOut: Efficient Spectral Map Synchronization. Comput. Graph. Forum 39(5): 265-278 (2020) - [j41]Jing Ren
, Simone Melzi, Maks Ovsjanikov, Peter Wonka:
MapTree: recovering multiple solutions in the space of maps. ACM Trans. Graph. 39(6): 264:1-264:17 (2020) - [c38]Riccardo Marin
, Arianna Rampini, Umberto Castellani, Emanuele Rodolà, Maks Ovsjanikov, Simone Melzi:
Instant recovery of shape from spectrum via latent space connections. 3DV 2020: 120-129 - [c37]Nicolas Donati, Abhishek Sharma, Maks Ovsjanikov:
Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence. CVPR 2020: 8589-8598 - [c36]Marie-Julie Rakotosaona, Maks Ovsjanikov:
Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation. ECCV (2) 2020: 655-672 - [c35]Nicholas Sharp
, Maks Ovsjanikov
:
PointTriNet: Learned Triangulation of 3D Point Sets. ECCV (23) 2020: 762-778 - [c34]Riccardo Marin, Marie-Julie Rakotosaona, Simone Melzi, Maks Ovsjanikov:
Correspondence learning via linearly-invariant embedding. NeurIPS 2020 - [c33]Abhishek Sharma, Maks Ovsjanikov:
Weakly Supervised Deep Functional Maps for Shape Matching. NeurIPS 2020 - [i27]Riccardo Marin, Arianna Rampini, Umberto Castellani, Emanuele Rodolà, Maks Ovsjanikov, Simone Melzi:
Instant recovery of shape from spectrum via latent space connections. CoRR abs/2003.06523 (2020) - [i26]Nicolas Donati, Abhishek Sharma, Maks Ovsjanikov:
Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence. CoRR abs/2003.14286 (2020) - [i25]Marie-Julie Rakotosaona, Maks Ovsjanikov:
Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation. CoRR abs/2004.01661 (2020) - [i24]Nicholas Sharp, Maks Ovsjanikov:
PointTriNet: Learned Triangulation of 3D Point Sets. CoRR abs/2005.02138 (2020) - [i23]Jing Ren
, Simone Melzi, Maks Ovsjanikov, Peter Wonka:
MapTree: Recovering Multiple Solutions in the Space of Maps. CoRR abs/2006.02532 (2020) - [i22]Maxime Kirgo, Simone Melzi, Giuseppe Patanè, Emanuele Rodolà, Maks Ovsjanikov:
Wavelet-based Heat Kernel Derivatives: Towards Informative Localized Shape Analysis. CoRR abs/2007.11632 (2020) - [i21]Abhishek Sharma, Maks Ovsjanikov:
Weakly Supervised Deep Functional Map for Shape Matching. CoRR abs/2009.13339 (2020) - [i20]Abhishek Sharma, Maks Ovsjanikov:
Geometric Matrix Completion: A Functional View. CoRR abs/2009.14343 (2020) - [i19]Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov:
Structured Regularization of Functional Map Computations. CoRR abs/2009.14624 (2020) - [i18]Riccardo Marin, Marie-Julie Rakotosaona, Simone Melzi, Maks Ovsjanikov:
Correspondence Learning via Linearly-invariant Embedding. CoRR abs/2010.13136 (2020) - [i17]Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov:
Diffusion is All You Need for Learning on Surfaces. CoRR abs/2012.00888 (2020) - [i16]Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J. Mitra, Maks Ovsjanikov:
Learning Delaunay Surface Elements for Mesh Reconstruction. CoRR abs/2012.01203 (2020)
2010 – 2019
- 2019
- [j40]Yanir Kleiman
, Maks Ovsjanikov:
Robust Structure-Based Shape Correspondence. Comput. Graph. Forum 38(1): 7-20 (2019) - [j39]Jing Ren
, Mikhail Panine
, Peter Wonka
, Maks Ovsjanikov
:
Structured Regularization of Functional Map Computations. Comput. Graph. Forum 38(5): 39-53 (2019) - [j38]Ruqi Huang, Panos Achlioptas, Leonidas J. Guibas, Maks Ovsjanikov:
Limit Shapes - A Tool for Understanding Shape Differences and Variability in 3D Model Collections. Comput. Graph. Forum 38(5): 187-202 (2019) - [j37]Etienne Corman, Maks Ovsjanikov:
Functional Characterization of Deformation Fields. ACM Trans. Graph. 38(1): 8:1-8:19 (2019) - [j36]Hsueh-Ti Derek Liu, Alec Jacobson, Maks Ovsjanikov:
Spectral coarsening of geometric operators. ACM Trans. Graph. 38(4): 105:1-105:13 (2019) - [j35]Simone Melzi, Jing Ren
, Emanuele Rodolà, Abhishek Sharma, Peter Wonka, Maks Ovsjanikov:
ZoomOut: spectral upsampling for efficient shape correspondence. ACM Trans. Graph. 38(6): 155:1-155:14 (2019) - [c32]Arianna Rampini, Irene Tallini
, Maks Ovsjanikov, Alexander M. Bronstein, Emanuele Rodolà:
Correspondence-Free Region Localization for Partial Shape Similarity via Hamiltonian Spectrum Alignment. 3DV 2019: 37-46 - [c31]Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, Maks Ovsjanikov:
Effective Rotation-Invariant Point CNN with Spherical Harmonics Kernels. 3DV 2019: 47-56 - [c30]Simone Melzi, Riccardo Marin
, Emanuele Rodolà, Umberto Castellani, Jing Ren, Adrien Poulenard, Peter Wonka, Maks Ovsjanikov:
Matching Humans with Different Connectivity. 3DOR@Eurographics 2019: 121-128 - [c29]Luca Cosmo
, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, Emanuele Rodolà:
Isospectralization, or How to Hear Shape, Style, and Correspondence. CVPR 2019: 7529-7538 - [c28]Jean-Michel Roufosse, Abhishek Sharma, Maks Ovsjanikov:
Unsupervised Deep Learning for Structured Shape Matching. ICCV 2019: 1617-1627 - [c27]Ruqi Huang, Marie-Julie Rakotosaona, Panos Achlioptas, Leonidas J. Guibas, Maks Ovsjanikov:
OperatorNet: Recovering 3D Shapes From Difference Operators. ICCV 2019: 8587-8596 - [c26]Thibault Lescoat, Pooran Memari, Jean-Marc Thiery, Maks Ovsjanikov, Tamy Boubekeur:
Connectivity-preserving Smooth Surface Filling with Sharp Features. PG (Short Papers) 2019: 7-13 - [i15]Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J. Mitra, Maks Ovsjanikov:
POINTCLEANNET: Learning to Denoise and Remove Outliers from Dense Point Clouds. CoRR abs/1901.01060 (2019) - [i14]Simone Melzi, Jing Ren
, Emanuele Rodolà, Peter Wonka, Maks Ovsjanikov:
ZoomOut: Spectral Upsampling for Efficient Shape Correspondence. CoRR abs/1904.07865 (2019) - [i13]Ruqi Huang, Marie-Julie Rakotosaona, Panos Achlioptas, Leonidas J. Guibas, Maks Ovsjanikov:
OperatorNet: Recovering 3D Shapes From Difference Operators. CoRR abs/1904.10754 (2019) - [i12]Hsueh-Ti Derek Liu, Alec Jacobson, Maks Ovsjanikov:
Spectral Coarsening of Geometric Operators. CoRR abs/1905.05161 (2019) - [i11]Arianna Rampini, Irene Tallini, Maks Ovsjanikov, Alexander M. Bronstein, Emanuele Rodolà:
Correspondence-Free Region Localization for Partial Shape Similarity via Hamiltonian Spectrum Alignment. CoRR abs/1906.06226 (2019) - [i10]Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, Maks Ovsjanikov:
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels. CoRR abs/1906.11555 (2019) - 2018
- [j34]Guillaume Lavoué, Ioannis Pratikakis, Florent Dupont, Maks Ovsjanikov, Michela Spagnuolo
:
Foreword to the Special Section on Eurographics Workshop on 3D Object Retrieval 2017. Comput. Graph. 71: 6- (2018) - [j33]Ruqi Huang
, Frédéric Chazal, Maks Ovsjanikov:
On the Stability of Functional Maps and Shape Difference Operators. Comput. Graph. Forum 37(1): 145-158 (2018) - [j32]Paul Guerrero
, Yanir Kleiman, Maks Ovsjanikov, Niloy J. Mitra:
PCPNet Learning Local Shape Properties from Raw Point Clouds. Comput. Graph. Forum 37(2): 75-85 (2018) - [j31]Dorian Nogneng, Simone Melzi, Emanuele Rodolà, Umberto Castellani, Michael M. Bronstein, Maks Ovsjanikov:
Improved Functional Mappings via Product Preservation. Comput. Graph. Forum 37(2): 179-190 (2018) - [j30]Thibault Lescoat, Maks Ovsjanikov, Pooran Memari, Jean-Marc Thiery, Tamy Boubekeur:
A Survey on Data-driven Dictionary-based Methods for 3D Modeling. Comput. Graph. Forum 37(2): 577-601 (2018) - [j29]Adrien Poulenard, Primoz Skraba, Maks Ovsjanikov:
Topological Function Optimization for Continuous Shape Matching. Comput. Graph. Forum 37(5): 13-25 (2018) - [j28]Simone Melzi, Maks Ovsjanikov, Giorgio Roffo
, Marco Cristani, Umberto Castellani:
Discrete Time Evolution Process Descriptor for Shape Analysis and Matching. ACM Trans. Graph. 37(1): 4 (2018) - [j27]Adrien Poulenard, Maks Ovsjanikov:
Multi-directional geodesic neural networks via equivariant convolution. ACM Trans. Graph. 37(6): 236 (2018) - [j26]Jing Ren
, Adrien Poulenard, Peter Wonka, Maks Ovsjanikov:
Continuous and orientation-preserving correspondences via functional maps. ACM Trans. Graph. 37(6): 248 (2018) - [j25]Jing Ren
, Jens Schneider
, Maks Ovsjanikov, Peter Wonka:
Joint Graph Layouts for Visualizing Collections of Segmented Meshes. IEEE Trans. Vis. Comput. Graph. 24(9): 2546-2558 (2018) - [c25]Luca Castelli Aleardi, Semih Salihoglu, Gurprit Singh, Maks Ovsjanikov:
Spectral Measures of Distortion for Change Detection in Dynamic Graphs. COMPLEX NETWORKS (2) 2018: 54-66 - [i9]Ruqi Huang, Panos Achlioptas, Leonidas J. Guibas, Maks Ovsjanikov:
Latent Space Representation for Shape Analysis and Learning. CoRR abs/1806.03967 (2018) - [i8]Jing Ren, Adrien Poulenard, Peter Wonka, Maks Ovsjanikov:
Continuous and Orientation-preserving Correspondences via Functional Maps. CoRR abs/1806.04455 (2018) - [i7]Adrien Poulenard, Maks Ovsjanikov:
Multi-directional Geodesic Neural Networks via Equivariant Convolution. CoRR abs/1810.02303 (2018) - [i6]Luca Cosmo, Mikhail Panine
, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, Emanuele Rodolà:
Isospectralization, or how to hear shape, style, and correspondence. CoRR abs/1811.11465 (2018) - [i5]Jean-Michel Roufosse, Maks Ovsjanikov:
Unsupervised Deep Learning for Structured Shape Matching. CoRR abs/1812.03794 (2018) - 2017
- [b1]Maks Ovsjanikov:
Functional View of Geometry Processing: Operator-based Techniques for Shape Analysis. University of Paris-Sud, Orsay, France, 2017 - [j24]Dorian Nogneng, Maks Ovsjanikov:
Informative Descriptor Preservation via Commutativity for Shape Matching. Comput. Graph. Forum 36(2): 259-267 (2017) - [j23]Ruqi Huang, Maks Ovsjanikov:
Adjoint Map Representation for Shape Analysis and Matching. Comput. Graph. Forum 36(5): 151-163 (2017) - [j22]Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas J. Guibas, Maks Ovsjanikov:
Functional Characterization of Intrinsic and Extrinsic Geometry. ACM Trans. Graph. 36(2): 14:1-14:17 (2017) - [j21]Omri Azencot, Etienne Corman, Mirela Ben-Chen, Maks Ovsjanikov:
Consistent functional cross field design for mesh quadrangulation. ACM Trans. Graph. 36(4): 92:1-92:13 (2017) - [c24]Matteo Denitto, Simone Melzi, Manuele Bicego, Umberto Castellani, Alessandro Farinelli
, Mário A. T. Figueiredo, Yanir Kleiman, Maks Ovsjanikov:
Region-Based Correspondence Between 3D Shapes via Spatially Smooth Biclustering. ICCV 2017: 4270-4279 - [c23]