


default search action
8th ML 1991
- Lawrence Birnbaum, Gregg Collins:

Proceedings of the Eighth International Workshop (ML91), Northwestern University, Evanston, Illinois, USA. Morgan Kaufmann 1991, ISBN 1-55860-200-3
Automated Knowledge Acquisition
- Thomas R. Gruber, Catherine Baudin, John H. Boose, Jay Webber:

Design Rationale Capture as Knowledge Acquisition. 3-12 - Yolanda Gil:

A Domain-Independent Framework for Effective Experimentation in Planning. 13-17 - Eric K. Jones:

Knowledge Refinement Using a High Level, Non-Technical Vocabulary. 18-22 - Yong Ma, David C. Wilkins:

Improving the Performance of Inconsistent Knowledge Bases via Combined Optimization Method. 23-27 - Susan Craw, Derek H. Sleeman:

The Flexibility of Speculative Refinement. 28-32 - Michael A. Weintraub, Tom Bylander:

Generating Error Candidates for Assigning Blame in a Knowledge Base. 33-37
Computational Models of Human Learning
- Michael de la Maza

:
A Prototype Based Symbolic Concept Learning System. 41-45 - Douglas H. Fisher, Jungsoon P. Yoo:

Combining Evidence of Deep and Surface Similarity. 46-50 - Mary Gick, Stan Matwin

:
The Importance of Causal Structure and Facts in Evaluating Explanations. 51-54 - Peter M. Hastings, Steven L. Lytinen, Robert K. Lindsay:

Learning Words From Context. ML 1991: 55-59 - Wayne Iba:

Modeling the Acquisition and Improvement of Motor Skkills. 60-64 - Randolph M. Jones, Kurt VanLehn:

A Computational Model of Acquisition for Children's Addtion Strategies. 65-69 - Michael I. Jordan, David E. Rumelhart:

Internal World Models and Supervised Learning. 70-74 - Rick Kazman:

Babel: A Psychologically Plausible Cross-Linguistic Model of Lexical and Syntactic Acquisition. 75-79 - Pat Langley, John A. Allen:

The Acquisition of Human Planning Expertise. 80-84 - Robert Levinson, Richard Snyder:

Adaptive Pattern-Oriented Chess. 85-89 - Joel D. Martin, Dorrit Billman:

Variability Bias and Category Learning. 90-94 - Craig S. Miller, John E. Laird

:
A Constraint-Motivated Model of Lexical Acquisition. 95-99 - Sheldon Nicholl, David C. Wilkins:

Computer Modelling of Acquisition Orders in Child Language. 100-104 - Thomas R. Shultz:

Simulating Stages of Human Cognitive Development With Connectionist Models. 105-109 - Kurt VanLehn, Randolph M. Jones:

Learning Physics Via Explanation-Based Learning of Correctness and Analogical Search Control. 110-114
Constructive Induction
- David W. Aha

:
Incremental Constructive Induction: An Instance-Based Approach. 117-121 - James P. Callan, Paul E. Utgoff:

A Transformational Approach to Constructive Induction. 122-126 - David S. Day:

Learning Variable Descriptors for Applying Heuristics Across CSP Problems. 127-131 - George Drastal:

Informed Pruning in Constructive Induction. 132-136 - Tom Fawcett, Paul E. Utgoff:

A Hybrid Method for Feature Generation. 137-141 - Attilio Giordana, Lorenza Saitta, Davide Roverso:

Abstracting Concepts with Inverse Resolution. 142-146 - Gregg H. Gunsch, Larry A. Rendell:

Opportunistic Constructive Induction. 147-152 - Carl Myers Kadie:

Quantifying the Value of Constructive Induction, Knowledge, and Noise Filtering on Inductive Learning. 153-157 - Adam Kowalczyk, Herman L. Ferrá, Ken Gardiner:

Discovering Production Rules with Higher Order Neural Networks. 158-162 - Bing Leng, Bruce G. Buchanan:

Constructive Induction on Symbolic Features. 163-167 - Xiaofeng Ling, Malur Aji Narayan:

Comparison of Methods Based on Inverse Resolution. 168-172 - Christopher J. Matheus:

The Need for Constructive Induction. 173-177 - Raymond J. Mooney, Dirk Ourston:

Constructive Induction in Theory Refinement. 178-182 - Patrick M. Murphy, Michael J. Pazzani:

Constructive Induction of M-of-N Terms. 183-187 - Harish Ragavan, Larry A. Rendell:

Relations, Knowledge and Empirical Learning. 188-192 - Arlindo L. Oliveira

, Alberto L. Sangiovanni-Vincentelli:
Learning Concepts by Synthesizing Minimal Threshold Gate Networks. 193-197 - Sharad Saxena:

On the Effect of Instance Representation on Generalization. 198-202 - Glenn Silverstein, Michael J. Pazzani:

Relational Clichés: Constraining Induction During Relational Learning. 203-207 - Richard S. Sutton, Christopher J. Matheus:

Learning Polynomial Functions by Feature Construction. 208-212 - Geoffrey G. Towell, Mark W. Craven, Jude W. Shavlik:

Constructive Induction in Knowledge-Based Neural Networks. 213-217 - Larry Watanabe, Larry A. Rendell:

Feature Construction in Structural Decision Trees. 218-222 - Der-Shung Yang, Larry A. Rendell, Gunnar Blix:

Fringe-Like Feature Construction: A Comparative Study and a Unifying Scheme. 223-227 - Dit-Yan Yeung:

A Neural Network Approach to Constructive Induction. 228-232
Learning in Intelligent Information Retrieval
- David D. Lewis:

Learning in Intelligent Information Retrieval. 235-239 - Jay N. Bhuyan, Vijay V. Raghavan:

A Probabilistic Retrieval Scheme for Cluster-based Adaptive Information Retrieval. 240-244 - Stuart L. Crawford, Robert M. Fung, Lee A. Appelbaum, Richard M. Tong:

Classification Trees for Information Retrieval. 245-249 - Sanjiv K. Bhatia, Jitender S. Deogun, Vijay V. Raghavan:

Query Formulation Through Knowledge Acquisition. 250-254 - A. Goker, Thomas Leo McCluskey:

Incremental Learning in a Probalistic Information Retrieval System. 255-259 - K. L. Kwok:

Query Learning Using an ANN with Adaptive Architecture. 260-264 - Ashwin Ram, Lawrence Hunter

:
A Goal-Based Approach to Intelligent Information Retrieval. 265-269 - Paul Thompson:

Machine Learning in the Combination of Expert Opinion Approach to IR. 270-274 - Steven Walczak

:
Predicting Actions from Induction on Past Performance. 275-279
Learning Reaction Strategies
- Matthew Brand:

Decision-Theoretic Learning in an Action System. 283-287 - Steve A. Chien, Melinda T. Gervasio, Gerald DeJong:

On Becoming Decreasingly Reactive: Learning to Deliberate Minimally. 288-292 - Helen G. Cobb, John J. Grefenstette:

Learning the Persistence of Actions in Reactive Control Rules. 292-297 - José del R. Millán, Carme Torras

:
Learning to Avoid Obstacles Through Reinforcement. 298-302 - Goang-Tay Hsu, Reid G. Simmons:

Learning Football Evaluation for a Walking Robot. 303-307 - Smadar Kedar, John L. Bresina, C. Lisa Dent:

The Blind Leading the Blind: Mutual Refinement of Approximate Theories. 308-312 - Mieczyslaw M. Kokar, Spyros A. Reveliotis:

Learning to Select a Model in a Changing World. 313-317 - Bruce Krulwich:

Learning from Deliberated Reactivity. 318-322 - Long Ji Lin:

Self-improvement Based on Reinforcement Learning, Planning and Teaching. 323-327 - Sridhar Mahadevan, Jonathan Connell:

Scaling Reinforcement Learning to Robotics by Exploiting the Subsumption Architecture. 328-332 - Andrew W. Moore:

Variable Resolution Dynamic Programming. 333-337 - David R. Pierce:

Learning a Set of Primitive Actions with an Uninterpreted Sensorimotor Apparatus. 338-342 - Mark B. Ring:

Incremental Development of Complex Behaviors. 343-347 - Satinder P. Singh:

Transfer of Learning Across Compositions of Sequentail Tasks. 348-352 - Richard S. Sutton:

Planning by Incremental Dynamic Programming. 353-357 - Ming Tan:

Learning a Cost-Sensitive Internal Representation for Reinforcement Learning. 358-362 - Steven D. Whitehead:

Complexity and Cooperation in Q-Learning. 363-367 - Lambert E. Wixson:

Scaling Reinforcement Learning Techniques via Modularity. 368-372
Learning Relations
- John A. Allen, Kevin Thompson:

Probabilistic Concept Formation in Relational Domains. 375-379 - Michael Bain:

Experiments in Non-Monotonic Learning. 380-384 - Ivan Bratko, Stephen H. Muggleton, Alen Varsek:

Learning Qualitative Models of Dynamic Systems. 385-388 - Clifford Brunk, Michael J. Pazzani:

An Investigation of Noise-Tolerant Relational Concept Learning Algorithms. 389-393 - Luc De Raedt, Maurice Bruynooghe, Bern Martens:

Integrity Constraints and Interactive Concept-Learning. 394-398 - Saso Dzeroski, Nada Lavrac:

Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL. 399-402 - C. Feng:

Inducing Temporal Fault Diagnostic Rules from a Qualitative Model. 403-406 - Kazuo Hiraki, John H. Gennari, Yoshinobu Yamamoto, Yuichiro Anzai:

Learning Spatial Relations from Images. 407-411 - David Humme, Claude Sammut:

Using Inverse Resolution to Learn Relations from Experiments. 412-416 - Boonserm Kijsirikul, Masayuki Numao, Masamichi Shimura:

Efficient Learning of Logic Programs with Non-determinant, Non-discriminating Literals. 417-421 - Christopher Leckie, Ingrid Zukerman:

Learning Search Control Rules for Planning: An Inductive Approach. 422-426 - C. David Page Jr., Alan M. Frisch:

Learning Constrained Atoms. 427-431 - Michael J. Pazzani, Clifford Brunk, Glenn Silverstein:

A Knowledge-intensive Approach to Learning Relational Concepts. 432-436 - Zhaogang Qian, Keki B. Irani:

The Consistent Concept Axiom. 437-441 - J. Ross Quinlan:

Determinate Literals in Inductive Logic Programming. 442-446 - Bradley L. Richards, Raymond J. Mooney:

First-Order Theory Revision. 447-451 - Céline Rouveirol:

Completeness for Inductive Procedures. 452-456 - Rüdiger Wirth, Paul O'Rorke:

Constraints on Predicate Invention. 457-461 - James Wogulis:

Revising Relational Domain Theories. 462-466 - Kenji Yamanishi

, Akihiko Konagaya:
Learning Stochastic Motifs from Genetic Sequences. 467-471
Learning From Theory and Data
- Hamid R. Berenji:

Refinement of Approximate Reasoning-based Controllers by Reinforcement Learning. 475-479 - Marco Botta, S. Ravotto, Lorenza Saitta, S. B. Sperotto:

Improving Learning Using Causality and Abduction. 480-484 - Timothy Cain:

The DUCTOR: A Theory Revision System for Propositional Domains. 485-489 - William W. Cohen:

The Generality of Overgenerality. 490-494 - Marie desJardins:

Probabilistic Evaluating of Bias for Learning Systems. 495-499 - Ronen Feldman, Alberto M. Segre, Moshe Koppel:

Incremental Refinement of Approximate Domain Theories. 500-504 - Diana F. Gordon:

An Enhancer for Reactive Plans. 505-508 - Jonathan Gratch, Gerald DeJong:

A Hybrid Approach to Guaranteed Effective Control Strategies. 509-513 - Rei Hamakawa:

Revision Cost for Theory Refinement. 514-518 - Xiaofeng Ling, Marco Valtorta:

Revision of Reduced Theories. 519-523 - Richard Maclin

, Jude W. Shavlik:
Refining Domain Theories Expressed as Finite-State Automata. 524-528 - Claire Nedellec

:
A Smallest Generalization Step Strategy. 529-533 - Dirk Ourston, Raymond J. Mooney:

Improving Shared Rules in Multiple Category Domain Theories. 534-538 - Wei-Min Shen:

Discovering Regularities from Large Knowledge Bases. 539-543 - Prasad Tadepalli

:
Learning with Incrutable Theories. 544-548 - Gheorghe Tecuci, Ryszard S. Michalski:

A Method for Multistrategy Task-Adaptive Learning Based on Plausible Justifications. 549-553 - Kevin Thompson, Pat Langley, Wayne Iba:

Using Background Knowledge in Concept Formation. 554-558 - Bradley L. Whitehall, Stephen C. Y. Lu:

A Study of How Domain Knowledge Improves Knowledge-Based Learning Systems. 559-563 - Edward J. Wisniewski, Douglas L. Medin

:
Is it a Pocket or a Purse? Tighly Coupled Theory and Data Driven Learing. 564-568 - Jungsoon P. Yoo, Douglas H. Fisher:

Identifying Cost Effective Boundaries of Operationality. 569-573
Machine Learning in Engineering Automation
- Steve A. Chien, Bradley L. Whitehall, Thomas G. Dietterich, Richard J. Doyle, Brian Falkenhainer, James Garrett, Stephen C. Y. Lu:

Machine Learning in Engineering Automation. 577-580 - Leonid V. Belyaev, Loretta P. Falcone:

Noise-Resistant Classification. ML 1991: 581-585 - Scott W. Bennett, Gerald DeJong:

Comparing Stochastic Planning to the Acquisition of Increasingly Permissive Plans. 586-590 - Gautam Biswas, Jerry B. Weinberg, Qian Yang, Glenn R. Koller:

Conceptual Clustering and Exploratory Data Analysis. 591-595 - Jason Catlett:

Megainduction: A Test Flight. 596-599 - Giuseppe Cerbone, Thomas G. Dietterich:

Knowledge Compilation to Speed Up Numerical Optimization. 600-604 - Ashok K. Goel:

Model Revision: A Theory of Incremental Model Learning. 605-609 - Jürgen Herrmann:

Learning Analytical Knowledge About VLSI-Design from Observation. 610-614 - Carl Myers Kadie:

Continous Conceptual Set Covering: Learning Robot Operators From Examples. 615-619 - Paul O'Rorke, Steven Morris, Michael Amirfathi, William E. Bond, Daniel C. St. Clair:

Machine Learning for Nondestructive Evaluation. 620-624 - Peter Pachowicz, Jerzy W. Bala:

Improving Recognition Effectiveness of Noisy Texture Concepts. 625-629 - R. Bharat Rao, Stephen C. Y. Lu, Robert E. Stepp:

Knowledge-Based Equation Discovery in Engineering Domains. 630-634 - Yoram Reich

:
Design Integrated Learning Systems for Engineering Design. 635-639 - Jeffrey C. Schlimmer:

Database Consistency via Inductive Learning. 640-644 - David K. Tcheng, Bruce L. Lambert, Stephen C. Y. Lu, Larry A. Rendell:

AIMS: An Adaptive Interactive Modeling System for Supporting Engineering Decision Making. 645-649 - Larry Watanabe, Sudhakar Yerramareddy:

Decision Tree Induction of 3-D Manufacturing Features. 650-654
Addendum
- Mario Martín, Ramon Sangüesa, Ulises Cortés:

Knowledge Acquisition Combining Analytical and Empirrcal Techniques. 657-661

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














