default search action
Simo Särkkä
Person information
- affiliation: Aalto University, Finland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j82]Nathanael Bosch, Adrien Corenflos, Fatemeh Yaghoobi, Filip Tronarp, Philipp Hennig, Simo Särkkä:
Parallel-in-Time Probabilistic Numerical ODE Solvers. J. Mach. Learn. Res. 25: 206:1-206:27 (2024) - [j81]Muhammad F. Emzir, Zheng Zhao, Lahouari Cheded, Simo Särkkä:
Gaussian-Based Parametric Bijections for Automatic Projection Filters. IEEE Trans. Autom. Control. 69(5): 3449-3456 (2024) - [j80]Tabish Badar, Simo Särkkä, Zheng Zhao, Arto Visala:
Rao-Blackwellized Particle Filter Using Noise Adaptive Kalman Filter for Fully Mixing State-Space Models. IEEE Trans. Aerosp. Electron. Syst. 60(5): 6972-6982 (2024) - [j79]Zaeed Khan, Matias Rusanen, Miika Arvonen, Timo Leppänen, Simo Särkkä:
Joint Use of a Low Thermal Resolution Thermal Camera and an RGB Camera for Respiration Measurement. IEEE Trans. Instrum. Meas. 73: 1-14 (2024) - [j78]Xiaofeng Ma, Simo Särkkä:
Spacing Vector and Varying Distance Constrained Positioning Using Dual Feet-Mounted IMUs. IEEE Trans. Instrum. Meas. 73: 1-11 (2024) - [c92]Kundan Kumar, Simo Särkkä:
Polynomial Chaos Expansion Based Rauch-Tung-Striebel Smoothers. FUSION 2024: 1-7 - [c91]Matti Raitoharju, Ángel F. García-Fernández, Simo Ali-Löytty, Simo Särkkä:
Stacked iterated posterior linearization filter. FUSION 2024: 1-8 - [c90]Christos Merkatas, Simo Särkkä:
A Gibbs Sampler for Bayesian Nonparametric State-Space Models. ICASSP 2024: 13236-13240 - [c89]Sahel Iqbal, Adrien Corenflos, Simo Särkkä, Hany Abdulsamad:
Nesting Particle Filters for Experimental Design in Dynamical Systems. ICML 2024 - [c88]Kundan Kumar, Muhammad Iqbal, Simo Särkkä:
Risk-Sensitive Filtering under False Data Injection Attacks. MFI 2024: 1-6 - [i58]Yvann Le Fay, Simo Särkkä, Adrien Corenflos:
Modelling pathwise uncertainty of Stochastic Differential Equations samplers via Probabilistic Numerics. CoRR abs/2401.03338 (2024) - [i57]Ahmad Farooq, Cristian A. Galvis-Florez, Simo Särkkä:
Quantum-Assisted Hilbert-Space Gaussian Process Regression. CoRR abs/2402.00544 (2024) - [i56]Sahel Iqbal, Adrien Corenflos, Simo Särkkä, Hany Abdulsamad:
Nesting Particle Filters for Experimental Design in Dynamical Systems. CoRR abs/2402.07868 (2024) - [i55]Adrien Corenflos, Zheng Zhao, Simo Särkkä, Jens Sjölund, Thomas B. Schön:
Conditioning diffusion models by explicit forward-backward bridging. CoRR abs/2405.13794 (2024) - [i54]Mahdi Nasiri, Sahel Iqbal, Simo Särkkä:
Physics-Informed Machine Learning for Grade Prediction in Froth Flotation. CoRR abs/2408.15267 (2024) - [i53]Sahel Iqbal, Hany Abdulsamad, Sara Pérez-Vieites, Simo Särkkä, Adrien Corenflos:
Recursive Nested Filtering for Efficient Amortized Bayesian Experimental Design. CoRR abs/2409.05354 (2024) - [i52]Casian Iacob, Hany Abdulsamad, Simo Särkkä:
A Parallel-in-Time Newton's Method for Nonlinear Model Predictive Control. CoRR abs/2409.20027 (2024) - 2023
- [j77]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Deep Learning Based Projection Domain Metal Segmentation for Metal Artifact Reduction in Cone Beam Computed Tomography. IEEE Access 11: 100371-100382 (2023) - [j76]William J. Wilkinson, Simo Särkkä, Arno Solin:
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees. J. Mach. Learn. Res. 24: 83:1-83:50 (2023) - [j75]Hao Dong, Xieyuanli Chen, Simo Särkkä, Cyrill Stachniss:
Online pole segmentation on range images for long-term LiDAR localization in urban environments. Robotics Auton. Syst. 159: 104283 (2023) - [j74]Muhammad F. Emzir, Zheng Zhao, Simo Särkkä:
Multidimensional projection filters via automatic differentiation and sparse-grid integration. Signal Process. 204: 108832 (2023) - [j73]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Dynamic Programming and Linear Quadratic Control. IEEE Trans. Autom. Control. 68(2): 851-866 (2023) - [j72]Syeda Sakira Hassan, Simo Särkkä:
Fourier-Hermite Dynamic Programming for Optimal Control. IEEE Trans. Autom. Control. 68(10): 6377-6384 (2023) - [j71]Toni Karvonen, Jon Cockayne, Filip Tronarp, Simo Särkkä:
A probabilistic Taylor expansion with Gaussian processes. Trans. Mach. Learn. Res. 2023 (2023) - [j70]Zheng Zhao, Simo Särkkä, Jens Sjölund, Thomas B. Schön:
Probabilistic Estimation of Instantaneous Frequencies of Chirp Signals. IEEE Trans. Signal Process. 71: 461-476 (2023) - [c87]Fatemeh Yaghoobi, Hany Abdulsamad, Simo Särkkä:
A Recursive Newton Method for Smoothing in Nonlinear State Space Models. EUSIPCO 2023: 1758-1762 - [c86]Simo Särkkä, Ángel F. García-Fernández:
On The Temporal Parallelisation of The Viterbi Algorithm. EUSIPCO 2023: 2018-2022 - [c85]Xiaofeng Ma, Simo Särkkä:
Indoor Positioning Methods Based on Dual Feet-Mounted IMUs With Distance Constraints. IPIN 2023: 1-6 - [c84]Arina Odnoblyudova, Caglar Hizli, St John, Andrea Cognolato, Anne Juuti, Simo Särkkä, Kirsi Pietiläinen, Pekka Marttinen:
Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics. ML4H@NeurIPS 2023: 428-444 - [c83]Ajinkya Gorad, Simo Särkkä:
Rao-Blackwellized Monte Carlo Data Association With Deep Metric For Object Tracking. MLSP 2023: 1-6 - [c82]Cristian A. Galvis-Florez, Daniel Reitzner, Simo Särkkä:
Single Qubit State Estimation on NISQ Devices with Limited Resources and SIC-POVMs. QCE 2023: 111-119 - [c81]Ajinkya Gorad, Sakira Hassan, Simo Särkkä:
Vessel Bearing Estimation Using Visible and Thermal Imaging. SCIA (2) 2023: 373-381 - [c80]Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela, Jara Uitto, Hossein Vahidi:
Fast Dynamic Programming in Trees in the MPC Model. SPAA 2023: 443-453 - [i51]Adrien Corenflos, Simo Särkkä:
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems. CoRR abs/2303.00301 (2023) - [i50]Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela, Jara Uitto, Hossein Vahidi:
Fast Dynamic Programming in Trees in the MPC Model. CoRR abs/2305.03693 (2023) - [i49]Fatemeh Yaghoobi, Hany Abdulsamad, Simo Särkkä:
A Recursive Newton Method for Smoothing in Nonlinear State Space Models. CoRR abs/2306.09148 (2023) - [i48]Nathanael Bosch, Adrien Corenflos, Fatemeh Yaghoobi, Filip Tronarp, Philipp Hennig, Simo Särkkä:
Parallel-in-Time Probabilistic Numerical ODE Solvers. CoRR abs/2310.01145 (2023) - [i47]Arina Odnoblyudova, Çaglar Hizli, St John, Andrea Cognolato, Anne Juuti, Simo Särkkä, Kirsi Pietiläinen, Pekka Marttinen:
Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics. CoRR abs/2311.03129 (2023) - [i46]Hany Abdulsamad, Sahel Iqbal, Adrien Corenflos, Simo Särkkä:
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing. CoRR abs/2312.14000 (2023) - 2022
- [j69]Joel Jaskari, Jaakko Sahlsten, Theodoros Damoulas, Jeremias Knoblauch, Simo Särkkä, Leo Kärkkäinen, Kustaa Hietala, Kimmo K. Kaski:
Uncertainty-Aware Deep Learning Methods for Robust Diabetic Retinopathy Classification. IEEE Access 10: 76669-76681 (2022) - [j68]Adrien Corenflos, Nicolas Chopin, Simo Särkkä:
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. J. Mach. Learn. Res. 23: 283:1-283:39 (2022) - [j67]Zheng Zhao, Simo Särkkä:
Non-Linear Gaussian Smoothing With Taylor Moment Expansion. IEEE Signal Process. Lett. 29: 80-84 (2022) - [j66]Rui Gao, Simo Särkkä, Rubén M. Clavería, Simon J. Godsill:
Autonomous Tracking and State Estimation With Generalized Group Lasso. IEEE Trans. Cybern. 52(11): 12056-12070 (2022) - [j65]Sarang Thombre, Zheng Zhao, Henrik Ramm-Schmidt, José M. Vallet Garcia, Tuomo Malkamäki, Sergey Nikolskiy, Toni Hammarberg, Hiski Nuortie, Mohammad Zahidul H. Bhuiyan, Simo Särkkä, Ville V. Lehtola:
Sensors and AI Techniques for Situational Awareness in Autonomous Ships: A Review. IEEE Trans. Intell. Transp. Syst. 23(1): 64-83 (2022) - [j64]Simo Särkkä, Lassi Roininen, Manon Kok, Roland Hostettler, Andreas Hauptmann:
Guest Editorial: MLSP 2020 Special Issue. J. Signal Process. Syst. 94(2): 131-132 (2022) - [c79]Adrien Corenflos, Zheng Zhao, Simo Särkkä:
Temporal Gaussian Process Regression in Logarithmic Time. FUSION 2022: 1-5 - [c78]Muhammad F. Emzir, Niki A. Loppi, Zheng Zhao, Syeda Sakira Hassan, Simo Särkkä:
Fast optimize-and-sample method for differentiable Galerkin approximations of multi-layered Gaussian process priors. FUSION 2022: 1-7 - [c77]Matti Raitoharju, Roland Hostettler, Simo Särkkä:
Posterior linearisation filter for non-linear state transformation noises. FUSION 2022: 1-6 - [c76]Filip Tronarp, Simo Särkkä:
Continuous-Discrete Filtering and Smoothing on Submanifolds of Euclidean Space. FUSION 2022: 1-8 - [i45]Joel Jaskari, Jaakko Sahlsten, Theodoros Damoulas, Jeremias Knoblauch, Simo Särkkä, Leo Kärkkäinen, Kustaa Hietala, Kimmo Kaski:
Uncertainty-aware deep learning methods for robust diabetic retinopathy classification. CoRR abs/2201.09042 (2022) - [i44]Adrien Corenflos, Nicolas Chopin, Simo Särkkä:
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. CoRR abs/2202.02264 (2022) - [i43]Sakira Hassan, Simo Särkkä:
Fourier-Hermite Dynamic Programming for Optimal Control. CoRR abs/2202.13453 (2022) - [i42]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel square-root statistical linear regression for inference in nonlinear state space models. CoRR abs/2207.00426 (2022) - [i41]Hao Dong, Xieyuanli Chen, Simo Särkkä, Cyrill Stachniss:
Online Pole Segmentation on Range Images for Long-term LiDAR Localization in Urban Environments. CoRR abs/2208.07364 (2022) - [i40]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Metal artifact correction in cone beam computed tomography using synthetic X-ray data. CoRR abs/2208.08288 (2022) - [i39]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control. CoRR abs/2212.11744 (2022) - 2021
- [j63]Toni Karvonen, Simo Särkkä, Ken'ichiro Tanaka:
Kernel-based interpolation at approximate Fekete points. Numer. Algorithms 87(1): 445-468 (2021) - [j62]Toni Karvonen, Simo Särkkä, Ken'ichiro Tanaka:
Correction to: Kernel-based interpolation at approximate Fekete points. Numer. Algorithms 87(1): 469-471 (2021) - [j61]Filip Tronarp, Simo Särkkä, Philipp Hennig:
Bayesian ODE solvers: the maximum a posteriori estimate. Stat. Comput. 31(3): 23 (2021) - [j60]Zheng Zhao, Muhammad F. Emzir, Simo Särkkä:
Deep state-space Gaussian processes. Stat. Comput. 31(6): 75 (2021) - [j59]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Bayesian Smoothers. IEEE Trans. Autom. Control. 66(1): 299-306 (2021) - [j58]Jakub Prüher, Toni Karvonen, Chris J. Oates, Ondrej Straka, Simo Särkkä:
Improved Calibration of Numerical Integration Error in Sigma-Point Filters. IEEE Trans. Autom. Control. 66(3): 1286-1292 (2021) - [j57]Zheng Zhao, Toni Karvonen, Roland Hostettler, Simo Särkkä:
Taylor Moment Expansion for Continuous-Discrete Gaussian Filtering. IEEE Trans. Autom. Control. 66(9): 4460-4467 (2021) - [j56]Syeda Sakira Hassan, Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Inference in Hidden Markov Models. IEEE Trans. Signal Process. 69: 4875-4887 (2021) - [c75]Leo McCormack, Archontis Politis, Simo Särkkä, Ville Pulkki:
Real-Time Tracking of Multiple Acoustical Sources Utilising Rao-Blackwellised Particle Filtering. EUSIPCO 2021: 206-210 - [c74]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel Iterated Extended and Sigma-Point Kalman Smoothers. ICASSP 2021: 5350-5354 - [c73]Matti Raitoharju, Henri Nurminen, Demet Cilden-Guler, Simo Särkkä:
Kalman filtering with empirical noise models. ICL-GNSS 2021: 1-7 - [c72]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Metal Artifact Reduction In Cone-Beam Extremity Images Using Gated Convolutions. ISBI 2021: 1087-1090 - [c71]Simo Särkkä, Christos Merkatas, Toni Karvonen:
Gaussian Approximations of SDES in Metropolis-Adjusted Langevin Algorithms. MLSP 2021: 1-6 - [i38]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel Iterated Extended and Sigma-point Kalman Smoothers. CoRR abs/2102.00514 (2021) - [i37]Toni Karvonen, Jon Cockayne, Filip Tronarp, Simo Särkkä:
A Probabilistic Taylor Expansion with Applications in Filtering and Differential Equations. CoRR abs/2102.00877 (2021) - [i36]Sakira Hassan, Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Inference in Hidden Markov Models. CoRR abs/2102.05743 (2021) - [i35]Adrien Corenflos, Zheng Zhao, Simo Särkkä:
Gaussian Process Regression in Logarithmic Time. CoRR abs/2102.09964 (2021) - [i34]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelisation of Dynamic Programming and Linear Quadratic Control. CoRR abs/2104.03186 (2021) - [i33]David Luengo, Luca Martino, Mónica F. Bugallo, Victor Elvira, Simo Särkkä:
A Survey of Monte Carlo Methods for Parameter Estimation. CoRR abs/2107.11820 (2021) - [i32]Zheng Zhao, Simo Särkkä:
Non-linear Gaussian smoothing with Taylor moment expansion. CoRR abs/2110.01396 (2021) - [i31]William J. Wilkinson, Simo Särkkä, Arno Solin:
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees. CoRR abs/2111.01721 (2021) - 2020
- [j55]Joel Jaskari, Janne Myllärinen, Markus Leskinen, Ali Bahrami Rad, Jaakko Hollmén, Sture Andersson, Simo Särkkä:
Machine Learning Methods for Neonatal Mortality and Morbidity Classification. IEEE Access 8: 123347-123358 (2020) - [j54]Toni Karvonen, Simo Särkkä:
Worst-case optimal approximation with increasingly flat Gaussian kernels. Adv. Comput. Math. 46(2): 21 (2020) - [j53]David Luengo, Luca Martino, Mónica F. Bugallo, Víctor Elvira, Simo Särkkä:
A survey of Monte Carlo methods for parameter estimation. EURASIP J. Adv. Signal Process. 2020(1): 25 (2020) - [j52]Toni Karvonen, George Wynne, Filip Tronarp, Chris J. Oates, Simo Särkkä:
Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian Process Approximation of Deterministic Functions. SIAM/ASA J. Uncertain. Quantification 8(3): 926-958 (2020) - [j51]Arno Solin, Simo Särkkä:
Hilbert space methods for reduced-rank Gaussian process regression. Stat. Comput. 30(2): 419-446 (2020) - [j50]Toni Karvonen, Silvère Bonnabel, Eric Moulines, Simo Särkkä:
On Stability of a Class of Filters for Nonlinear Stochastic Systems. SIAM J. Control. Optim. 58(4): 2023-2049 (2020) - [j49]Matti Raitoharju, Ángel F. García-Fernández, Roland Hostettler, Robert Piché, Simo Särkkä:
Gaussian mixture models for signal mapping and positioning. Signal Process. 168 (2020) - [j48]Roland Hostettler, Filip Tronarp, Ángel F. García-Fernández, Simo Särkkä:
Importance Densities for Particle Filtering Using Iterated Conditional Expectations. IEEE Signal Process. Lett. 27: 211-215 (2020) - [j47]Rui Gao, Filip Tronarp, Simo Särkkä:
Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes. IEEE Signal Process. Lett. 27: 1305-1309 (2020) - [j46]Hüseyin Yigitler, Ossi Kaltiokallio, Roland Hostettler, Alemayehu Solomon Abrar, Riku Jäntti, Neal Patwari, Simo Särkkä:
RSS Models for Respiration Rate Monitoring. IEEE Trans. Mob. Comput. 19(3): 680-696 (2020) - [j45]Zheng Zhao, Simo Särkkä, Ali Bahrami Rad:
Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection. J. Signal Process. Syst. 92(7): 621-636 (2020) - [c70]Janne Mustaniemi, Juho Kannala, Jiri Matas, Simo Särkkä, Janne Heikkilä:
LSD_2 - Joint Denoising and Deblurring of Short and Long Exposure Images with CNNs. BMVC 2020 - [c69]Salla Aario, Ajinkya Gorad, Miika Arvonen, Simo Särkkä:
Respiratory Pattern Recognition from Low-Resolution Thermal Imaging. ESANN 2020: 469-474 - [c68]Rui Gao, Simo Särkkä:
Augmented Sigma-Point Lagrangian Splitting Method for Sparse Nonlinear State Estimation. EUSIPCO 2020: 2090-2094 - [c67]Zheng Zhao, Filip Tronarp, Roland Hostettler, Simo Särkkä:
State-Space Gaussian Process for Drift Estimation in Stochastic Differential Equations. ICASSP 2020: 5295-5299 - [c66]Simo Särkkä, Lennart Svensson:
Levenberg-Marquardt and Line-Search Extended Kalman Smoothers. ICASSP 2020: 5875-5879 - [c65]Ajinkya Gorad, Zheng Zhao, Simo Särkkä:
Parameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters. MLSP 2020: 1-6 - [i30]Toni Karvonen, George Wynne, Filip Tronarp, Chris J. Oates, Simo Särkkä:
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. CoRR abs/2001.10965 (2020) - [i29]Jarkko Suuronen, Muhammad F. Emzir, Sari Lasanen, Simo Särkkä, Lassi Roininen:
Enhancing Industrial X-ray Tomography by Data-Centric Statistical Methods. CoRR abs/2003.03814 (2020) - [i28]Filip Tronarp, Simo Särkkä, Philipp Hennig:
Bayesian ODE Solvers: The Maximum A Posteriori Estimate. CoRR abs/2004.00623 (2020) - [i27]Rui Gao, Filip Tronarp, Simo Särkkä:
Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes. CoRR abs/2005.08275 (2020) - [i26]Zheng Zhao, Muhammad F. Emzir, Simo Särkkä:
Deep State-Space Gaussian Processes. CoRR abs/2008.04733 (2020)
2010 – 2019
- 2019
- [j44]Juha Sarmavuori, Simo Särkkä:
Numerical integration as a finite matrix approximation to multiplication operator. J. Comput. Appl. Math. 353: 283-291 (2019) - [j43]Michael Schober, Simo Särkkä, Philipp Hennig:
A probabilistic model for the numerical solution of initial value problems. Stat. Comput. 29(1): 99-122 (2019) - [j42]Toni Karvonen, Simo Särkkä, Chris J. Oates:
Symmetry exploits for Bayesian cubature methods. Stat. Comput. 29(6): 1231-1248 (2019) - [j41]Filip Tronarp, Hans Kersting, Simo Särkkä, Philipp Hennig:
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. Stat. Comput. 29(6): 1297-1315 (2019) - [j40]Toni Karvonen, Motonobu Kanagawa, Simo Särkkä:
On the positivity and magnitudes of Bayesian quadrature weights. Stat. Comput. 29(6): 1317-1333 (2019) - [j39]Filip Tronarp, Simo Särkkä:
Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems. Signal Process. 159: 1-12 (2019) - [j38]Filip Tronarp, Toni Karvonen, Simo Särkkä:
Student's $t$-Filters for Noise Scale Estimation. IEEE Signal Process. Lett. 26(2): 352-356 (2019) - [j37]Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Gaussian Process Classification Using Posterior Linearization. IEEE Signal Process. Lett. 26(5): 735-739 (2019) - [j36]Roland Hostettler, Simo Särkkä:
Rao-Blackwellized Gaussian Smoothing. IEEE Trans. Autom. Control. 64(1): 305-312 (2019) - [j35]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. IEEE Trans. Autom. Control. 64(7): 2953-2960 (2019) - [j34]Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Gaussian Target Tracking With Direction-of-Arrival von Mises-Fisher Measurements. IEEE Trans. Signal Process. 67(11): 2960-2972 (2019) - [j33]Rui Gao, Filip Tronarp, Simo Särkkä:
Iterated Extended Kalman Smoother-Based Variable Splitting for L1-Regularized State Estimation. IEEE Trans. Signal Process. 67(19): 5078-5092 (2019) - [j32]Ángel F. García-Fernández, Roland Hostettler, Simo Särkkä:
Rao-Blackwellized Posterior Linearization Backward SLAM. IEEE Trans. Veh. Technol. 68(5): 4734-4747 (2019) - [c64]Roland Hostettler, Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Joint Calibration of Inertial Sensors and Magnetometers using von Mises-Fisher Filtering and Expectation Maximization. FUSION 2019: 1-8 - [c63]Matti Raitoharju, Ángel F. García-Fernández, Simo Särkkä:
Partitioned Update Binomial Gaussian Mixture Filter. FUSION 2019: 1-8 - [c62]Filip Tronarp, Simo Särkkä:
Updates in Bayesian Filtering by Continuous Projections on a Manifold of Densities. ICASSP 2019: 5032-5036 - [c61]Muhammad F. Emzir, Sari Lasanen, Zenith Purisha, Simo Särkkä:
Hilbert-Space Reduced-Rank Methods For Deep Gaussian Processes. MLSP 2019: 1-6 - [c60]Rui Gao, Filip Tronarp, Zheng Zhao, Simo Särkkä:
Regularized State Estimation And Parameter Learning Via Augmented Lagrangian Kalman Smoother Method. MLSP 2019: 1-6 - [c59]Roland Hostettler, Simo Särkkä:
Rejection-Sampling-Based Ancestor Sampling for Particle Gibbs. MLSP 2019: 1-6 - [c58]Toni Karvonen, Filip Tronarp, Simo Särkkä:
Asymptotics of Maximum Likelihood Parameter Estimates For Gaussian Processes: The Ornstein-Uhlenbeck Prior. MLSP 2019: 1-6 - [c57]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Gyroscope-Aided Motion Deblurring with Deep Networks. WACV 2019: 1914-1922 - [i25]Morteza Zabihi, Ali Bahrami Rad, Serkan Kiranyaz, Simo Särkkä, Moncef Gabbouj:
1D Convolutional Neural Network Models for Sleep Arousal Detection. CoRR abs/1903.01552 (2019) - [i24]Rui Gao, Filip Tronarp, Simo Särkkä:
Iterated Extended Kalman Smoother-based Variable Splitting for L1-Regularized State Estimation. CoRR abs/1903.08605 (2019) - [i23]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Bayesian Filters and Smoothers. CoRR abs/1905.13002 (2019) - [i22]Toni Karvonen, Simo Särkkä:
Worst-case optimal approximation with increasingly flat Gaussian kernels. CoRR abs/1906.02096 (2019) - [i21]Simo Särkkä:
The Use of Gaussian Processes in System Identification. CoRR abs/1907.06066 (2019) - [i20]Ali Bahrami Rad, Morteza Zabihi, Zheng Zhao, Moncef Gabbouj, Aggelos K. Katsaggelos, Simo Särkkä:
Automated Polysomnography Analysis for Detection of Non-Apneic and Non-Hypopneic Arousals using Feature Engineering and a Bidirectional LSTM Network. CoRR abs/1909.02971 (2019) - [i19]Toni Karvonen, Simo Särkkä, Ken'ichiro Tanaka:
Kernel-based interpolation at approximate Fekete points. CoRR abs/1912.07316 (2019) - [i18]Juha Sarmavuori, Simo Särkkä:
On the Convergence of Numerical Integration as a Finite Matrix Approximation to Multiplication Operator. CoRR abs/1912.07325 (2019) - 2018
- [j31]Olli-Pekka Rinta-Koski, Simo Särkkä, Jaakko Hollmén, Markus Leskinen, Sture Andersson:
Gaussian process classification for prediction of in-hospital mortality among preterm infants. Neurocomputing 298: 134-141 (2018) - [j30]Toni Karvonen, Simo Särkkä:
Fully Symmetric Kernel Quadrature. SIAM J. Sci. Comput. 40(2) (2018) - [j29]Filip Tronarp, Ángel F. García-Fernández, Simo Särkkä:
Iterative Filtering and Smoothing in Nonlinear and Non-Gaussian Systems Using Conditional Moments. IEEE Signal Process. Lett. 25(3): 408-412 (2018) - [j28]Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schön, Simo Särkkä:
Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes. IEEE Trans. Robotics 34(4): 1112-1127 (2018) - [j27]Ángel F. García-Fernández, Lennart Svensson, Simo Särkkä:
Cooperative Localization Using Posterior Linearization Belief Propagation. IEEE Trans. Veh. Technol. 67(1): 832-836 (2018) - [c56]Toni Karvonen, Silvère Bonnabel, Eric Moulines, Simo Särkkä:
Bounds on the Covariance Matrix of a Class of Kalman-Bucy Filters for Systems with Non-Linear Dynamics. CDC 2018: 7176-7181 - [c55]Morteza Zabihi, Ali Bahrami Rad, Simo Särkkä, Serkan Kiranyaz, Aggelos K. Katsaggelos, Moncef Gabbouj:
Automatic Sleep Arousal Detection Using Multimodal Biosignal Analysis. CinC 2018: 1-4 - [c54]Filip Tronarp, Narayan Puthanmadam Subramaniyam, Simo Särkkä, Lauri Parkkonen:
Tracking of dynamic functional connectivity from MEG data with Kalman filtering. EMBC 2018: 1003-1006 - [c53]Rui Gao, Filip Tronarp, Simo Särkkä:
Combined Analysis-L1 and Total Variation ADMM with Applications to MEG Brain Imaging and Signal Reconstruction. EUSIPCO 2018: 1930-1934 - [c52]Roland Hostettler, Tuomas Lumikari, Lauri Palva, Tuomo Nieminen, Simo Särkkä:
Motion Artifact Reduction in Ambulatory Electrocardiography Using Inertial Measurement Units and Kalman Filtering. FUSION 2018: 1-8 - [c51]Filip Tronarp, Simo Särkkä:
Non-Linear Continuous-Discrete Smoothing by Basis Function Expansions of Brownian Motion. FUSION 2018: 1-8 - [c50]Filip Tronarp, Roland Hostettler, Simo Särkkä:
Continuous-Discrete von Mises-Fisher Filtering on S2 for Reference Vector Tracking. FUSION 2018: 1345-1352 - [c49]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Fast Motion Deblurring for Feature Detection and Matching Using Inertial Measurements. ICPR 2018: 3068-3073 - [c48]Kimmo Suotsalo, Simo Särkkä:
On-Line Bayesian parameter estimation in electrocardiogram State Space Models. MLSP 2018: 1-6 - [c47]Filip Tronarp, Toni Karvonen, Simo Särkkä:
Mixture Representation of the MatéRn class with Applications in State Space Approximations and Bayesian quadrature. MLSP 2018: 1-6 - [c46]Zheng Zhao, Simo Särkkä, Ali Bahrami Rad:
Spectro-Temporal ECG Analysis for atrial fibrillation Detection. MLSP 2018: 1-6 - [c45]Toni Karvonen, Chris J. Oates, Simo Särkkä:
A Bayes-Sard Cubature Method. NeurIPS 2018: 5886-5897 - [i17]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Fast Motion Deblurring for Feature Detection and Matching Using Inertial Measurements. CoRR abs/1805.08542 (2018) - [i16]Zenith Purisha, Carl Jidling, Niklas Wahlström, Simo Särkkä, Thomas B. Schön:
Probabilistic approach to limited-data computed tomography reconstruction. CoRR abs/1809.03779 (2018) - [i15]Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Gaussian process classification using posterior linearisation. CoRR abs/1809.04967 (2018) - [i14]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Inertial-aided Motion Deblurring with Deep Networks. CoRR abs/1810.00986 (2018) - [i13]Janne Mustaniemi, Juho Kannala, Jiri Matas, Simo Särkkä, Janne Heikkilä:
LSD2 - Joint Denoising and Deblurring of Short and Long Exposure Images with Convolutional Neural Networks. CoRR abs/1811.09485 (2018) - [i12]Jakub Prüher, Toni Karvonen, Chris J. Oates, Ondrej Straka, Simo Särkkä:
Improved Calibration of Numerical Integration Error in Sigma-Point Filters. CoRR abs/1811.11474 (2018) - [i11]Zheng Zhao, Simo Särkkä, Ali Bahrami Rad:
Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection. CoRR abs/1812.05555 (2018) - [i10]Toni Karvonen, Motonobu Kanagawa, Simo Särkkä:
On the positivity and magnitudes of Bayesian quadrature weights. CoRR abs/1812.08509 (2018) - 2017
- [j26]Patrick R. Conrad, Mark A. Girolami, Simo Särkkä, Andrew M. Stuart, Konstantinos Zygalakis:
Statistical analysis of differential equations: introducing probability measures on numerical solutions. Stat. Comput. 27(4): 1065-1082 (2017) - [j25]Ángel F. García-Fernández, Lennart Svensson, Simo Särkkä:
Iterated Posterior Linearization Smoother. IEEE Trans. Autom. Control. 62(4): 2056-2063 (2017) - [c44]Olli-Pekka Rinta-Koski, Simo Särkkä, Jaakko Hollmén, Markus Leskinen, Sture Andersson:
Prediction of preterm infant mortality with Gaussian process classification. ESANN 2017 - [c43]Roland Hostettler, Ossi Kaltiokallio, Hüseyin Yigitler, Simo Särkkä, Riku Jäntti:
RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering. EUSIPCO 2017: 256-260 - [c42]Jakub Prüher, Filip Tronarp, Toni Karvonen, Simo Särkkä, Ondrej Straka:
Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise. FUSION 2017: 1-8 - [c41]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Inertial-based scale estimation for structure from motion on mobile devices. IROS 2017: 4394-4401 - [c40]Alexander Grigorievskiy, Neil D. Lawrence, Simo Särkkä:
Parallelizable sparse inverse formulation Gaussian processes (SpInGP). MLSP 2017: 1-6 - [c39]Roland Hostettler, Simo Särkkä, Simon J. Godsill:
Rao-Blackwellized particle mcmc for parameter estimation in spatio-temporal Gaussian processes. MLSP 2017: 1-6 - [c38]Toni Karvonen, Simo Särkkä:
Classical quadrature rules via Gaussian processes. MLSP 2017: 1-6 - [c37]Kimmo Suotsalo, Simo Särkkä:
A linear stochastic state space model for electrocardiograms. MLSP 2017: 1-6 - [c36]Kimmo Suotsalo, Simo Särkkä:
Detecting malignant ventricular arrhythmias in electrocardiograms by Gaussian process classification. MLSP 2017: 1-5 - [i9]Toni Karvonen, Simo Särkkä:
Fully symmetric kernel quadrature. CoRR abs/1703.06359 (2017) - [i8]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. CoRR abs/1709.05409 (2017) - 2016
- [j24]Fredrik Lindsten, Pete Bunch, Simo Särkkä, Thomas B. Schön, Simon J. Godsill:
Rao-Blackwellized Particle Smoothers for Conditionally Linear Gaussian Models. IEEE J. Sel. Top. Signal Process. 10(2): 353-365 (2016) - [j23]Isambi S. Mbalawata, Simo Särkkä:
Moment conditions for convergence of particle filters with unbounded importance weights. Signal Process. 118: 133-138 (2016) - [c35]Andreas Svensson, Arno Solin, Simo Särkkä, Thomas B. Schön:
Computationally Efficient Bayesian Learning of Gaussian Process State Space Models. AISTATS 2016: 213-221 - [c34]Toni Karvonen, Simo Särkkä:
Fourier-Hermite series for stochastic stability analysis of non-linear Kalman filters. FUSION 2016: 1829-1836 - [c33]Filip Tronarp, Roland Hostettler, Simo Särkkä:
Sigma-point filtering for nonlinear systems with non-additive heavy-tailed noise. FUSION 2016: 1859-1866 - [c32]Simo Särkkä, Eric Moulines:
On the LP-convergence of a Girsanov theorem based particle filter. ICASSP 2016: 3989-3993 - [c31]Roland Hostettler, Simo Särkkä:
IMU and magnetometer modeling for smartphone-based PDR. IPIN 2016: 1-8 - [c30]Toni Karvonen, Simo Särkkä:
Approximate state-space Gaussian processes via spectral transformation. MLSP 2016: 1-6 - [c29]Jakub Prüher, Simo Särkkä:
On the use of gradient information in Gaussian process quadratures. MLSP 2016: 1-6 - [i7]Michael Schober, Simo Särkkä, Philipp Hennig:
A probabilistic model for the numerical solution of initial value problems. CoRR abs/1610.05261 (2016) - [i6]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Inertial-Based Scale Estimation for Structure from Motion on Mobile Devices. CoRR abs/1611.09498 (2016) - 2015
- [j22]Sean Anderson, Timothy D. Barfoot, Chi Hay Tong, Simo Särkkä:
Batch nonlinear continuous-time trajectory estimation as exactly sparse Gaussian process regression. Auton. Robots 39(3): 221-238 (2015) - [j21]Isambi S. Mbalawata, Simo Särkkä, Matti Vihola, Heikki Haario:
Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter. Comput. Stat. Data Anal. 83: 101-115 (2015) - [j20]Juho Kokkala, Simo Särkkä:
Combining particle MCMC with Rao-Blackwellized Monte Carlo data association for parameter estimation in multiple target tracking. Digit. Signal Process. 47: 84-95 (2015) - [j19]Xi Chen, Simo Särkkä, Simon J. Godsill:
A Bayesian particle filtering method for brain source localisation. Digit. Signal Process. 47: 192-204 (2015) - [j18]Simo Särkkä, Jouni Hartikainen, Isambi Sailon Mbalawata, Heikki Haario:
Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC. Stat. Comput. 25(2): 427-437 (2015) - [j17]Juha Ala-Luhtala, Simo Särkkä, Robert Piché:
Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems. Signal Process. 111: 124-136 (2015) - [j16]Ángel F. García-Fernández, Lennart Svensson, Mark R. Morelande, Simo Särkkä:
Posterior Linearization Filter: Principles and Implementation Using Sigma Points. IEEE Trans. Signal Process. 63(20): 5561-5573 (2015) - [c28]Arno Solin, Simo Särkkä:
State Space Methods for Efficient Inference in Student-t Process Regression. AISTATS 2015 - [c27]Andreas Svensson, Thomas B. Schön, Arno Solin, Simo Särkkä:
Nonlinear state space model identification using a regularized basis function expansion. CAMSAP 2015: 481-484 - [c26]Juho Kokkala, Simo Särkkä:
Split-Gaussian particle filter. EUSIPCO 2015: 484-488 - [c25]Jayaprasad Bojja, Jussi Collin, Simo Särkkä, Jarmo Takala:
Pedestrian localization in moving platforms using dead reckoning, particle filtering and map matching. ICASSP 2015: 1116-1120 - [c24]Simo Särkkä, Ville Tolvanen, Juho Kannala, Esa Rahtu:
Adaptive Kalman filtering and smoothing for gravitation tracking in mobile systems. IPIN 2015: 1-7 - [i5]Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön, Simo Särkkä:
Modeling and interpolation of the ambient magnetic field by Gaussian processes. CoRR abs/1509.04634 (2015) - [i4]Andreas Svensson, Thomas B. Schön, Arno Solin, Simo Särkkä:
Nonlinear State Space Model Identification Using a Regularized Basis Function Expansion. CoRR abs/1510.00563 (2015) - 2014
- [j15]Simon M. J. Lyons, Simo Särkkä, Amos J. Storkey:
Series Expansion Approximations of Brownian Motion for Non-Linear Kalman Filtering of Diffusion Processes. IEEE Trans. Signal Process. 62(6): 1514-1524 (2014) - [c23]Arno Solin, Simo Särkkä:
Explicit Link Between Periodic Covariance Functions and State Space Models. AISTATS 2014: 904-912 - [c22]Isambi S. Mbalawata, Simo Särkkä:
Weight moment conditions for L4 convergence of particle filters for unbounded test functions. EUSIPCO 2014: 1207-1211 - [c21]Simo Särkkä, Ville Viikari, Kaarle Jaakkola:
RFID-based butterfly location sensing system. EUSIPCO 2014: 2045-2049 - [c20]Juho Kokkala, Arno Solin, Simo Särkkä:
Expectation maximization based parameter estimation by sigma-point and particle smoothing. FUSION 2014: 1-8 - [c19]Simo Särkkä, Jouni Hartikainen, Lennart Svensson, Fredrik Sandblom:
Gaussian process quadratures in nonlinear sigma-point filtering and smoothing. FUSION 2014: 1-8 - [c18]Isambi S. Mbalawata, Simo Särkkä:
On the L4 convergence of particle filters with general importance distributions. ICASSP 2014: 8048-8052 - [c17]Simo Särkkä, Robert Piché:
On convergence and accuracy of state-space approximations of squared exponential covariance functions. MLSP 2014: 1-6 - [c16]Arno Solin, Simo Särkkä:
Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. MLSP 2014: 1-6 - [c15]Arno Solin, Simo Särkkä:
The 10th annual MLSP competition: First place. MLSP 2014: 1-3 - [c14]Tim D. Barfoot, Chi Hay Tong, Simo Särkkä:
Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression. Robotics: Science and Systems 2014 - [i3]Sean Anderson, Timothy D. Barfoot, Chi Hay Tong, Simo Särkkä:
Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression. CoRR abs/1412.0630 (2014) - 2013
- [b1]Simo Särkkä:
Bayesian Filtering and Smoothing. Institute of Mathematical Statistics textbooks 3, Cambridge University Press 2013, ISBN 978-1-10-761928-9, pp. I-XXII, 1-232 - [j14]Isambi S. Mbalawata, Simo Särkkä, Heikki Haario:
Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Comput. Stat. 28(3): 1195-1223 (2013) - [j13]Simo Särkkä, Juha Sarmavuori:
Gaussian filtering and smoothing for continuous-discrete dynamic systems. Signal Process. 93(2): 500-510 (2013) - [j12]Simo Särkkä, Arno Solin, Jouni Hartikainen:
Spatiotemporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering. IEEE Signal Process. Mag. 30(4): 51-61 (2013) - [c13]Xi Chen, Simo Särkkä, Simon J. Godsill:
Probabilistic initiation and termination for MEG multiple dipole localization using sequential Monte Carlo methods. FUSION 2013: 580-587 - [c12]Simo Särkkä, Jouni Hartikainen:
Non-linear noise adaptive Kalman filtering via variational Bayes. MLSP 2013: 1-6 - [c11]Simo Särkkä, Arno Solin:
Continuous-Space Gaussian Process Regression and Generalized Wiener Filtering with Application to Learning Curves. SCIA 2013: 172-181 - 2012
- [j11]Simo Särkkä, Arno Solin, Aapo Nummenmaa, Aki Vehtari, Toni Auranen, Simo Vanni, Fa-Hsuan Lin:
Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage 60(2): 1517-1527 (2012) - [j10]Juha Sarmavuori, Simo Särkkä:
Fourier-Hermite Kalman Filter. IEEE Trans. Autom. Control. 57(6): 1511-1515 (2012) - [c10]Juha Sarmavuori, Simo Särkkä:
Fourier-Hermite Rauch-Tung-Striebel smoother. EUSIPCO 2012: 2109-2113 - [c9]Jouni Hartikainen, Mari Seppänen, Simo Särkkä:
State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction. ICML 2012 - [c8]Robert Piché, Simo Särkkä, Jouni Hartikainen:
Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution. MLSP 2012: 1-6 - [c7]Simon M. J. Lyons, Amos J. Storkey, Simo Särkkä:
The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes. NIPS 2012: 1961-1969 - [c6]Simo Särkkä, Jouni Hartikainen:
Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression. AISTATS 2012: 993-1001 - [i2]Jouni Hartikainen, Simo Särkkä:
Sequential Inference for Latent Force Models. CoRR abs/1202.3730 (2012) - [i1]Jouni Hartikainen, Mari Seppänen, Simo Särkkä:
State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction. CoRR abs/1206.4670 (2012) - 2011
- [j9]Simo Särkkä, Jouni Hartikainen:
Correction to "On Gaussian Optimal Smoothing of Nonlinear State Space Models" [Aug 10 1938-1941]. IEEE Trans. Autom. Control. 56(7): 1746 (2011) - [j8]Simo Särkkä, Antti Huovilainen:
Accurate Discretization of Analog Audio Filters With Application to Parametric Equalizer Design. IEEE ACM Trans. Audio Speech Lang. Process. 19(8): 2486-2493 (2011) - [c5]Simo Särkkä:
Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression. ICANN (2) 2011: 151-158 - [c4]Jouni Hartikainen, Jaakko Riihimäki, Simo Särkkä:
Sparse Spatio-temporal Gaussian Processes with General Likelihoods. ICANN (1) 2011: 193-200 - [c3]Simo Särkkä:
Learning Curves for Gaussian Processes via Numerical Cubature Integration. ICANN (1) 2011: 201-208 - [c2]Jouni Hartikainen, Simo Särkkä:
Sequential Inference for Latent Force Models. UAI 2011: 311-318 - 2010
- [j7]Simo Särkkä:
Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers. Signal Process. 90(1): 225-235 (2010) - [j6]Simo Särkkä, Jouni Hartikainen:
On Gaussian Optimal Smoothing of Non-Linear State Space Models. IEEE Trans. Autom. Control. 55(8): 1938-1941 (2010)
2000 – 2009
- 2009
- [j5]Simo Särkkä, Aapo Nummenmaa:
Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations. IEEE Trans. Autom. Control. 54(3): 596-600 (2009) - 2008
- [j4]Simo Särkkä:
Unscented Rauch-Tung-Striebel Smoother. IEEE Trans. Autom. Control. 53(3): 845-849 (2008) - 2007
- [j3]Simo Särkkä, Aki Vehtari, Jouko Lampinen:
CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing 70(13-15): 2331-2341 (2007) - [j2]Simo Särkkä, Aki Vehtari, Jouko Lampinen:
Rao-Blackwellized particle filter for multiple target tracking. Inf. Fusion 8(1): 2-15 (2007) - [j1]Simo Särkkä:
On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems. IEEE Trans. Autom. Control. 52(9): 1631-1641 (2007) - 2000
- [c1]Aki Vehtari, Simo Särkkä, Jouko Lampinen:
On MCMC Sampling in Bayesian MLP Neural Networks. IJCNN (1) 2000: 317-322
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint