Stop the war!
Остановите войну!
for scientists:
default search action
Goran Nenadic
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j49]Aleksandar Kovacevic, Bojana Basaragin, Nikola Milosevic, Goran Nenadic:
De-identification of clinical free text using natural language processing: A systematic review of current approaches. Artif. Intell. Medicine 151: 102845 (2024) - [j48]Lifeng Han, Serge Gladkoff, Gleb Erofeev, Irina Sorokina, Betty Galiano, Goran Nenadic:
Neural machine translation of clinical text: an empirical investigation into multilingual pre-trained language models and transfer-learning. Frontiers Digit. Health 6 (2024) - [j47]Rina Carines Cabral, Soyeon Caren Han, Josiah Poon, Goran Nenadic:
MM-EMOG: Multi-Label Emotion Graph Representation for Mental Health Classification on Social Media. Robotics 13(3): 53 (2024) - [c68]Hao Li, Yuping Wu, Viktor Schlegel, Riza Batista-Navarro, Tharindu Madusanka, Iqra Zahid, Jiayan Zeng, Xiaochi Wang, Xinran He, Yizhi Li, Goran Nenadic:
Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation. ACL (Findings) 2024: 133-150 - [i37]Kung Yin Hong, Lifeng Han, Riza Batista-Navarro, Goran Nenadic:
CantonMT: Cantonese to English NMT Platform with Fine-Tuned Models Using Synthetic Back-Translation Data. CoRR abs/2403.11346 (2024) - [i36]Kung Yin Hong, Lifeng Han, Riza Batista-Navarro, Goran Nenadic:
CANTONMT: Investigating Back-Translation and Model-Switch Mechanisms for Cantonese-English Neural Machine Translation. CoRR abs/2405.08172 (2024) - [i35]Nicolo Micheletti, Samuel Belkadi, Lifeng Han, Goran Nenadic:
Exploration of Masked and Causal Language Modelling for Text Generation. CoRR abs/2405.12630 (2024) - [i34]Arle Lommel, Serge Gladkoff, Alan K. Melby, Sue Ellen Wright, Ingemar Strandvik, Katerina Gasova, Angelika Vaasa, Andy Benzo, Romina Marazzato Sparano, Monica Foresi, Johani Innis, Lifeng Han, Goran Nenadic:
The Multi-Range Theory of Translation Quality Measurement: MQM scoring models and Statistical Quality Control. CoRR abs/2405.16969 (2024) - [i33]Hao Li, Yuping Wu, Viktor Schlegel, Riza Batista-Navarro, Tharindu Madusanka, Iqra Zahid, Jiayan Zeng, Xiaochi Wang, Xinran He, Yizhi Li, Goran Nenadic:
Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation. CoRR abs/2406.03151 (2024) - [i32]Jamie Glen, Lifeng Han, Paul Rayson, Goran Nenadic:
A Comparative Study on Automatic Coding of Medical Letters with Explainability. CoRR abs/2407.13638 (2024) - 2023
- [j46]Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro:
A survey of methods for revealing and overcoming weaknesses of data-driven Natural Language Understanding. Nat. Lang. Eng. 29(1): 1-31 (2023) - [c67]Yang Cui, Lifeng Han, Goran Nenadic:
MedTem2.0: Prompt-based Temporal Classification of Treatment Events from Discharge Summaries. ACL (student) 2023: 160-183 - [c66]Hao Li, Viktor Schlegel, Riza Batista-Navarro, Goran Nenadic:
Do You Hear The People Sing? Key Point Analysis via Iterative Clustering and Abstractive Summarisation. ACL (1) 2023: 14064-14080 - [c65]Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Gladkoff, Goran Nenadic:
Investigating Massive Multilingual Pre-Trained Machine Translation Models for Clinical Domain via Transfer Learning. ClinicalNLP@ACL 2023: 31-40 - [c64]Hangyu Tu, Lifeng Han, Goran Nenadic:
Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models. IEEE Big Data 2023: 2735-2744 - [c63]Samuel Belkadi, Lifeng Han, Yu-Ping Wu, Goran Nenadic:
Exploring the Value of Pre-trained Language Models for Clinical Named Entity Recognition. IEEE Big Data 2023: 3660-3669 - [c62]Hao Li, Yu-Ping Wu, Viktor Schlegel, Riza Batista-Navarro, Thanh-Tung Nguyen, Abhinav Ramesh Kashyap, Xiao-Jun Zeng, Daniel Beck, Stefan Winkler, Goran Nenadic:
Team: PULSAR at ProbSum 2023: PULSAR: Pre-training with Extracted Healthcare Terms for Summarising Patients' Problems and Data Augmentation with Black-box Large Language Models. BioNLP@ACL 2023: 503-509 - [c61]Jie Yang, Soyeon Caren Han, Siqu Long, Josiah Poon, Goran Nenadic:
MC-DRE: Multi-Aspect Cross Integration for Drug Event/Entity Extraction. CIKM 2023: 4385-4389 - [c60]Viktor Schlegel, Hao Li, Yu-Ping Wu, Anand Subramanian, Thanh-Tung Nguyen, Abhinav Ramesh Kashyap, Daniel Beck, Xiao-Jun Zeng, Riza Theresa Batista-Navarro, Stefan Winkler, Goran Nenadic:
PULSAR at MEDIQA-Sum 2023: Large Language Models Augmented by Synthetic Dialogue Convert Patient Dialogues to Medical Records. CLEF (Working Notes) 2023: 1668-1679 - [c59]Yu-Ping Wu, Ching-Hsun Tseng, Jia-Yu Shang, Shengzhong Mao, Goran Nenadic, Xiao-Jun Zeng:
EDU-level Extractive Summarization with Varying Summary Lengths. EACL (Findings) 2023: 1610-1622 - [c58]Stefan Schulz, Warren Del-Pinto, Lifeng Han, Markus Kreuzthaler, Sareh Aghaei Dinani, Goran Nenadic:
Towards Principles of Ontology-Based Annotation of Clinical Narratives. ICBO 2023: 36-47 - [c57]Bernadeta Griciute, Lifeng Han, Goran Nenadic:
Topic Modelling of Swedish Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet Allocation Method. ICHI 2023: 627-636 - [c56]Serge Gladkoff, Lifeng Han, Goran Nenadic:
Student's t-Distribution: On Measuring the Inter-Rater Reliability When the Observations are Scarce. RANLP 2023: 419-428 - [c55]Najet Hadj Mohamed, Malak Rassem, Lifeng Han, Goran Nenadic:
AlphaMWE-Arabic: Arabic Edition of Multilingual Parallel Corpora with Multiword Expression Annotations. RANLP 2023: 448-457 - [i31]Bernadeta Griciute, Lifeng Han, Goran Nenadic:
Topic Modelling of Swedish Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet Allocation Method. CoRR abs/2301.03029 (2023) - [i30]Serge Gladkoff, Lifeng Han, Goran Nenadic:
Student's t-Distribution: On Measuring the Inter-Rater Reliability When the Observations are Scarce. CoRR abs/2303.04526 (2023) - [i29]Hao Li, Viktor Schlegel, Riza Batista-Navarro, Goran Nenadic:
Do You Hear The People Sing? Key Point Analysis via Iterative Clustering and Abstractive Summarisation. CoRR abs/2305.16000 (2023) - [i28]Hao Li, Yu-Ping Wu, Viktor Schlegel, Riza Batista-Navarro, Thanh-Tung Nguyen, Abhinav Ramesh Kashyap, Xiao-Jun Zeng, Daniel Beck, Stefan Winkler, Goran Nenadic:
PULSAR: Pre-training with Extracted Healthcare Terms for Summarising Patients' Problems and Data Augmentation with Black-box Large Language Models. CoRR abs/2306.02754 (2023) - [i27]Viktor Schlegel, Hao Li, Yu-Ping Wu, Anand Subramanian, Thanh-Tung Nguyen, Abhinav Ramesh Kashyap, Daniel Beck, Xiao-Jun Zeng, Riza Theresa Batista-Navarro, Stefan Winkler, Goran Nenadic:
PULSAR at MEDIQA-Sum 2023: Large Language Models Augmented by Synthetic Dialogue Convert Patient Dialogues to Medical Records. CoRR abs/2307.02006 (2023) - [i26]Serge Gladkoff, Gleb Erofeev, Lifeng Han, Goran Nenadic:
Predicting Perfect Quality Segments in MT Output with Fine-Tuned OpenAI LLM: Is it possible to capture editing distance patterns from historical data? CoRR abs/2308.00158 (2023) - [i25]Haifa Alrdahi, Lifeng Han, Hendrik Suvalov, Goran Nenadic:
MedMine: Examining Pre-trained Language Models on Medication Mining. CoRR abs/2308.03629 (2023) - [i24]Jie Yang, Soyeon Caren Han, Siqu Long, Josiah Poon, Goran Nenadic:
MC-DRE: Multi-Aspect Cross Integration for Drug Event/Entity Extraction. CoRR abs/2308.06546 (2023) - [i23]Zihao Li, Samuel Belkadi, Nicolo Micheletti, Lifeng Han, Matthew Shardlow, Goran Nenadic:
Large Language Models and Control Mechanisms Improve Text Readability of Biomedical Abstracts. CoRR abs/2309.13202 (2023) - [i22]Hangyu Tu, Lifeng Han, Goran Nenadic:
Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models. CoRR abs/2310.02229 (2023) - [i21]Samuel Belkadi, Nicolo Micheletti, Lifeng Han, Warren Del-Pinto, Goran Nenadic:
Generating Medical Instructions with Conditional Transformer. CoRR abs/2310.19727 (2023) - [i20]Warren Del-Pinto, George Demetriou, Meghna Jani, Rikesh Patel, Leanne Gray, Alex Bulcock, Niels Peek, Andrew S. Kanter, William G. Dixon, Goran Nenadic:
Exploring the Consistency, Quality and Challenges in Manual and Automated Coding of Free-text Diagnoses from Hospital Outpatient Letters. CoRR abs/2311.10856 (2023) - [i19]Aleksandar Kovacevic, Bojana Basaragin, Nikola Milosevic, Goran Nenadic:
De-identification of clinical free text using natural language processing: A systematic review of current approaches. CoRR abs/2312.03736 (2023) - [i18]Lifeng Han, Serge Gladkoff, Gleb Erofeev, Irina Sorokina, Betty Galiano, Goran Nenadic:
Neural Machine Translation of Clinical Text: An Empirical Investigation into Multilingual Pre-Trained Language Models and Transfer-Learning. CoRR abs/2312.07250 (2023) - 2022
- [c54]Meghna Jani, Ghada Alfattni, Maksim Belousov, Yuanyuan Zhang, Michael Cheng, Andrew S. Kanter, William G. Dixon, Goran Nenadic:
Pandemic Planning using Text Analytics on Hospital Outpatient Letters: a Case Study on Covid-19 Shielding for Rheumatology Patients. AMIA 2022 - [c53]Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Gladkoff, Goran Nenadic:
Examining Large Pre-Trained Language Models for Machine Translation: What You Don't Know about It. WMT 2022: 908-919 - [i17]Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Gladkoff, Goran Nenadic:
Examining Large Pre-Trained Language Models for Machine Translation: What You Don't Know About It. CoRR abs/2209.07417 (2022) - [i16]Yu-Ping Wu, Ching-Hsun Tseng, Jia-Yu Shang, Shengzhong Mao, Goran Nenadic, Xiao-Jun Zeng:
EDU-level Extractive Summarization with Varying Summary Lengths. CoRR abs/2210.04029 (2022) - [i15]Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Gladkoff, Goran Nenadic:
Using Massive Multilingual Pre-Trained Language Models Towards Real Zero-Shot Neural Machine Translation in Clinical Domain. CoRR abs/2210.06068 (2022) - [i14]Yu-Ping Wu, Lifeng Han, Valerio Antonini, Goran Nenadic:
On Cross-Domain Pre-Trained Language Models for Clinical Text Mining: How Do They Perform on Data-Constrained Fine-Tuning? CoRR abs/2210.12770 (2022) - 2021
- [j45]Xi Yang, Chengkun Wu, Goran Nenadic, Wei Wang, Kai Lu:
Correction to: Mining a stroke knowledge graph from literature. BMC Bioinform. 22(1): 585 (2021) - [j44]Xi Yang, Chengkun Wu, Goran Nenadic, Wei Wang, Kai Lu:
Mining a stroke knowledge graph from literature. BMC Bioinform. 22-S(10): 387 (2021) - [j43]Ghada Alfattni, Niels Peek, Goran Nenadic:
Corrigendum to "Extraction of temporal relations from clinical free text: A systematic review of current approaches" [J. Biomed. Inf. 108 (2020) 103488]. J. Biomed. Informatics 113: 103663 (2021) - [j42]Ghada Alfattni, Niels Peek, Goran Nenadic:
Attention-based bidirectional long short-term memory networks for extracting temporal relationships from clinical discharge summaries. J. Biomed. Informatics 123: 103915 (2021) - [j41]Emma Tattershall, Goran Nenadic, Robert Stevens:
Modelling trend life cycles in scientific research using the Logistic and Gompertz equations. Scientometrics 126(11): 9113-9132 (2021) - [c52]Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro:
Semantics Altering Modifications for Evaluating Comprehension in Machine Reading. AAAI 2021: 13762-13770 - 2020
- [j40]Ghada Alfattni, Niels Peek, Goran Nenadic:
Extraction of temporal relations from clinical free text: A systematic review of current approaches. J. Biomed. Informatics 108: 103488 (2020) - [j39]Emma Tattershall, Goran Nenadic, Robert D. Stevens:
Detecting bursty terms in computer science research. Scientometrics 122(1): 681-699 (2020) - [c51]Andrey Kormilitzin, Nemanja Vaci, Qiang Liu, Hao Ni, Goran Nenadic, Alejo J. Nevado-Holgado:
An efficient representation of chronological events in medical texts. LOUHI@EMNLP 2020: 97-103 - [c50]Viktor Schlegel, Marco Valentino, André Freitas, Goran Nenadic, Riza Batista-Navarro:
A Framework for Evaluation of Machine Reading Comprehension Gold Standards. LREC 2020: 5359-5369 - [i13]Viktor Schlegel, Marco Valentino, André Freitas, Goran Nenadic, Riza Batista-Navarro:
A Framework for Evaluation of Machine Reading Comprehension Gold Standards. CoRR abs/2003.04642 (2020) - [i12]Nikola Milosevic, Gangamma Kalappa, Hesam Dadafarin, Mahmoud Azimaee, Goran Nenadic:
MASK: A flexible framework to facilitate de-identification of clinical texts. CoRR abs/2005.11687 (2020) - [i11]Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro:
Beyond Leaderboards: A survey of methods for revealing weaknesses in Natural Language Inference data and models. CoRR abs/2005.14709 (2020) - [i10]Andrey Kormilitzin, Nemanja Vaci, Qiang Liu, Hao Ni, Goran Nenadic, Alejo J. Nevado-Holgado:
An efficient representation of chronological events in medical texts. CoRR abs/2010.08433 (2020) - [i9]Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro:
Semantics Altering Modifications for Evaluating Comprehension in Machine Reading. CoRR abs/2012.04056 (2020)
2010 – 2019
- 2019
- [j38]Mercedes Argüello Casteleiro, Robert Stevens, Jose Julio Des Diz, Chris Wroe, Maria Jesus Fernandez Prieto, Nava Maroto, Diego Maseda-Fernandez, George Demetriou, Simon Peters, Peter-J. Noble, Phil H. Jones, Jo Dukes-McEwan, Alan D. Radford, John A. Keane, Goran Nenadic:
Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes. J. Biomed. Semant. 10(1): 22:1-22:28 (2019) - [j37]Nikola Milosevic, Cassie Gregson, Robert Hernandez, Goran Nenadic:
A framework for information extraction from tables in biomedical literature. Int. J. Document Anal. Recognit. 22(1): 55-78 (2019) - [c49]Vasa Curcin, Elizabeth Ford, Jyotishman Pathak, Goran Nenadic:
Using Social Media to Study Mental Health Conditions - Challenges and Opportunities. AMIA 2019 - [c48]Adrian Stetco, Anees Mohammed, Sinisa Djurovic, Goran Nenadic, John A. Keane:
Wind Turbine operational state prediction: towards featureless, end-to-end predictive maintenance. IEEE BigData 2019: 4422-4430 - [c47]Abdullah Gök, Nikola Milosevic, Goran Nenadic:
Using machine learning and text mining to classify fuzzy social science phenomenon: the case of social innovation. ISSI 2019: 2171-2176 - [c46]Nikola Milosevic, Dimitar Marinov, Abdullah Gök, Goran Nenadic:
From Web Crawled Text to Project Descriptions: Automatic Summarizing of Social Innovation Projects. NLDB 2019: 157-169 - [c45]Mercedes Argüello Casteleiro, Phil H. Jones, Sara Robertson, Richard M. Irvine, Fin Twomey, Goran Nenadic:
Exploring the Automatisation of Animal Health Surveillance Through Natural Language Processing. SGAI Conf. 2019: 213-226 - [c44]Maksim Belousov, William G. Dixon, Goran Nenadic:
MedNorm: A Corpus and Embeddings for Cross-terminology Medical Concept Normalisation. SMM4H@ACL 2019: 31-39 - [i8]Nikola Milosevic, Cassie Gregson, Robert Hernandez, Goran Nenadic:
A framework for information extraction from tables in biomedical literature. CoRR abs/1902.10031 (2019) - [i7]Nikola Milosevic, Dimitar Marinov, Abdullah Gök, Goran Nenadic:
From web crawled text to project descriptions: automatic summarizing of social innovation projects. CoRR abs/1905.09086 (2019) - [i6]Maksim Belousov, Nikola Milosevic, William G. Dixon, Goran Nenadic:
Extracting adverse drug reactions and their context using sequence labelling ensembles in TAC2017. CoRR abs/1905.11716 (2019) - [i5]Maksim Belousov, Nikola Milosevic, Ghada Alfattni, Haifa Alrdahi, Goran Nenadic:
GNTeam at 2018 n2c2: Feature-augmented BiLSTM-CRF for drug-related entity recognition in hospital discharge summaries. CoRR abs/1909.10390 (2019) - 2018
- [j36]Mercedes Argüello Casteleiro, George Demetriou, Warren J. Read, Maria Jesus Fernandez Prieto, Nava Maroto, Diego Maseda-Fernandez, Goran Nenadic, Julie Klein, John A. Keane, Robert Stevens:
Deep learning meets ontologies: experiments to anchor the cardiovascular disease ontology in the biomedical literature. J. Biomed. Semant. 9(1): 13:1-13:24 (2018) - [j35]Ruth Alexandra Stoney, Jean-Marc Schwartz, David L. Robertson, Goran Nenadic:
Using set theory to reduce redundancy in pathway sets. BMC Bioinform. 19(1): 386:1-386:11 (2018) - [j34]Mohammadali Tavakoli, Liping Zhao, Atefeh Heydari, Goran Nenadic:
Extracting useful software development information from mobile application reviews: A survey of intelligent mining techniques and tools. Expert Syst. Appl. 113: 186-199 (2018) - [j33]Abeed Sarker, Maksim Belousov, Jasper Friedrichs, Kai Hakala, Svetlana Kiritchenko, Farrokh Mehryary, Sifei Han, Tung Tran, Anthony Rios, Ramakanth Kavuluru, Berry de Bruijn, Filip Ginter, Debanjan Mahata, Saif M. Mohammad, Goran Nenadic, Graciela Gonzalez-Hernandez:
Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. J. Am. Medical Informatics Assoc. 25(10): 1274-1283 (2018) - [j32]Rikesh Patel, Maksim Belousov, Meghna Jani, Nabarun Dasgupta, Carly Winokur, Goran Nenadic, William G. Dixon:
Author Correction: Frequent discussion of insomnia and weight gain with glucocorticoid therapy: an analysis of Twitter posts. npj Digit. Medicine 1 (2018) - [j31]Rikesh Patel, Maksim Belousov, Meghna Jani, Nabarun Dasgupta, Carly Winokur, Goran Nenadic, William G. Dixon:
Frequent discussion of insomnia and weight gain with glucocorticoid therapy: an analysis of Twitter posts. npj Digit. Medicine 1 (2018) - [c43]Nikola Milosevic, Abdullah Gök, Goran Nenadic:
Classification of Intangible Social Innovation Concepts. NLDB 2018: 407-418 - [i4]Nikola Milosevic, Goran Nenadic:
Creating a contemporary corpus of similes in Serbian by using natural language processing. CoRR abs/1811.10422 (2018) - 2017
- [c42]Maksim Belousov, William G. Dixon, Goran Nenadic:
Using an Ensemble of Linear and Deep Learning Models in the SMM4H 2017 Medical Concept Normalisation Task. SMM4H@AMIA 2017: 54-58 - [c41]Nikola Milosevic, Anay Gupta, Austin Chen, Steven DeMarco, Joshua P. Le, Jodi Schneider, Yifan Ning, Goran Nenadic, Richard D. Boyce:
Extraction of Drug-Drug Interactions from Drug Product Labeling Tables. CRI 2017 - [c40]Mercedes Argüello Casteleiro, Catalina Martínez-Costa, Jose Julio Des Diz, Maria Jesus Fernandez Prieto, Chris Wroe, Diego Maseda-Fernandez, George Demetriou, Goran Nenadic, John A. Keane, Stefan Schulz, Robert Stevens:
Experiments to Create Ontology-based Disease Models for Diabetic Retinopathy from Different Biomedical Resources. SWAT4LS 2017 - [i3]Maksim Belousov, Nikola Milosevic, William G. Dixon, Goran Nenadic:
Extracting adverse drug reactions and their context using sequence labelling ensembles in TAC2017. TAC 2017 - 2016
- [j30]Warren J. Read, George Demetriou, Goran Nenadic, Noel Ruddock, Robert Stevens, Jerry Winter:
The BioHub Knowledge Base: Ontology and Repository for Sustainable Biosourcing. J. Biomed. Semant. 7: 30 (2016) - [j29]George Karystianis, Therese Sheppard, William G. Dixon, Goran Nenadic:
Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database. BMC Medical Informatics Decis. Mak. 16: 18 (2016) - [c39]Aris-Kyriakos Koliopoulos, Paraskevas Yiapanis, Firat Tekiner, Goran Nenadic, John A. Keane:
Towards Automatic Memory Tuning for In-Memory Big Data Analytics in Clusters. BigData Congress 2016: 353-356 - [c38]Nikola Milosevic, Cassie Gregson, Robert Hernandez, Goran Nenadic:
Extracting Patient Data from Tables in Clinical Literature - Case Study on Extraction of BMI, Weight and Number of Patients. HEALTHINF 2016: 223-228 - [c37]Nikola Milosevic, Cassie Gregson, Robert Hernandez, Goran Nenadic:
Disentangling the Structure of Tables in Scientific Literature. NLDB 2016: 162-174 - [c36]Azad Dehghan, Tom Liptrot, Daniel Tibble, Matthew Barker-Hewitt, Goran Nenadic:
Identification of Occupation Mentions in Clinical Narratives. NLDB 2016: 359-365 - [c35]Mercedes Argüello Casteleiro, George Demetriou, Warren J. Read, Maria Jesus Fernandez Prieto, Diego Maseda-Fernandez, Goran Nenadic, Julie Klein, John A. Keane, Robert Stevens:
Deep Learning meets Semantic Web: A feasibility study with the Cardiovascular Disease Ontology and PubMed citations. ODLS 2016: 1-6 - [c34]Goran Nenadic:
Inferring Methodological Meta-knowledge from Large Biomedical Corpora. PACLIC 2016 - [c33]Mercedes Argüello Casteleiro, Maria Jesus Fernandez Prieto, George Demetriou, Nava Maroto, Warren J. Read, Diego Maseda-Fernandez, Jose Julio Des Diz, Goran Nenadic, John A. Keane, Robert Stevens:
Ontology Learning with Deep Learning: a Case Study on Patient Safety Using PubMed. SWAT4LS 2016 - [e1]Mariana L. Neves, Fabio Rinaldi, Goran Nenadic, Dietrich Rebholz-Schuhmann:
Proceedings of the 7th International Symposium on Semantic Mining in Biomedicine, SMBM 2016, Potsdam, Germany, August 4-5, 2016. CEUR Workshop Proceedings 1650, CEUR-WS.org 2016 [contents] - [i2]Nikola Milosevic, Goran Nenadic:
As Cool as a Cucumber: Towards a Corpus of Contemporary Similes in Serbian. CoRR abs/1605.06319 (2016) - 2015
- [j28]Geraint Duck, Aleksandar Kovacevic, David L. Robertson, Robert Stevens, Goran Nenadic:
Ambiguity and variability of database and software names in bioinformatics. J. Biomed. Semant. 6: 29 (2015) - [j27]Michele Filannino, Goran Nenadic:
Temporal expression extraction with extensive feature type selection and a posteriori label adjustment. Data Knowl. Eng. 100: 19-33 (2015) - [j26]George Karystianis, Azad Dehghan, Aleksandar Kovacevic, John A. Keane, Goran Nenadic:
Using local lexicalized rules to identify heart disease risk factors in clinical notes. J. Biomed. Informatics 58: S183-S188 (2015) - [j25]Azad Dehghan, Aleksandar Kovacevic, George Karystianis, John A. Keane, Goran Nenadic:
Combining knowledge- and data-driven methods for de-identification of clinical narratives. J. Biomed. Informatics 58: S53-S59 (2015) - [c32]Goran Nenadic:
Contextualisation of Biomedical Knowledge Through Large-Scale Processing of Literature, Clinical Narratives and Social Media. AIME 2015: 7-9 - [c31]Aris-Kyriakos Koliopoulos, Paraskevas Yiapanis, Firat Tekiner, Goran Nenadic, John A. Keane:
A Parallel Distributed Weka Framework for Big Data Mining Using Spark. BigData Congress 2015: 9-16 - 2014
- [j24]Geraint Duck, Goran Nenadic, Andy Brass, David L. Robertson, Robert Stevens:
Extracting patterns of database and software usage from the bioinformatics literature. Bioinform. 30(17): 601-608 (2014) - [j23]George Karystianis, Iain E. Buchan, Goran Nenadic:
Mining characteristics of epidemiological studies from Medline: a case study in obesity. J. Biomed. Semant. 5: 22 (2014) - [j22]Irena Spasic, Jacqueline Livsey, John A. Keane, Goran Nenadic:
Text mining of cancer-related information: Review of current status and future directions. Int. J. Medical Informatics 83(9): 605-623 (2014) - [c30]Mona Mohamed Zaki Ali, Goran Nenadic, Babis Theodoulidis:
Identification of Multi-Focal Questions in Question and Answer Reports. NLDB 2014: 126-137 - [c29]Michele Filannino, Goran Nenadic:
Using Machine Learning to Predict Temporal Orientation of Search Engines' Queries in the Temporalia Challenge. NTCIR 2014 - 2013
- [j21]Jörg Hakenberg, Goran Nenadic, Dietrich Rebholz-Schuhmann, Jin-Dong Kim:
Literature Mining Solutions for Life Science Research. Adv. Bioinformatics 2013: 320436:1-320436:2 (2013) - [j20]Daniel G. Jamieson, Phoebe M. Roberts, David L. Robertson, Ben Sidders, Goran Nenadic:
Cataloging the biomedical world of pain through semi-automated curation of molecular interactions. Database J. Biol. Databases Curation 2013 (2013) - [j19]Geraint Duck, Goran Nenadic, Andy Brass, David L. Robertson, Robert Stevens:
bioNerDS: exploring bioinformatics' database and software use through literature mining. BMC Bioinform. 14: 194 (2013) - [j18]Chengkun Wu, Jean-Marc Schwartz, Goran Nenadic:
PathNER: a tool for systematic identification of biological pathway mentions in the literature. BMC Syst. Biol. 7(S-3): S2 (2013) - [j17]Aleksandar Kovacevic, Azad Dehghan, Michele Filannino, John A. Keane, Goran Nenadic:
Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. J. Am. Medical Informatics Assoc. 20(5): 859-866 (2013) - [c28]Michele Filannino, Gavin Brown, Goran Nenadic:
ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge. SemEval@NAACL-HLT 2013: 53-57 - [c27]Azad Dehghan, John A. Keane, Goran Nenadic:
Challenges in Clinical Named Entity Recognition for Decision Support. SMC 2013: 947-951 - [c26]David Tian, Ann Gledson, Athos Antoniades, Aristos Aristodimou, Dimitrios Ntalaperas, Ratnesh Sahay, Jianxin Pan, Stavros Stivaros, Goran Nenadic, Xiao-Jun Zeng, John A. Keane:
A Bayesian Association Rule Mining Algorithm. SMC 2013: 3258-3264 - [i1]