default search action
Amir Gholami
Amir Gholaminejad
Person information
- affiliation: University of California Berkeley, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j13]Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier M. Duarte, Philip C. Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bähr, Jürgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomás E. Müller-Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Dongning Guo, Kyle J. Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Shen Wang, Thomas K. Warburton:
Corrigendum: Applications and techniques for fast machine learning in science. Frontiers Big Data 6 (2024) - [j12]Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, Kurt Keutzer:
AI and Memory Wall. IEEE Micro 44(3): 33-39 (2024) - [j11]Arman Ahmed, Sagnik Basumallik, Amir Gholami, Sajan K. Sadanandan, Mohammad Hossein Namaki, Anurag K. Srivastava, Yinghui Wu:
Spatio-Temporal Deep Graph Network for Event Detection, Localization, and Classification in Cyber-Physical Electric Distribution System. IEEE Trans. Ind. Informatics 20(2): 2397-2407 (2024) - [j10]Amir Gholami, Ashutosh Tiwari, Chuan Qin, Sanjeev Pannala, Anurag Srivastava, Roshan Sharma, Shikhar Pandey, Farnoosh Rahmatian:
Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square. IEEE Trans. Ind. Informatics 20(5): 7513-7523 (2024) - [j9]Amir Gholami, Anurag Srivastava:
ORCA: Outage Root Cause Analysis in DER-Rich Power Distribution System Using Data Fusion, Hierarchical Clustering and FP-Growth Rule Mining. IEEE Trans. Smart Grid 15(1): 667-676 (2024) - [j8]Mehdi Ganjkhani, Amir Gholami, Jairo Giraldo, Anurag K. Srivastava, Masood Parvania:
Multi-Source Data Aggregation and Real-Time Anomaly Classification and Localization in Power Distribution Systems. IEEE Trans. Smart Grid 15(2): 2191-2202 (2024) - [c40]Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala Anumanchipalli, Michael W. Mahoney, Kurt Keutzer, Amir Gholami:
LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement. ACL (Findings) 2024: 6498-6526 - [c39]Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W. Mahoney, Kurt Keutzer:
SqueezeLLM: Dense-and-Sparse Quantization. ICML 2024 - [c38]Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, Amir Gholami:
An LLM Compiler for Parallel Function Calling. ICML 2024 - [c37]Tommaso Baldi, Javier Campos, Benjamin Hawks, Jennifer Ngadiuba, Nhan Tran, Daniel Diaz, Javier M. Duarte, Ryan Kastner, Andres Meza, Melissa Quinnan, Olivia Weng, Caleb Geniesse, Amir Gholami, Michael W. Mahoney, Vladimir Loncar, Philip C. Harris, Joshua Agar, Shuyu Qin:
Reliable edge machine learning hardware for scientific applications. VTS 2024: 1-5 - [i52]Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao, Kurt Keutzer, Amir Gholami:
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization. CoRR abs/2401.18079 (2024) - [i51]Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, Kurt Keutzer:
AI and Memory Wall. CoRR abs/2403.14123 (2024) - [i50]Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala Anumanchipalli, Michael W. Mahoney, Kurt Keutzer, Amir Gholami:
LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement. CoRR abs/2403.15042 (2024) - [i49]Tommaso Baldi, Javier Campos, Benjamin Hawks, Jennifer Ngadiuba, Nhan Tran, Daniel Diaz, Javier M. Duarte, Ryan Kastner, Andres Meza, Melissa Quinnan, Olivia Weng, Caleb Geniesse, Amir Gholami, Michael W. Mahoney, Vladimir Loncar, Philip C. Harris, Joshua Agar, Shuyu Qin:
Reliable edge machine learning hardware for scientific applications. CoRR abs/2406.19522 (2024) - [i48]Siddharth Jha, Lutfi Eren Erdogan, Sehoon Kim, Kurt Keutzer, Amir Gholami:
Characterizing Prompt Compression Methods for Long Context Inference. CoRR abs/2407.08892 (2024) - [i47]Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon, Coleman Hooper, Gopala Anumanchipalli, Kurt Keutzer, Amir Gholami:
TinyAgent: Function Calling at the Edge. CoRR abs/2409.00608 (2024) - [i46]Suhong Moon, Siddharth Jha, Lutfi Eren Erdogan, Sehoon Kim, Woosang Lim, Kurt Keutzer, Amir Gholami:
Efficient and Scalable Estimation of Tool Representations in Vector Space. CoRR abs/2409.02141 (2024) - 2023
- [c36]Shashank Subramanian, Robert M. Kirby, Michael W. Mahoney, Amir Gholami:
Adaptive Self-Supervision Algorithms for Physics-Informed Neural Networks. ECAI 2023: 2234-2241 - [c35]Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W. Mahoney, Amir Gholami, Kurt Keutzer:
Speculative Decoding with Big Little Decoder. NeurIPS 2023 - [c34]Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W. Mahoney, Amir Gholami:
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior. NeurIPS 2023 - [i45]Sehoon Kim, Karttikeya Mangalam, Jitendra Malik, Michael W. Mahoney, Amir Gholami, Kurt Keutzer:
Big Little Transformer Decoder. CoRR abs/2302.07863 (2023) - [i44]Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia Shao, Amir Gholami:
Full Stack Optimization of Transformer Inference: a Survey. CoRR abs/2302.14017 (2023) - [i43]Javier Campos, Zhen Dong, Javier M. Duarte, Amir Gholami, Michael W. Mahoney, Jovan Mitrevski, Nhan Tran:
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs and ASICs. CoRR abs/2304.06745 (2023) - [i42]Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W. Mahoney, Amir Gholami:
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior. CoRR abs/2306.00258 (2023) - [i41]Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W. Mahoney, Kurt Keutzer:
SqueezeLLM: Dense-and-Sparse Quantization. CoRR abs/2306.07629 (2023) - [i40]Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami, Yakun Sophia Shao:
SPEED: Speculative Pipelined Execution for Efficient Decoding. CoRR abs/2310.12072 (2023) - [i39]Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, Amir Gholami:
An LLM Compiler for Parallel Function Calling. CoRR abs/2312.04511 (2023) - 2022
- [j7]Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier M. Duarte, Philip C. Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bähr, Jürgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomás E. Müller-Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Dongning Guo, Kyle J. Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Shen Wang, Thomas K. Warburton:
Applications and Techniques for Fast Machine Learning in Science. Frontiers Big Data 5: 787421 (2022) - [j6]Neda Kaffash-Charandabi, Amir Gholami, Ali Abdollahzadeh Bina:
Road accident risk prediction using generalized regression neural network optimized with self-organizing map. Neural Comput. Appl. 34(11): 8511-8524 (2022) - [c33]Sehoon Kim, Amir Gholami, Zhewei Yao, Nicholas Lee, Patrick Wang, Aniruddha Nrusimha, Bohan Zhai, Tianren Gao, Michael W. Mahoney, Kurt Keutzer:
Integer-Only Zero-Shot Quantization for Efficient Speech Recognition. ICASSP 2022: 4288-4292 - [c32]Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, Kurt Keutzer:
Learned Token Pruning for Transformers. KDD 2022: 784-794 - [c31]Sehoon Kim, Amir Gholami, Albert E. Shaw, Nicholas Lee, Karttikeya Mangalam, Jitendra Malik, Michael W. Mahoney, Kurt Keutzer:
Squeezeformer: An Efficient Transformer for Automatic Speech Recognition. NeurIPS 2022 - [c30]Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, Amir Gholami:
A Fast Post-Training Pruning Framework for Transformers. NeurIPS 2022 - [c29]Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer:
Hessian-Aware Pruning and Optimal Neural Implant. WACV 2022: 3665-3676 - [i38]Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, Amir Gholami:
A Fast Post-Training Pruning Framework for Transformers. CoRR abs/2204.09656 (2022) - [i37]Sehoon Kim, Amir Gholami, Albert E. Shaw, Nicholas Lee, Karttikeya Mangalam, Jitendra Malik, Michael W. Mahoney, Kurt Keutzer:
Squeezeformer: An Efficient Transformer for Automatic Speech Recognition. CoRR abs/2206.00888 (2022) - [i36]Shashank Subramanian, Robert M. Kirby, Michael W. Mahoney, Amir Gholami:
Adaptive Self-supervision Algorithms for Physics-informed Neural Networks. CoRR abs/2207.04084 (2022) - 2021
- [c28]Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, Michael W. Mahoney:
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning. AAAI 2021: 10665-10673 - [c27]Amirkhosro Vosughi, Amir Gholami, Anurag K. Srivastava:
Denoising and Bad Data Detection in Distribution Phasor Measurements using Filtering, Clustering and Koopman Mode Analysis. IAS 2021: 1-8 - [c26]Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer:
I-BERT: Integer-only BERT Quantization. ICML 2021: 5506-5518 - [c25]Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael W. Mahoney, Kurt Keutzer:
HAWQ-V3: Dyadic Neural Network Quantization. ICML 2021: 11875-11886 - [c24]Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney:
Characterizing possible failure modes in physics-informed neural networks. NeurIPS 2021: 26548-26560 - [i35]Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer:
I-BERT: Integer-only BERT Quantization. CoRR abs/2101.01321 (2021) - [i34]Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, Michael W. Mahoney, Kurt Keutzer:
Hessian-Aware Pruning and Optimal Neural Implant. CoRR abs/2101.08940 (2021) - [i33]Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer:
A Survey of Quantization Methods for Efficient Neural Network Inference. CoRR abs/2103.13630 (2021) - [i32]Sehoon Kim, Amir Gholami, Zhewei Yao, Aniruddha Nrusimha, Bohan Zhai, Tianren Gao, Michael W. Mahoney, Kurt Keutzer:
Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech Recognition. CoRR abs/2103.16827 (2021) - [i31]Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Joseph Hassoun, Kurt Keutzer:
Learned Token Pruning for Transformers. CoRR abs/2107.00910 (2021) - [i30]Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney:
Characterizing possible failure modes in physics-informed neural networks. CoRR abs/2109.01050 (2021) - [i29]Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier M. Duarte, Philip C. Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bähr, Jürgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomás E. Müller-Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J. Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey D. Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric A. Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan S. Rankin, Simon Rothman, Ashish Sharma, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng:
Applications and Techniques for Fast Machine Learning in Science. CoRR abs/2110.13041 (2021) - 2020
- [c23]Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
Inefficiency of K-FAC for Large Batch Size Training. AAAI 2020: 5053-5060 - [c22]Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. AAAI 2020: 8815-8821 - [c21]Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
PyHessian: Neural Networks Through the Lens of the Hessian. IEEE BigData 2020: 581-590 - [c20]Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
ZeroQ: A Novel Zero Shot Quantization Framework. CVPR 2020: 13166-13175 - [c19]Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
PowerNorm: Rethinking Batch Normalization in Transformers. ICML 2020: 8741-8751 - [c18]Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, Joseph Gonzalez:
Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. MLSys 2020 - [c17]Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks. NeurIPS 2020 - [c16]Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami, Kurt Keutzer, Joseph E. Gonzalez, Kannan Ramchandran, Michael W. Mahoney:
Boundary thickness and robustness in learning models. NeurIPS 2020 - [i28]Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
ZeroQ: A Novel Zero Shot Quantization Framework. CoRR abs/2001.00281 (2020) - [i27]Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
Rethinking Batch Normalization in Transformers. CoRR abs/2003.07845 (2020) - [i26]Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, Michael W. Mahoney:
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning. CoRR abs/2006.00719 (2020) - [i25]Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami, Kurt Keutzer, Joseph E. Gonzalez, Kannan Ramchandran, Michael W. Mahoney:
Boundary thickness and robustness in learning models. CoRR abs/2007.05086 (2020) - [i24]Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael W. Mahoney, Kurt Keutzer:
HAWQV3: Dyadic Neural Network Quantization. CoRR abs/2011.10680 (2020)
2010 – 2019
- 2019
- [j5]Alon Amid, Kiseok Kwon, Amir Gholami, Bichen Wu, Krste Asanovic, Kurt Keutzer:
Co-design of deep neural nets and neural net accelerators for embedded vision applications. IBM J. Res. Dev. 63(6): 6:1-6:14 (2019) - [j4]Amir Gholami, Alireza Sahab, Abdolreza Tavakoli, Behnam Alizadeh:
A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems. Kybernetika 55(6): 1034-1049 (2019) - [j3]Andreas Mang, Amir Gholami, Christos Davatzikos, George Biros:
CLAIRE: A Distributed-Memory Solver for Constrained Large Deformation Diffeomorphic Image Registration. SIAM J. Sci. Comput. 41(5): C548-C584 (2019) - [j2]Sicheng Zhao, Amir Gholaminejad, Guiguang Ding, Yue Gao, Jungong Han, Kurt Keutzer:
Personalized Emotion Recognition by Personality-Aware High-Order Learning of Physiological Signals. ACM Trans. Multim. Comput. Commun. Appl. 15(1s): 14:1-14:18 (2019) - [c15]Zhewei Yao, Amir Gholami, Peng Xu, Kurt Keutzer, Michael W. Mahoney:
Trust Region Based Adversarial Attack on Neural Networks. CVPR 2019: 11350-11359 - [c14]Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-Precision. ICCV 2019: 293-302 - [c13]Amir Gholaminejad, Kurt Keutzer, George Biros:
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs. IJCAI 2019: 730-736 - [c12]Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E. Gonzalez, Kurt Keutzer, Michael W. Mahoney, George Biros:
ANODEV2: A Coupled Neural ODE Framework. NeurIPS 2019: 5152-5162 - [c11]Amir Gholami, Milad Moradi, Majid Majidi:
A Simulation Platform Design and Kinematics Analysis of MRL-HSL Humanoid Robot. RoboCup 2019: 387-396 - [c10]Hamed Mahmudi, Amir Gholami, Mohammad Hossein Delavaran, Soheil Khatibi, Saeid Bazargan, Milad Moradi, Bita Alaee, Arash Rahmani, Kazem Firouzmandi Bandpey, Peyman Fallahzadeh, Meisam Teimouri:
MRL Champion Team Paper in Humanoid TeenSize League of RoboCup 2019. RoboCup 2019: 553-564 - [i23]Amir Gholami, Kurt Keutzer, George Biros:
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs. CoRR abs/1902.10298 (2019) - [i22]Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
Inefficiency of K-FAC for Large Batch Size Training. CoRR abs/1903.06237 (2019) - [i21]Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision. CoRR abs/1905.03696 (2019) - [i20]Tianjun Zhang, Zhewei Yao, Amir Gholami, Kurt Keutzer, Joseph Gonzalez, George Biros, Michael W. Mahoney:
ANODEV2: A Coupled Neural ODE Evolution Framework. CoRR abs/1906.04596 (2019) - [i19]Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. CoRR abs/1909.05840 (2019) - [i18]Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, Joseph E. Gonzalez:
Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. CoRR abs/1910.02653 (2019) - [i17]Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, Kurt Keutzer:
HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks. CoRR abs/1911.03852 (2019) - [i16]Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
PyHessian: Neural Networks Through the Lens of the Hessian. CoRR abs/1912.07145 (2019) - 2018
- [c9]Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter H. Jin, Sicheng Zhao, Kurt Keutzer:
SqueezeNext: Hardware-Aware Neural Network Design. CVPR Workshops 2018: 1638-1647 - [c8]Bichen Wu, Alvin Wan, Xiangyu Yue, Peter H. Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer:
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions. CVPR 2018: 9127-9135 - [c7]Kiseok Kwon, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, Kurt Keutzer:
Co-design of deep neural nets and neural net accelerators for embedded vision applications. DAC 2018: 148:1-148:6 - [c6]Amir Gholami, Shashank Subramanian, Varun Shenoy, Naveen Himthani, Xiangyu Yue, Sicheng Zhao, Peter H. Jin, George Biros, Kurt Keutzer:
A Novel Domain Adaptation Framework for Medical Image Segmentation. BrainLes@MICCAI (2) 2018: 289-298 - [c5]Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, Michael W. Mahoney:
Hessian-based Analysis of Large Batch Training and Robustness to Adversaries. NeurIPS 2018: 4954-4964 - [c4]Amir Gholami, Ariful Azad, Peter H. Jin, Kurt Keutzer, Aydin Buluç:
Integrated Model, Batch, and Domain Parallelism in Training Neural Networks. SPAA 2018: 77-86 - [i15]Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, Michael W. Mahoney:
Hessian-based Analysis of Large Batch Training and Robustness to Adversaries. CoRR abs/1802.08241 (2018) - [i14]Andreas Mang, Amir Gholami, Christos Davatzikos, George Biros:
PDE-constrained optimization in medical image analysis. CoRR abs/1803.00058 (2018) - [i13]Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter H. Jin, Sicheng Zhao, Kurt Keutzer:
SqueezeNext: Hardware-Aware Neural Network Design. CoRR abs/1803.10615 (2018) - [i12]Kiseok Kwon, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, Kurt Keutzer:
Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded Vision Applications. CoRR abs/1804.10642 (2018) - [i11]Andreas Mang, Amir Gholami, Christos Davatzikos, George Biros:
CLAIRE: A distributed-memory solver for constrained large deformation diffeomorphic image registration. CoRR abs/1808.04487 (2018) - [i10]Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
Large batch size training of neural networks with adversarial training and second-order information. CoRR abs/1810.01021 (2018) - [i9]Amir Gholami, Shashank Subramanian, Varun Shenoy, Naveen Himthani, Xiangyu Yue, Sicheng Zhao, Peter H. Jin, George Biros, Kurt Keutzer:
A Novel Domain Adaptation Framework for Medical Image Segmentation. CoRR abs/1810.05732 (2018) - [i8]Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge, Michael W. Mahoney, Joseph Gonzalez:
On the Computational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent. CoRR abs/1811.12941 (2018) - [i7]Norman Mu, Zhewei Yao, Amir Gholami, Kurt Keutzer, Michael W. Mahoney:
Parameter Re-Initialization through Cyclical Batch Size Schedules. CoRR abs/1812.01216 (2018) - [i6]Zhewei Yao, Amir Gholami, Peng Xu, Kurt Keutzer, Michael W. Mahoney:
Trust Region Based Adversarial Attack on Neural Networks. CoRR abs/1812.06371 (2018) - 2017
- [c3]Amir Gholami, Andreas Mang, Klaudius Scheufele, Christos Davatzikos, Miriam Mehl, George Biros:
A framework for scalable biophysics-based image analysis. SC 2017: 19 - [i5]Bichen Wu, Alvin Wan, Xiangyu Yue, Peter H. Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer:
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions. CoRR abs/1711.08141 (2017) - [i4]Amir Gholami, Ariful Azad, Kurt Keutzer, Aydin Buluç:
Integrated Model and Data Parallelism in Training Neural Networks. CoRR abs/1712.04432 (2017) - 2016
- [j1]Amir Gholami, Dhairya Malhotra, Hari Sundar, George Biros:
FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube. SIAM J. Sci. Comput. 38(3) (2016) - [c2]Andreas Mang, Amir Gholami, George Biros:
Distributed-memory large deformation diffeomorphic 3D image registration. SC 2016: 842-853 - [i3]Andreas Mang, Amir Gholami, George Biros:
Distributed-memory large deformation diffeomorphic 3D image registration. CoRR abs/1608.03630 (2016) - 2015
- [i2]Amir Gholami, Judith Hill, Dhairya Malhotra, George Biros:
AccFFT: A library for distributed-memory FFT on CPU and GPU architectures. CoRR abs/1506.07933 (2015) - 2014
- [c1]Dhairya Malhotra, Amir Gholami, George Biros:
A Volume Integral Equation Stokes Solver for Problems with Variable Coefficients. SC 2014: 92-102 - [i1]Amir Gholami, Dhairya Malhotra, Hari Sundar, George Biros:
FFT, FMM, or MULTIGRID? A comparative study of state-of-the-art poisson solvers. CoRR abs/1408.6497 (2014)
Coauthor Index
[j12] [c40] [c39] [c38] [i52] [i51] [i50] [i48] [i47] [i46] [c35] [c34] [i45] [i44] [i42] [i41] [i40] [i39] [c33] [c32] [c31] [c30] [c29] [i38] [i37] [c28] [c26] [c25] [i35] [i34] [i33] [i32] [i31] [c23] [c22] [c21] [c20] [c19] [c18] [c17] [c16] [i28] [i27] [i26] [i25] [i24] [j5] [j2] [c15] [c14] [c13] [c12] [i23] [i22] [i21] [i20] [i19] [i18] [i17] [i16] [c9] [c8] [c7] [c6] [c5] [c4] [i15] [i13] [i12] [i10] [i9] [i7] [i6] [i5] [i4]