


Остановите войну!
for scientists:


default search action
Michael I. Jordan
Person information

- affiliation: University of California, Berkeley, Department of Electrical Engineering and Computer Science
- affiliation: University of California, Berkeley, Department of Statistics
- affiliation: Massachusetts Institute of Technology, Center for Biological and Computational Learning
- award (2009): ACM - AAAI Allen Newell Award
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j121]Meena Jagadeesan
, Alexander Wei
, Yixin Wang
, Michael I. Jordan
, Jacob Steinhardt
:
Learning Equilibria in Matching Markets with Bandit Feedback. J. ACM 70(3): 19:1-19:46 (2023) - [j120]Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopically Rational Followers? J. Mach. Learn. Res. 24: 35:1-35:52 (2023) - [j119]Michael I. Jordan, Tianyi Lin, Manolis Zampetakis:
First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems. J. Mach. Learn. Res. 24: 38:1-38:46 (2023) - [j118]Kirthevasan Kandasamy, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica:
VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit Feedback. J. Mach. Learn. Res. 24: 53:1-53:45 (2023) - [j117]Chi Jin
, Zhuoran Yang
, Zhaoran Wang
, Michael I. Jordan
:
Provably Efficient Reinforcement Learning with Linear Function Approximation. Math. Oper. Res. 48(3): 1496-1521 (2023) - [c387]Meena Jagadeesan, Michael I. Jordan, Nika Haghtalab:
Competition, Alignment, and Equilibria in Digital Marketplaces. AAAI 2023: 5689-5696 - [c386]Ruitu Xu, Yifei Min, Tianhao Wang, Michael I. Jordan, Zhaoran Wang, Zhuoran Yang:
Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models via Reinforcement Learning. AISTATS 2023: 375-407 - [c385]Xiang Li, Wenhao Yang, Jiadong Liang, Zhihua Zhang, Michael I. Jordan:
A Statistical Analysis of Polyak-Ruppert Averaged Q-Learning. AISTATS 2023: 2207-2261 - [c384]Banghua Zhu, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, Michael I. Jordan:
Byzantine-Robust Federated Learning with Optimal Statistical Rates. AISTATS 2023: 3151-3178 - [c383]Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
An Instance-Dependent Analysis for the Cooperative Multi-Player Multi-Armed Bandit. ALT 2023: 1166-1215 - [c382]Michael I. Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, Manolis Zampetakis:
Deterministic Nonsmooth Nonconvex Optimization. COLT 2023: 4570-4597 - [c381]Anastasios N. Angelopoulos, Karl Krauth, Stephen Bates, Yixin Wang, Michael I. Jordan:
Recommendation Systems with Distribution-Free Reliability Guarantees. COPA 2023: 175-193 - [c380]Ruili Feng, Kecheng Zheng, Kai Zhu, Yujun Shen, Jian Zhao, Yukun Huang, Deli Zhao, Jingren Zhou, Michael I. Jordan, Zheng-Jun Zha:
Neural Dependencies Emerging from Learning Massive Categories. CVPR 2023: 11711-11720 - [c379]Zixiang Chen, Chris Junchi Li, Huizhuo Yuan, Quanquan Gu, Michael I. Jordan:
A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning. ICLR 2023 - [c378]Jiri Hron, Karl Krauth, Michael I. Jordan, Niki Kilbertus, Sarah Dean:
Modeling content creator incentives on algorithm-curated platforms. ICLR 2023 - [c377]Tong Yang, Michael I. Jordan, Tatjana Chavdarova:
Solving Constrained Variational Inequalities via a First-order Interior Point-based Method. ICLR 2023 - [c376]Chris Junchi Li, Huizhuo Yuan, Gauthier Gidel, Quanquan Gu, Michael I. Jordan:
Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization. ICML 2023: 20351-20383 - [c375]Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael I. Jordan, Ramesh Raskar:
Federated Conformal Predictors for Distributed Uncertainty Quantification. ICML 2023: 22942-22964 - [c374]Geng Zhao, Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Online Learning in Stackelberg Games with an Omniscient Follower. ICML 2023: 42304-42316 - [c373]Banghua Zhu, Michael I. Jordan, Jiantao Jiao:
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons. ICML 2023: 43037-43067 - [c372]Zhiwei (Tony) Qin
, Rui Song
, Jieping Ye
, Hongtu Zhu
, Michael I. Jordan
:
KDD-2023 Workshop on Decision Intelligence and Analytics for Online Marketplaces. KDD 2023: 5878-5879 - [c371]Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo, Benjamin Hindman, Joseph Gonzalez, Michael I. Jordan, Ion Stoica:
Cilantro: Performance-Aware Resource Allocation for General Objectives via Online Feedback. OSDI 2023: 623-643 - [c370]Banghua Zhu
, Stephen Bates
, Zhuoran Yang
, Yixin Wang
, Jiantao Jiao
, Michael I. Jordan
:
The Sample Complexity of Online Contract Design. EC 2023: 1188 - [c369]Chris Junchi Li, Michael I. Jordan:
Nonconvex stochastic scaled gradient descent and generalized eigenvector problems. UAI 2023: 1230-1240 - [i321]Anastasios N. Angelopoulos
, Stephen Bates, Clara Fannjiang, Michael I. Jordan, Tijana Zrnic:
Prediction-Powered Inference. CoRR abs/2301.09633 (2023) - [i320]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons. CoRR abs/2301.11270 (2023) - [i319]Geng Zhao, Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Online Learning in Stackelberg Games with an Omniscient Follower. CoRR abs/2301.11518 (2023) - [i318]Hengrui Cai, Yixin Wang, Michael I. Jordan, Rui Song:
On Learning Necessary and Sufficient Causal Graphs. CoRR abs/2301.12389 (2023) - [i317]Michael Muehlebach, Michael I. Jordan:
Accelerated First-Order Optimization under Nonlinear Constraints. CoRR abs/2302.00316 (2023) - [i316]Michael I. Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, Manolis Zampetakis:
Deterministic Nonsmooth Nonconvex Optimization. CoRR abs/2302.08300 (2023) - [i315]Nika Haghtalab, Michael I. Jordan, Eric Zhao:
A Unifying Perspective on Multi-Calibration: Unleashing Game Dynamics for Multi-Objective Learning. CoRR abs/2302.10863 (2023) - [i314]Ruitu Xu, Yifei Min, Tianhao Wang, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models with Reinforcement Learning. CoRR abs/2303.04833 (2023) - [i313]Banghua Zhu, Sai Praneeth Karimireddy, Jiantao Jiao, Michael I. Jordan:
Online Learning in a Creator Economy. CoRR abs/2305.11381 (2023) - [i312]Serena Lutong Wang, Stephen Bates, P. M. Aronow, Michael I. Jordan:
Operationalizing Counterfactual Metrics: Incentives, Ranking, and Information Asymmetry. CoRR abs/2305.14595 (2023) - [i311]Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael I. Jordan, Ramesh Raskar:
Federated Conformal Predictors for Distributed Uncertainty Quantification. CoRR abs/2305.17564 (2023) - [i310]Banghua Zhu, Mingyu Ding, Philip L. Jacobson, Ming Wu, Wei Zhan, Michael I. Jordan, Jiantao Jiao:
Doubly Robust Self-Training. CoRR abs/2306.00265 (2023) - [i309]Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark W. Barrett, Michael I. Jordan, Jiantao Jiao:
On Optimal Caching and Model Multiplexing for Large Model Inference. CoRR abs/2306.02003 (2023) - [i308]Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I. Jordan, Jiantao Jiao:
Fine-Tuning Language Models with Advantage-Induced Policy Alignment. CoRR abs/2306.02231 (2023) - [i307]Baihe Huang, Sai Praneeth Karimireddy, Michael I. Jordan:
Evaluating and Incentivizing Diverse Data Contributions in Collaborative Learning. CoRR abs/2306.05592 (2023) - [i306]Xinyan Hu, Meena Jagadeesan, Michael I. Jordan, Jacob Steinhardt:
Incentivizing High-Quality Content in Online Recommender Systems. CoRR abs/2306.07479 (2023) - [i305]Mariel A. Werner, Lie He, Sai Praneeth Karimireddy, Michael I. Jordan, Martin Jaggi:
Provably Personalized and Robust Federated Learning. CoRR abs/2306.08393 (2023) - [i304]Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani:
Class-Conditional Conformal Prediction With Many Classes. CoRR abs/2306.09335 (2023) - [i303]Meena Jagadeesan, Michael I. Jordan, Jacob Steinhardt, Nika Haghtalab:
Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition. CoRR abs/2306.14670 (2023) - [i302]Yang Cai
, Michael I. Jordan, Tianyi Lin, Argyris Oikonomou, Emmanouil-Vasileios Vlatakis-Gkaragkounis:
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds. CoRR abs/2306.16617 (2023) - [i301]Haikuo Yang, Luo Luo, Chris Junchi Li, Michael I. Jordan:
Accelerating Inexact HyperGradient Descent for Bilevel Optimization. CoRR abs/2307.00126 (2023) - [i300]Stephen Bates, Michael I. Jordan, Michael Sklar, Jake A. Soloff:
Incentive-Theoretic Bayesian Inference for Collaborative Science. CoRR abs/2307.03748 (2023) - [i299]Yaodong Yu, Sai Praneeth Karimireddy, Yi Ma, Michael I. Jordan:
Scaff-PD: Communication Efficient Fair and Robust Federated Learning. CoRR abs/2307.13381 (2023) - [i298]Nivasini Ananthakrishnan, Stephen Bates, Michael I. Jordan, Nika Haghtalab:
Delegating Data Collection in Decentralized Machine Learning. CoRR abs/2309.01837 (2023) - [i297]Neha S. Wadia, Yatin Dandi, Michael I. Jordan:
A Gentle Introduction to Gradient-Based Optimization and Variational Inequalities for Machine Learning. CoRR abs/2309.04877 (2023) - [i296]Jordan Lekeufack, Anastasios N. Angelopoulos, Andrea Bajcsy, Michael I. Jordan, Jitendra Malik:
Conformal Decision Theory: Safe Autonomous Decisions from Imperfect Predictions. CoRR abs/2310.05921 (2023) - [i295]Michael I. Jordan, Tianyi Lin, Zhengyuan Zhou:
Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback. CoRR abs/2310.14085 (2023) - [i294]Tianyi Lin, Marco Cuturi, Michael I. Jordan:
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport. CoRR abs/2310.14087 (2023) - [i293]Alireza Fallah, Michael I. Jordan:
Contract Design With Safety Inspections. CoRR abs/2311.02537 (2023) - [i292]Francisca Vasconcelos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, Georgios Piliouras, Michael I. Jordan:
A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games. CoRR abs/2311.10859 (2023) - [i291]Eugene Berta, Francis R. Bach, Michael I. Jordan:
Classifier Calibration with ROC-Regularized Isotonic Regression. CoRR abs/2311.12436 (2023) - 2022
- [j116]Horia Mania, Michael I. Jordan, Benjamin Recht:
Active Learning for Nonlinear System Identification with Guarantees. J. Mach. Learn. Res. 23: 32:1-32:30 (2022) - [j115]Tianyi Lin, Nhat Ho, Marco Cuturi, Michael I. Jordan:
On the Complexity of Approximating Multimarginal Optimal Transport. J. Mach. Learn. Res. 23: 65:1-65:43 (2022) - [j114]Tianyi Lin, Nhat Ho, Michael I. Jordan:
On the Efficiency of Entropic Regularized Algorithms for Optimal Transport. J. Mach. Learn. Res. 23: 137:1-137:42 (2022) - [j113]Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I. Jordan, Mingsheng Long:
Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs. J. Mach. Learn. Res. 23: 209:1-209:47 (2022) - [j112]Michael Muehlebach, Michael I. Jordan:
On Constraints in First-Order Optimization: A View from Non-Smooth Dynamical Systems. J. Mach. Learn. Res. 23: 256:1-256:47 (2022) - [j111]Nhat Ho, Chiao-Yu Yang, Michael I. Jordan:
Convergence Rates for Gaussian Mixtures of Experts. J. Mach. Learn. Res. 23: 323:1-323:81 (2022) - [j110]Adelson Chua
, Michael I. Jordan
, Rikky Muller
:
SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection Classifier. IEEE J. Solid State Circuits 57(8): 2532-2544 (2022) - [j109]Bin Shi
, Simon S. Du, Michael I. Jordan, Weijie J. Su:
Understanding the acceleration phenomenon via high-resolution differential equations. Math. Program. 195(1): 79-148 (2022) - [j108]Tianyi Lin
, Michael I. Jordan:
A control-theoretic perspective on optimal high-order optimization. Math. Program. 195(1): 929-975 (2022) - [j107]Zhiwei (Tony) Qin, Liangjie Hong, Rui Song, Hongtu Zhu, Mohammed Korayem, Haiyan Luo, Michael I. Jordan:
KDD 2022 Workshop on Decision Intelligence and Analytics for Online Marketplaces: Jobs, Ridesharing, Retail, and Beyond. SIGKDD Explor. 24(2): 78-80 (2022) - [j106]Samuel Horváth, Lihua Lei, Peter Richtárik
, Michael I. Jordan:
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization. SIAM J. Math. Data Sci. 4(2): 634-648 (2022) - [j105]Wenshuo Guo, Serena Lutong Wang, Peng Ding, Yixin Wang, Michael I. Jordan:
Multi-Source Causal Inference Using Control Variates under Outcome Selection Bias. Trans. Mach. Learn. Res. 2022 (2022) - [c368]Nhat Ho, Tianyi Lin, Michael I. Jordan:
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms. AISTATS 2022: 896-921 - [c367]Yaodong Yu, Tianyi Lin, Eric V. Mazumdar, Michael I. Jordan:
Fast Distributionally Robust Learning with Variance-Reduced Min-Max Optimization. AISTATS 2022: 1219-1250 - [c366]Wenshuo Guo, Kirthevasan Kandasamy, Joseph Gonzalez, Michael I. Jordan, Ion Stoica:
Learning Competitive Equilibria in Exchange Economies with Bandit Feedback. AISTATS 2022: 6200-6224 - [c365]Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas Le Roux, Michael I. Jordan:
On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging. AISTATS 2022: 9793-9826 - [c364]Wenshuo Guo, Mingzhang Yin, Yixin Wang, Michael I. Jordan:
Partial Identification with Noisy Covariates: A Robust Optimization Approach. CLeaR 2022: 318-335 - [c363]Yeshwanth Cherapanamjeri, Nilesh Tripuraneni, Peter L. Bartlett, Michael I. Jordan:
Optimal Mean Estimation without a Variance. COLT 2022: 356-357 - [c362]Chris Junchi Li, Wenlong Mou, Martin J. Wainwright, Michael I. Jordan:
ROOT-SGD: Sharp Nonasymptotics and Asymptotic Efficiency in a Single Algorithm. COLT 2022: 909-981 - [c361]Anastasios N. Angelopoulos, Amit Pal Singh Kohli, Stephen Bates, Michael I. Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, Yaniv Romano:
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging. ICML 2022: 717-730 - [c360]Wenshuo Guo, Michael I. Jordan, Ellen Vitercik:
No-Regret Learning in Partially-Informed Auctions. ICML 2022: 8039-8055 - [c359]Tianyi Lin, Aldo Pacchiano, Yaodong Yu, Michael I. Jordan:
Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback. ICML 2022: 13441-13467 - [c358]Zhihan Liu, Miao Lu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy. ICML 2022: 13870-13911 - [c357]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Robust Estimation for Non-parametric Families via Generative Adversarial Networks. ISIT 2022: 1100-1105 - [c356]Zhiwei (Tony) Qin, Liangjie Hong, Rui Song, Hongtu Zhu, Mohammed Korayem, Haiyan Luo, Michael I. Jordan:
Decision Intelligence and Analytics for Online Marketplaces: Jobs, Ridesharing, Retail and Beyond. KDD 2022: 4898-4899 - [c355]Jian Zhang, Jian Tang, Yiran Chen, Jie Liu, Jieping Ye, Marilyn Wolf, Vijaykrishnan Narayanan, Mani B. Srivastava, Michael I. Jordan, Victor Bahl:
The 5th Artificial Intelligence of Things (AIoT) Workshop. KDD 2022: 4912-4913 - [c354]Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael I. Jordan, Zheng-Jun Zha:
Rank Diminishing in Deep Neural Networks. NeurIPS 2022 - [c353]Wenshuo Guo, Michael I. Jordan, Angela Zhou:
Off-Policy Evaluation with Policy-Dependent Optimization Response. NeurIPS 2022 - [c352]Nika Haghtalab, Michael I. Jordan, Eric Zhao:
On-Demand Sampling: Learning Optimally from Multiple Distributions. NeurIPS 2022 - [c351]Michael I. Jordan, Tianyi Lin, Emmanouil-Vasileios Vlatakis-Gkaragkounis:
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces. NeurIPS 2022 - [c350]Michael I. Jordan, Yixin Wang, Angela Zhou:
Empirical Gateaux Derivatives for Causal Inference. NeurIPS 2022 - [c349]Chris Junchi Li, Dongruo Zhou, Quanquan Gu, Michael I. Jordan:
Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium. NeurIPS 2022 - [c348]Tianyi Lin, Zeyu Zheng, Michael I. Jordan:
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization. NeurIPS 2022 - [c347]Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets. NeurIPS 2022 - [c346]Yaodong Yu, Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, Michael I. Jordan:
TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels. NeurIPS 2022 - [c345]Yaodong Yu, Stephen Bates, Yi Ma, Michael I. Jordan:
Robust Calibration with Multi-domain Temperature Scaling. NeurIPS 2022 - [c344]Elior Rahmani, Michael I. Jordan, Nir Yosef:
Identifying Systematic Variation at the Single-Cell Level by Leveraging Low-Resolution Population-Level Data. RECOMB 2022: 371 - [c343]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. EC 2022: 471-472 - [i290]Wenlong Mou, Koulik Khamaru, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
Optimal variance-reduced stochastic approximation in Banach spaces. CoRR abs/2201.08518 (2022) - [i289]Koulik Khamaru, Eric Xia, Martin J. Wainwright, Michael I. Jordan:
Instance-Dependent Confidence and Early Stopping for Reinforcement Learning. CoRR abs/2201.08536 (2022) - [i288]Mariel A. Werner, Anastasios Angelopoulos, Stephen Bates, Michael I. Jordan:
Online Active Learning with Dynamic Marginal Gain Thresholding. CoRR abs/2201.10547 (2022) - [i287]Elynn Y. Chen, Rui Song, Michael I. Jordan:
Reinforcement Learning with Heterogeneous Data: Estimation and Inference. CoRR abs/2202.00088 (2022) - [i286]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Robust Estimation for Nonparametric Families via Generative Adversarial Networks. CoRR abs/2202.01269 (2022) - [i285]Clara Fannjiang, Stephen Bates, Anastasios N. Angelopoulos, Jennifer Listgarten, Michael I. Jordan:
Conformal prediction for the design problem. CoRR abs/2202.03613 (2022) - [i284]Elynn Y. Chen, Michael I. Jordan, Sai Li:
Transferred Q-learning. CoRR abs/2202.04709 (2022) - [i283]Anastasios N. Angelopoulos, Amit P. S. Kohli, Stephen Bates, Michael I. Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, Yaniv Romano:
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging. CoRR abs/2202.05265 (2022) - [i282]Matteo Pagliardini, Gilberto Manunza, Martin Jaggi, Michael I. Jordan, Tatjana Chavdarova:
Improving Generalization via Uncertainty Driven Perturbations. CoRR abs/2202.05737 (2022) - [i281]Wenshuo Guo, Michael I. Jordan, Ellen Vitercik:
No-Regret Learning in Partially-Informed Auctions. CoRR abs/2202.10606 (2022) - [i280]Wenshuo Guo, Mingzhang Yin, Yixin Wang, Michael I. Jordan:
Partial Identification with Noisy Covariates: A Robust Optimization Approach. CoRR abs/2202.10665 (2022) - [i279]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. CoRR abs/2202.10678 (2022) - [i278]Boxiang Lyu, Qinglin Meng, Shuang Qiu, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan:
Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement Learning Approach. CoRR abs/2202.12797 (2022) - [i277]Wenshuo Guo, Michael I. Jordan, Angela Zhou:
Off-Policy Evaluation with Policy-Dependent Optimization Response. CoRR abs/2202.12958 (2022) - [i276]Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets. CoRR abs/2203.03684 (2022) - [i275]Alessandro Barp, Lancelot Da Costa, Guilherme França, Karl J. Friston, Mark A. Girolami, Michael I. Jordan, Grigorios A. Pavliotis
:
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents. CoRR abs/2203.10592 (2022) - [i274]Michael I. Jordan, Tianyi Lin, Manolis Zampetakis:
First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems. CoRR abs/2204.03132 (2022) - [i273]Tianyi Lin, Michael I. Jordan:
Perseus: A Simple High-Order Regularization Method for Variational Inequalities. CoRR abs/2205.03202 (2022) - [i272]Stephen Bates, Michael I. Jordan, Michael Sklar, Jake A. Soloff:
Principal-Agent Hypothesis Testing. CoRR abs/2205.06812 (2022) - [i271]Sarah E. Chasins, Alvin Cheung
, Natacha Crooks, Ali Ghodsi, Ken Goldberg
, Joseph E. Gonzalez
, Joseph M. Hellerstein, Michael I. Jordan, Anthony D. Joseph, Michael W. Mahoney, Aditya G. Parameswaran
, David A. Patterson, Raluca Ada Popa, Koushik Sen, Scott Shenker, Dawn Song, Ion Stoica:
The Sky Above The Clouds. CoRR abs/2205.07147 (2022) - [i270]Tianyi Lin, Aldo Pacchiano, Yaodong Yu, Michael I. Jordan:
Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback. CoRR abs/2205.07217 (2022) - [i269]Banghua Zhu, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, Michael I. Jordan:
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees. CoRR abs/2205.11765 (2022) - [i268]Michael I. Jordan, Tianyi Lin, Emmanouil-Vasileios Vlatakis-Gkaragkounis:
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces. CoRR abs/2206.02041 (2022) - [i267]Yaodong Yu, Stephen Bates, Yi Ma, Michael I. Jordan:
Robust Calibration with Multi-domain Temperature Scaling. CoRR abs/2206.02757 (2022) - [i266]Tianyi Lin, Michael I. Jordan:
A Continuous-Time Perspective on Monotone Equation Problems. CoRR abs/2206.04770 (2022) - [i265]Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael I. Jordan, Zheng-Jun Zha:
Rank Diminishing in Deep Neural Networks. CoRR abs/2206.06072 (2022) - [i264]Simon S. Du, Gauthier Gidel, Michael I. Jordan, Chris Junchi Li:
Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization. CoRR abs/2206.08573 (2022) - [i263]