


Остановите войну!
for scientists:


default search action
Aaron Roth 0001
Aaron Leon Roth
Person information

- affiliation: University of Pennsylvania, Department of Computer and Information Science, Philadelphia, PA, USA
- affiliation: Microsoft Research New England, Cambridge, MA, USA
- affiliation (PhD 2010): Carnegie Mellon University, Department of Computer Science, Pittsburgh, PA, USA
- not to be confused with: Aaron M. Roth
Other persons with the same name
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c106]Ira Globus-Harris
, Varun Gupta
, Christopher Jung
, Michael Kearns
, Jamie Morgenstern
, Aaron Roth
:
Multicalibrated Regression for Downstream Fairness. AIES 2023: 259-286 - [c105]Aaron Roth
, Alexander Tolbert
, Scott Weinstein
:
Reconciling Individual Probability Forecasts✱. FAccT 2023: 101-110 - [c104]Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth:
Batch Multivalid Conformal Prediction. ICLR 2023 - [c103]Yahav Bechavod, Aaron Roth:
Individually Fair Learning with One-Sided Feedback. ICML 2023: 1954-1977 - [c102]Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth, Jessica Sorrell:
Multicalibration as Boosting for Regression. ICML 2023: 11459-11492 - [c101]Georgy Noarov, Aaron Roth:
The Statistical Scope of Multicalibration. ICML 2023: 26283-26310 - [i113]Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth
, Jessica Sorrell:
Multicalibration as Boosting for Regression. CoRR abs/2301.13767 (2023) - [i112]Georgy Noarov, Aaron Roth
:
The Scope of Multicalibration: Characterizing Multicalibration via Property Elicitation. CoRR abs/2302.08507 (2023) - [i111]Shuai Tang, Sergül Aydöre, Michael Kearns, Saeyoung Rho, Aaron Roth, Yichen Wang, Yu-Xiang Wang, Zhiwei Steven Wu:
Improved Differentially Private Regression via Gradient Boosting. CoRR abs/2303.03451 (2023) - [i110]Siqi Deng, Emily Diana, Michael Kearns, Aaron Roth:
Balanced Filtering via Non-Disclosive Proxies. CoRR abs/2306.15083 (2023) - [i109]Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Scalable Membership Inference Attacks via Quantile Regression. CoRR abs/2307.03694 (2023) - [i108]Sumegha Garg, Christopher Jung, Omer Reingold, Aaron Roth:
Oracle Efficient Online Multicalibration and Omniprediction. CoRR abs/2307.08999 (2023) - [i107]Krishna Acharya, Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, Juba Ziani:
Oracle Efficient Algorithms for Groupwise Regret. CoRR abs/2310.04652 (2023) - [i106]Georgy Noarov, Ramya Ramalingam, Aaron Roth, Stephan Xie:
High-Dimensional Prediction for Sequential Decision Making. CoRR abs/2310.17651 (2023) - 2022
- [j32]Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth
, Juba Ziani
:
Pipeline Interventions. Math. Oper. Res. 47(4): 3207-3238 (2022) - [j31]Matthew Joseph
, Jieming Mao, Aaron Roth
:
Exponential Separations in Local Privacy. ACM Trans. Algorithms 18(4): 32:1-32:17 (2022) - [c100]Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth
, Michael Kearns, Stefano Soatto:
Mixed Differential Privacy in Computer Vision. CVPR 2022: 8366-8376 - [c99]Mingzi Niu, Sampath Kannan, Aaron Roth
, Rakesh Vohra:
Best vs. All: Equity and Accuracy of Standardized Test Score Reporting. FAccT 2022: 574-586 - [c98]Ira Globus-Harris, Michael Kearns, Aaron Roth
:
An Algorithmic Framework for Bias Bounties. FAccT 2022: 1106-1124 - [c97]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth
, Saeed Sharifi-Malvajerdi:
Multiaccurate Proxies for Downstream Fairness. FAccT 2022: 1207-1239 - [c96]Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, Aaron Roth
:
Online Multivalid Learning: Means, Moments, and Prediction Intervals. ITCS 2022: 82:1-82:24 - [c95]Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth:
Practical Adversarial Multivalid Conformal Prediction. NeurIPS 2022 - [c94]Daniel Lee, Georgy Noarov, Mallesh M. Pai, Aaron Roth:
Online Minimax Multiobjective Optimization: Multicalibeating and Other Applications. NeurIPS 2022 - [c93]Giuseppe Vietri, Cédric Archambeau, Sergül Aydöre, William Brown, Michael Kearns, Aaron Roth, Amaresh Ankit Siva, Shuai Tang, Zhiwei Steven Wu:
Private Synthetic Data for Multitask Learning and Marginal Queries. NeurIPS 2022 - [i105]Ira Globus-Harris, Michael Kearns, Aaron Roth:
Beyond the Frontier: Fairness Without Accuracy Loss. CoRR abs/2201.10408 (2022) - [i104]Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, Stefano Soatto:
Mixed Differential Privacy in Computer Vision. CoRR abs/2203.11481 (2022) - [i103]Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth
:
Practical Adversarial Multivalid Conformal Prediction. CoRR abs/2206.01067 (2022) - [i102]Yahav Bechavod, Aaron Roth
:
Individually Fair Learning with One-Sided Feedback. CoRR abs/2206.04475 (2022) - [i101]Aaron Roth, Alexander Tolbert, Scott Weinstein:
Reconciling Individual Probability Forecasts. CoRR abs/2209.01687 (2022) - [i100]Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth
:
Multicalibrated Regression for Downstream Fairness. CoRR abs/2209.07312 (2022) - [i99]Krishna Acharya, Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth
, Juba Ziani:
Wealth Dynamics Over Generations: Analysis and Interventions. CoRR abs/2209.07375 (2022) - [i98]Giuseppe Vietri, Cédric Archambeau, Sergül Aydöre, William Brown, Michael Kearns, Aaron Roth
, Amaresh Ankit Siva, Shuai Tang, Zhiwei Steven Wu:
Private Synthetic Data for Multitask Learning and Marginal Queries. CoRR abs/2209.07400 (2022) - [i97]Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth
:
Batch Multivalid Conformal Prediction. CoRR abs/2209.15145 (2022) - [i96]Travis Dick, Cynthia Dwork, Michael Kearns, Terrance Liu, Aaron Roth
, Giuseppe Vietri, Zhiwei Steven Wu:
Confidence-Ranked Reconstruction of Census Microdata from Published Statistics. CoRR abs/2211.03128 (2022) - 2021
- [c92]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth
:
Minimax Group Fairness: Algorithms and Experiments. AIES 2021: 66-76 - [c91]Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi:
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning. ALT 2021: 931-962 - [c90]Christopher Jung, Changhwa Lee, Mallesh M. Pai, Aaron Roth, Rakesh Vohra:
Moment Multicalibration for Uncertainty Estimation. COLT 2021: 2634-2678 - [c89]Aaron Roth:
A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk). ESA 2021: 2:1-2:1 - [c88]Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth
, Logan Stapleton, Zhiwei Steven Wu
:
An Algorithmic Framework for Fairness Elicitation. FORC 2021: 2:1-2:19 - [c87]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth
, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. FORC 2021: 6:1-6:23 - [c86]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Amaresh Ankit Siva:
Differentially Private Query Release Through Adaptive Projection. ICML 2021: 457-467 - [c85]Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth
, Juba Ziani:
Pipeline Interventions. ITCS 2021: 8:1-8:20 - [c84]Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Chris Waites:
Adaptive Machine Unlearning. NeurIPS 2021: 16319-16330 - [c83]Emily Diana, Travis Dick, Hadi Elzayn, Michael Kearns, Aaron Roth
, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. EC 2021: 371-389 - [c82]Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Moshe Shenfeld:
A new analysis of differential privacy's generalization guarantees (invited paper). STOC 2021: 9 - [i95]Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, Aaron Roth:
Online Multivalid Learning: Means, Moments, and Prediction Intervals. CoRR abs/2101.01739 (2021) - [i94]Sampath Kannan, Mingzi Niu, Aaron Roth, Rakesh Vohra:
Best vs. All: Equity and Accuracy of Standardized Test Score Reporting. CoRR abs/2102.07809 (2021) - [i93]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. CoRR abs/2102.08454 (2021) - [i92]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Amaresh Ankit Siva
:
Differentially Private Query Release Through Adaptive Projection. CoRR abs/2103.06641 (2021) - [i91]Jinshuo Dong, Aaron Roth, Weijie J. Su:
Rejoinder: Gaussian Differential Privacy. CoRR abs/2104.01987 (2021) - [i90]Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Chris Waites:
Adaptive Machine Unlearning. CoRR abs/2106.04378 (2021) - [i89]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi:
Multiaccurate Proxies for Downstream Fairness. CoRR abs/2107.04423 (2021) - [i88]Georgy Noarov, Mallesh M. Pai, Aaron Roth:
Online Multiobjective Minimax Optimization and Applications. CoRR abs/2108.03837 (2021) - 2020
- [j30]Alexandra Chouldechova, Aaron Roth
:
A snapshot of the frontiers of fairness in machine learning. Commun. ACM 63(5): 82-89 (2020) - [j29]Matthew Joseph, Aaron Roth
, Jonathan R. Ullman, Bo Waggoner:
Local Differential Privacy for Evolving Data. J. Priv. Confidentiality 10(1) (2020) - [j28]Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, Aaron Roth
:
Testing differential privacy with dual interpreters. Proc. ACM Program. Lang. 4(OOPSLA): 165:1-165:26 (2020) - [j27]Michael Kearns, Aaron Roth:
Ethical algorithm design. SIGecom Exch. 18(1): 31-36 (2020) - [j26]Aaron Roth
, Aleksandrs Slivkins, Jonathan R. Ullman, Zhiwei Steven Wu:
Multidimensional Dynamic Pricing for Welfare Maximization. ACM Trans. Economics and Comput. 8(1): 6:1-6:35 (2020) - [c81]Ryan Rogers, Aaron Roth, Adam D. Smith, Nathan Srebro, Om Thakkar, Blake E. Woodworth:
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis. AISTATS 2020: 2830-2840 - [c80]Emily Diana, Michael Kearns, Seth Neel, Aaron Roth
:
Optimal, truthful, and private securities lending. ICAIF 2020: 48:1-48:8 - [c79]Seth Neel, Aaron Roth, Giuseppe Vietri, Zhiwei Steven Wu:
Oracle Efficient Private Non-Convex Optimization. ICML 2020: 7243-7252 - [c78]Christopher Jung, Katrina Ligett
, Seth Neel, Aaron Roth
, Saeed Sharifi-Malvajerdi, Moshe Shenfeld:
A New Analysis of Differential Privacy's Generalization Guarantees. ITCS 2020: 31:1-31:17 - [c77]Emily Diana, Hadi Elzayn, Michael Kearns, Aaron Roth
, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. EC 2020: 541-583 - [c76]Christopher Jung, Sampath Kannan, Changhwa Lee, Mallesh M. Pai, Aaron Roth
, Rakesh Vohra:
Fair Prediction with Endogenous Behavior. EC 2020: 677-678 - [c75]Matthew Joseph, Jieming Mao, Aaron Roth:
Exponential Separations in Local Differential Privacy. SODA 2020: 515-527 - [e1]Aaron Roth:
1st Symposium on Foundations of Responsible Computing, FORC 2020, June 1-3, 2020, Harvard University, Cambridge, MA, USA (virtual conference). LIPIcs 156, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2020, ISBN 978-3-95977-142-9 [contents] - [i87]Daniel Kifer, Solomon Messing, Aaron Roth, Abhradeep Thakurta, Danfeng Zhang:
Guidelines for Implementing and Auditing Differentially Private Systems. CoRR abs/2002.04049 (2020) - [i86]Emily Diana, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. CoRR abs/2002.05699 (2020) - [i85]Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, Juba Ziani:
Pipeline Interventions. CoRR abs/2002.06592 (2020) - [i84]Christopher Jung, Sampath Kannan, Changhwa Lee, Mallesh M. Pai, Aaron Roth, Rakesh Vohra:
Fair Prediction with Endogenous Behavior. CoRR abs/2002.07147 (2020) - [i83]Emily Diana, Travis Dick, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. CoRR abs/2006.07281 (2020) - [i82]Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi:
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning. CoRR abs/2007.02923 (2020) - [i81]Christopher Jung, Changhwa Lee, Mallesh M. Pai, Aaron Roth, Rakesh Vohra:
Moment Multicalibration for Uncertainty Estimation. CoRR abs/2008.08037 (2020) - [i80]Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, Aaron Roth:
Testing Differential Privacy with Dual Interpreters. CoRR abs/2010.04126 (2020) - [i79]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth:
Convergent Algorithms for (Relaxed) Minimax Fairness. CoRR abs/2011.03108 (2020)
2010 – 2019
- 2019
- [j25]Gilles Barthe, Christos Dimitrakakis, Marco Gaboardi, Andreas Haeberlen, Aaron Roth, Aleksandra B. Slavkovic:
Program for TPDP 2016. J. Priv. Confidentiality 9(1) (2019) - [j24]Zhiwei Steven Wu, Aaron Roth, Katrina Ligett, Bo Waggoner, Seth Neel:
Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM. J. Priv. Confidentiality 9(2) (2019) - [j23]Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, Aaron Roth
:
Fuzzi: a three-level logic for differential privacy. Proc. ACM Program. Lang. 3(ICFP): 93:1-93:28 (2019) - [c74]Michael J. Kearns, Seth Neel, Aaron Roth
, Zhiwei Steven Wu
:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. FAT 2019: 100-109 - [c73]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth
, Zachary Schutzman
:
Fair Algorithms for Learning in Allocation Problems. FAT 2019: 170-179 - [c72]Sampath Kannan, Aaron Roth
, Juba Ziani:
Downstream Effects of Affirmative Action. FAT 2019: 240-248 - [c71]Seth Neel, Aaron Roth
, Zhiwei Steven Wu:
How to Use Heuristics for Differential Privacy. FOCS 2019: 72-93 - [c70]Matthew Joseph, Jieming Mao, Seth Neel, Aaron Roth
:
The Role of Interactivity in Local Differential Privacy. FOCS 2019: 94-105 - [c69]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. ICML 2019: 3000-3008 - [c68]Saeed Sharifi-Malvajerdi, Michael J. Kearns, Aaron Roth:
Average Individual Fairness: Algorithms, Generalization and Experiments. NeurIPS 2019: 8240-8249 - [c67]Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
Equal Opportunity in Online Classification with Partial Feedback. NeurIPS 2019: 8972-8982 - [i78]Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
Equal Opportunity in Online Classification with Partial Feedback. CoRR abs/1902.02242 (2019) - [i77]Matthew Joseph, Jieming Mao, Seth Neel, Aaron Roth:
The Role of Interactivity in Local Differential Privacy. CoRR abs/1904.03564 (2019) - [i76]Jinshuo Dong, Aaron Roth, Weijie J. Su:
Gaussian Differential Privacy. CoRR abs/1905.02383 (2019) - [i75]Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Average Individual Fairness: Algorithms, Generalization and Experiments. CoRR abs/1905.10607 (2019) - [i74]Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu:
Eliciting and Enforcing Subjective Individual Fairness. CoRR abs/1905.10660 (2019) - [i73]Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, Aaron Roth:
Fuzzi: A Three-Level Logic for Differential Privacy. CoRR abs/1905.12594 (2019) - [i72]Ryan Rogers, Aaron Roth, Adam D. Smith, Nathan Srebro, Om Thakkar, Blake E. Woodworth:
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis. CoRR abs/1906.09231 (2019) - [i71]Matthew Joseph, Jieming Mao, Aaron Roth:
Exponential Separations in Local Differential Privacy Through Communication Complexity. CoRR abs/1907.00813 (2019) - [i70]Seth Neel, Aaron Roth, Giuseppe Vietri, Zhiwei Steven Wu:
Differentially Private Objective Perturbation: Beyond Smoothness and Convexity. CoRR abs/1909.01783 (2019) - [i69]Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Moshe Shenfeld:
A New Analysis of Differential Privacy's Generalization Guarantees. CoRR abs/1909.03577 (2019) - [i68]Emily Diana, Michael J. Kearns, Seth Neel, Aaron Roth:
Optimal, Truthful, and Private Securities Lending. CoRR abs/1912.06202 (2019) - 2018
- [j22]Sampath Kannan, Jamie Morgenstern, Ryan Rogers, Aaron Roth
:
Private Pareto Optimal Exchange. ACM Trans. Economics and Comput. 6(3-4): 12:1-12:25 (2018) - [c66]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth
:
Meritocratic Fairness for Infinite and Contextual Bandits. AIES 2018: 158-163 - [c65]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. ICML 2018: 2569-2577 - [c64]Seth Neel, Aaron Roth:
Mitigating Bias in Adaptive Data Gathering via Differential Privacy. ICML 2018: 3717-3726 - [c63]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu
:
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. NeurIPS 2018: 2231-2241 - [c62]Matthew Joseph, Aaron Roth, Jonathan R. Ullman, Bo Waggoner:
Local Differential Privacy for Evolving Data. NeurIPS 2018: 2381-2390 - [c61]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. NeurIPS 2018: 2605-2614 - [c60]Jinshuo Dong, Aaron Roth
, Zachary Schutzman
, Bo Waggoner, Zhiwei Steven Wu:
Strategic Classification from Revealed Preferences. EC 2018: 55-70 - [i67]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. CoRR abs/1801.03423 (2018) - [i66]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. CoRR abs/1802.06936 (2018) - [i65]Matthew Joseph, Aaron Roth, Jonathan R. Ullman, Bo Waggoner:
Local Differential Privacy for Evolving Data. CoRR abs/1802.07128 (2018) - [i64]Seth Neel, Aaron Roth:
Mitigating Bias in Adaptive Data Gathering via Differential Privacy. CoRR abs/1806.02329 (2018) - [i63]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. CoRR abs/1808.08166 (2018) - [i62]Sampath Kannan, Aaron Roth, Juba Ziani:
Downstream Effects of Affirmative Action. CoRR abs/1808.09004 (2018) - [i61]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Zachary Schutzman
:
Fair Algorithms for Learning in Allocation Problems. CoRR abs/1808.10549 (2018) - [i60]Alexandra Chouldechova, Aaron Roth:
The Frontiers of Fairness in Machine Learning. CoRR abs/1810.08810 (2018) - [i59]Seth Neel, Aaron Roth, Zhiwei Steven Wu:
How to Use Heuristics for Differential Privacy. CoRR abs/1811.07765 (2018) - [i58]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. CoRR abs/1812.02696 (2018) - 2017
- [j21]Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth
:
Guilt-free data reuse. Commun. ACM 60(4): 86-93 (2017) - [j20]Aaron Roth
:
Pricing information (and its implications): technical perspective. Commun. ACM 60(12): 78 (2017) - [j19]Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth
, Benjamin C. Pierce:
A framework for adaptive differential privacy. Proc. ACM Program. Lang. 1(ICFP): 10:1-10:29 (2017) - [j18]Mallesh M. Pai, Aaron Roth
, Jonathan R. Ullman:
An Antifolk Theorem for Large Repeated Games. ACM Trans. Economics and Comput. 5(2): 10:1-10:20 (2017) - [c59]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Reinforcement Learning. ICML 2017: 1617-1626 - [c58]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Meritocratic Fairness for Cross-Population Selection. ICML 2017: 1828-1836 - [c57]Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM. NIPS 2017: 2566-2576 - [c56]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth
, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. EC 2017: 369-386 - [c55]