default search action
Aleksandrs Slivkins
Alex Slivkins
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j29]Max Simchowitz, Aleksandrs Slivkins:
Exploration and Incentives in Reinforcement Learning. Oper. Res. 72(3): 983-998 (2024) - [c65]Ian Ball, James W. Bono, Justin Grana, Nicole Immorlica, Brendan Lucier, Aleksandrs Slivkins:
Content Filtering with Inattentive Information Consumers. AAAI 2024: 9485-9493 - [c64]Lequn Wang, Akshay Krishnamurthy, Alex Slivkins:
Oracle-Efficient Pessimism: Offline Policy Optimization In Contextual Bandits. AISTATS 2024: 766-774 - [c63]Brendan Lucier, Sarath Pattathil, Aleksandrs Slivkins, Mengxiao Zhang:
Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics. COLT 2024: 3642-3643 - [c62]Kate Donahue, Nicole Immorlica, Meena Jagadeesan, Brendan Lucier, Aleksandrs Slivkins:
Impact of Decentralized Learning on Player Utilities in Stackelberg Games. ICML 2024 - [c61]Yiding Feng, Brendan Lucier, Aleksandrs Slivkins:
Strategic Budget Selection in a Competitive Autobidding World. STOC 2024: 213-224 - [i62]Anand Kalvit, Aleksandrs Slivkins, Yonatan Gur:
Incentivized Exploration via Filtered Posterior Sampling. CoRR abs/2402.13338 (2024) - [i61]Kate Donahue, Nicole Immorlica, Meena Jagadeesan, Brendan Lucier, Aleksandrs Slivkins:
Impact of Decentralized Learning on Player Utilities in Stackelberg Games. CoRR abs/2403.00188 (2024) - [i60]Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, Aleksandrs Slivkins:
Can large language models explore in-context? CoRR abs/2403.15371 (2024) - 2023
- [j28]Mark Sellke, Aleksandrs Slivkins:
The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity. Oper. Res. 71(5): 1706-1732 (2023) - [j27]Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, Zhiwei Steven Wu:
Greedy Algorithm Almost Dominates in Smoothed Contextual Bandits. SIAM J. Comput. 52(2): 487-524 (2023) - [c60]Aleksandrs Slivkins, Karthik Abinav Sankararaman, Dylan J. Foster:
Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression. COLT 2023: 4633-4656 - [c59]Jason Gaitonde, Yingkai Li, Bar Light, Brendan Lucier, Aleksandrs Slivkins:
Budget Pacing in Repeated Auctions: Regret and Efficiency Without Convergence. ITCS 2023: 52:1-52:1 - [c58]Kiarash Banihashem, MohammadTaghi Hajiaghayi, Suho Shin, Aleksandrs Slivkins:
Bandit Social Learning under Myopic Behavior. NeurIPS 2023 - [i59]Brendan Lucier, Sarath Pattathil, Aleksandrs Slivkins, Mengxiao Zhang:
Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics. CoRR abs/2301.13306 (2023) - [i58]Kiarash Banihashem, MohammadTaghi Hajiaghayi, Suho Shin, Aleksandrs Slivkins:
Bandit Social Learning: Exploration under Myopic Behavior. CoRR abs/2302.07425 (2023) - [i57]Lequn Wang, Akshay Krishnamurthy, Aleksandrs Slivkins:
Oracle-Efficient Pessimism: Offline Policy Optimization in Contextual Bandits. CoRR abs/2306.07923 (2023) - [i56]Yiding Feng, Brendan Lucier, Aleksandrs Slivkins:
Strategic Budget Selection in a Competitive Autobidding World. CoRR abs/2307.07374 (2023) - [i55]Keegan Harris, Nicole Immorlica, Brendan Lucier, Aleksandrs Slivkins:
Algorithmic Persuasion Through Simulation: Information Design in the Age of Generative AI. CoRR abs/2311.18138 (2023) - [i54]Seyed A. Esmaeili, Suho Shin, Aleksandrs Slivkins:
Robust and Performance Incentivizing Algorithms for Multi-Armed Bandits with Strategic Agents. CoRR abs/2312.07929 (2023) - 2022
- [j26]Yishay Mansour, Alex Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. Oper. Res. 70(2): 1105-1127 (2022) - [j25]Nicole Immorlica, Karthik Abinav Sankararaman, Robert E. Schapire, Aleksandrs Slivkins:
Adversarial Bandits with Knapsacks. J. ACM 69(6): 40:1-40:47 (2022) - [c57]Xinyan Hu, Dung Daniel T. Ngo, Aleksandrs Slivkins, Zhiwei Steven Wu:
Incentivizing Combinatorial Bandit Exploration. NeurIPS 2022 - [c56]Moshe Babaioff, Ronny Lempel, Brendan Lucier, Ishai Menache, Aleksandrs Slivkins, Sam Chiu-wai Wong:
Truthful Online Scheduling of Cloud Workloads under Uncertainty. WWW 2022: 151-161 - [i53]Yingkai Li, Aleksandrs Slivkins:
Incentivizing Participation in Clinical Trials. CoRR abs/2202.06191 (2022) - [i52]Moshe Babaioff, Ronny Lempel, Brendan Lucier, Ishai Menache, Aleksandrs Slivkins, Sam Chiu-wai Wong:
Truthful Online Scheduling of Cloud Workloads under Uncertainty. CoRR abs/2203.01213 (2022) - [i51]Jason Gaitonde, Yingkai Li, Bar Light, Brendan Lucier, Aleksandrs Slivkins:
Budget Pacing in Repeated Auctions: Regret and Efficiency without Convergence. CoRR abs/2205.08674 (2022) - [i50]Xinyan Hu, Dung Daniel T. Ngo, Aleksandrs Slivkins, Zhiwei Steven Wu:
Incentivizing Combinatorial Bandit Exploration. CoRR abs/2206.00494 (2022) - [i49]Aleksandrs Slivkins, Dylan J. Foster:
Efficient Contextual Bandits with Knapsacks via Regression. CoRR abs/2211.07484 (2022) - 2021
- [c55]Mathias Lécuyer, Sang Hoon Kim, Mihir Nanavati, Junchen Jiang, Siddhartha Sen, Aleksandrs Slivkins, Amit Sharma:
Sayer: Using Implicit Feedback to Optimize System Policies. SoCC 2021: 273-288 - [c54]Thodoris Lykouris, Max Simchowitz, Alex Slivkins, Wen Sun:
Corruption-robust exploration in episodic reinforcement learning. COLT 2021: 3242-3245 - [c53]Chara Podimata, Alex Slivkins:
Adaptive Discretization for Adversarial Lipschitz Bandits. COLT 2021: 3788-3805 - [c52]Karthik Abinav Sankararaman, Aleksandrs Slivkins:
Bandits with Knapsacks beyond the Worst Case. NeurIPS 2021: 23191-23204 - [c51]Mark Sellke, Aleksandrs Slivkins:
The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity. EC 2021: 795-796 - [c50]Mahsa Derakhshan, David M. Pennock, Aleksandrs Slivkins:
Beating Greedy For Approximating Reserve Prices in Multi-Unit VCG Auctions. SODA 2021: 1099-1118 - [i48]Max Simchowitz, Aleksandrs Slivkins:
Exploration and Incentives in Reinforcement Learning. CoRR abs/2103.00360 (2021) - [i47]Mathias Lécuyer, Sang Hoon Kim, Mihir Nanavati, Junchen Jiang, Siddhartha Sen, Amit Sharma, Aleksandrs Slivkins:
Sayer: Using Implicit Feedback to Optimize System Policies. CoRR abs/2110.14874 (2021) - 2020
- [j24]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. Oper. Res. 68(4): 1132-1161 (2020) - [j23]Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, Chicheng Zhang:
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting. J. Mach. Learn. Res. 21: 137:1-137:45 (2020) - [j22]Aleksandrs Slivkins:
Book announcement: Introduction to Multi-Armed Bandits. SIGecom Exch. 18(1): 28-30 (2020) - [j21]Aaron Roth, Aleksandrs Slivkins, Jonathan R. Ullman, Zhiwei Steven Wu:
Multidimensional Dynamic Pricing for Welfare Maximization. ACM Trans. Economics and Comput. 8(1): 6:1-6:35 (2020) - [c49]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. NeurIPS 2020 - [c48]Maryam Majzoubi, Chicheng Zhang, Rajan Chari, Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins:
Efficient Contextual Bandits with Continuous Actions. NeurIPS 2020 - [c47]Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, Zhiwei Steven Wu:
Incentivizing Exploration with Selective Data Disclosure. EC 2020: 647-648 - [i46]Karthik Abinav Sankararaman, Aleksandrs Slivkins:
Advances in Bandits with Knapsacks. CoRR abs/2002.00253 (2020) - [i45]Mark Sellke, Aleksandrs Slivkins:
Sample Complexity of Incentivized Exploration. CoRR abs/2002.00558 (2020) - [i44]Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, Zhiwei Steven Wu:
Greedy Algorithm almost Dominates in Smoothed Contextual Bandits. CoRR abs/2005.10624 (2020) - [i43]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. CoRR abs/2006.05051 (2020) - [i42]Maryam Majzoubi, Chicheng Zhang, Rajan Chari, Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins:
Efficient Contextual Bandits with Continuous Actions. CoRR abs/2006.06040 (2020) - [i41]Chara Podimata, Aleksandrs Slivkins:
Adaptive Discretization for Adversarial Bandits with Continuous Action Spaces. CoRR abs/2006.12367 (2020) - [i40]Guy Aridor, Yishay Mansour, Aleksandrs Slivkins, Zhiwei Steven Wu:
Competing Bandits: The Perils of Exploration Under Competition. CoRR abs/2007.10144 (2020) - [i39]Mahsa Derakhshan, David M. Pennock, Aleksandrs Slivkins:
Beating Greedy For Approximating Reserve Prices in Multi-Unit VCG Auctions. CoRR abs/2007.12653 (2020)
2010 – 2019
- 2019
- [j20]Aleksandrs Slivkins:
Introduction to Multi-Armed Bandits. Found. Trends Mach. Learn. 12(1-2): 1-286 (2019) - [j19]Robert Kleinberg, Aleksandrs Slivkins, Eli Upfal:
Bandits and Experts in Metric Spaces. J. ACM 66(4): 30:1-30:77 (2019) - [c46]Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, Chicheng Zhang:
Contextual bandits with continuous actions: Smoothing, zooming, and adapting. COLT 2019: 2025-2027 - [c45]Guy Aridor, Kevin Liu, Aleksandrs Slivkins, Zhiwei Steven Wu:
The Perils of Exploration under Competition: A Computational Modeling Approach. EC 2019: 171-172 - [c44]Nicole Immorlica, Karthik Abinav Sankararaman, Robert E. Schapire, Aleksandrs Slivkins:
Adversarial Bandits with Knapsacks. FOCS 2019: 202-219 - [c43]Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, Zhiwei Steven Wu:
Bayesian Exploration with Heterogeneous Agents. WWW 2019: 751-761 - [i38]Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, Chicheng Zhang:
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting. CoRR abs/1902.01520 (2019) - [i37]Guy Aridor, Kevin Liu, Aleksandrs Slivkins, Zhiwei Steven Wu:
Competing Bandits: The Perils of Exploration under Competition. CoRR abs/1902.05590 (2019) - [i36]Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, Zhiwei Steven Wu:
Bayesian Exploration with Heterogeneous Agents. CoRR abs/1902.07119 (2019) - [i35]Aleksandrs Slivkins:
Introduction to Multi-Armed Bandits. CoRR abs/1904.07272 (2019) - [i34]Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Corruption Robust Exploration in Episodic Reinforcement Learning. CoRR abs/1911.08689 (2019) - 2018
- [j18]Ashwinkumar Badanidiyuru, Robert Kleinberg, Aleksandrs Slivkins:
Bandits with Knapsacks. J. ACM 65(3): 13:1-13:55 (2018) - [c42]Karthik Abinav Sankararaman, Aleksandrs Slivkins:
Combinatorial Semi-Bandits with Knapsacks. AISTATS 2018: 1760-1770 - [c41]Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, Zhiwei Steven Wu:
The Externalities of Exploration and How Data Diversity Helps Exploitation. COLT 2018: 1724-1738 - [c40]Yishay Mansour, Aleksandrs Slivkins, Zhiwei Steven Wu:
Competing Bandits: Learning Under Competition. ITCS 2018: 48:1-48:27 - [i33]Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, Zhiwei Steven Wu:
The Externalities of Exploration and How Data Diversity Helps Exploitation. CoRR abs/1806.00543 (2018) - [i32]Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, Zhiwei Steven Wu:
Incentivizing Exploration with Unbiased Histories. CoRR abs/1811.06026 (2018) - [i31]Nicole Immorlica, Karthik Abinav Sankararaman, Robert E. Schapire, Aleksandrs Slivkins:
Adversarial Bandits with Knapsacks. CoRR abs/1811.11881 (2018) - 2017
- [j17]Aleksandrs Slivkins:
Incentivizing exploration via information asymmetry. XRDS 24(1): 38-41 (2017) - [c39]Mathias Lécuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen, Amit Sharma, Aleksandrs Slivkins:
Harvesting Randomness to Optimize Distributed Systems. HotNets 2017: 178-184 - [c38]Aaron Roth, Aleksandrs Slivkins, Jonathan R. Ullman, Zhiwei Steven Wu:
Multidimensional Dynamic Pricing for Welfare Maximization. EC 2017: 519-536 - [c37]Soheil Behnezhad, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi, Aleksandrs Slivkins:
A Polynomial Time Algorithm for Spatio-Temporal Security Games. EC 2017: 697-714 - [i30]Yishay Mansour, Aleksandrs Slivkins, Zhiwei Steven Wu:
Competing Bandits: Learning under Competition. CoRR abs/1702.08533 (2017) - [i29]Karthik Abinav Sankararaman, Aleksandrs Slivkins:
Semi-Bandits with Knapsacks. CoRR abs/1705.08110 (2017) - [i28]Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Aleksandrs Slivkins:
A Polynomial Time Algorithm for Spatio-Temporal Security Games. CoRR abs/1706.05711 (2017) - 2016
- [j16]Chien-Ju Ho, Aleksandrs Slivkins, Jennifer Wortman Vaughan:
Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems. J. Artif. Intell. Res. 55: 317-359 (2016) - [j15]David Kempe, Jon M. Kleinberg, Sigal Oren, Aleksandrs Slivkins:
Selection and influence in cultural dynamics. Netw. Sci. 4(1): 1-27 (2016) - [c36]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. EC 2016: 661 - [c35]Ittai Abraham, Omar Alonso, Vasilis Kandylas, Rajesh Patel, Steven Shelford, Aleksandrs Slivkins:
How Many Workers to Ask?: Adaptive Exploration for Collecting High Quality Labels. SIGIR 2016: 473-482 - [i27]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. CoRR abs/1602.07570 (2016) - [i26]Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen Lee, Jiaji Li, I. Dan Melamed, Gal Oshri, Oswaldo Ribas, Siddhartha Sen, Alex Slivkins:
A Multiworld Testing Decision Service. CoRR abs/1606.03966 (2016) - [i25]Aaron Roth, Aleksandrs Slivkins, Jonathan R. Ullman, Zhiwei Steven Wu:
Multidimensional Dynamic Pricing for Welfare Maximization. CoRR abs/1607.05397 (2016) - 2015
- [j14]Moshe Babaioff, Robert D. Kleinberg, Aleksandrs Slivkins:
Truthful Mechanisms with Implicit Payment Computation. J. ACM 62(2): 10:1-10:37 (2015) - [j13]Ittai Abraham, Shiri Chechik, David Kempe, Aleksandrs Slivkins:
Low-Distortion Inference of Latent Similarities from a Multiplex Social Network. SIAM J. Comput. 44(3): 617-668 (2015) - [j12]Chien-Ju Ho, Aleksandrs Slivkins, Siddharth Suri, Jennifer Wortman Vaughan:
Incentivizing high quality crowdwork. SIGecom Exch. 14(2): 26-34 (2015) - [j11]Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, Aleksandrs Slivkins:
Dynamic Pricing with Limited Supply. ACM Trans. Economics and Comput. 3(1): 4:1-4:26 (2015) - [c34]Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi:
Contextual Dueling Bandits. COLT 2015: 563-587 - [c33]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. EC 2015: 565-582 - [c32]Chien-Ju Ho, Aleksandrs Slivkins, Siddharth Suri, Jennifer Wortman Vaughan:
Incentivizing High Quality Crowdwork. WWW 2015: 419-429 - [i24]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. CoRR abs/1502.04147 (2015) - [i23]Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi:
Contextual Dueling Bandits. CoRR abs/1502.06362 (2015) - [i22]Chien-Ju Ho, Aleksandrs Slivkins, Siddharth Suri, Jennifer Wortman Vaughan:
Incentivizing High Quality Crowdwork. CoRR abs/1503.05897 (2015) - 2014
- [j10]Aleksandrs Slivkins:
Contextual bandits with similarity information. J. Mach. Learn. Res. 15(1): 2533-2568 (2014) - [j9]Moshe Babaioff, Yogeshwer Sharma, Aleksandrs Slivkins:
Characterizing Truthful Multi-armed Bandit Mechanisms. SIAM J. Comput. 43(1): 194-230 (2014) - [c31]Alekh Agarwal, Ashwinkumar Badanidiyuru, Miroslav Dudík, Robert E. Schapire, Aleksandrs Slivkins:
Robust Multi-objective Learning with Mentor Feedback. COLT 2014: 726-741 - [c30]Ashwinkumar Badanidiyuru, John Langford, Aleksandrs Slivkins:
Resourceful Contextual Bandits. COLT 2014: 1109-1134 - [c29]Ittai Abraham, Omar Alonso, Vasilis Kandylas, Rajesh Patel, Steven Shelford, Aleksandrs Slivkins:
Using Worker Quality Scores to Improve Stopping Rules. HCOMP 2014: 2-3 - [c28]Yevgeny Seldin, Aleksandrs Slivkins:
One Practical Algorithm for Both Stochastic and Adversarial Bandits. ICML 2014: 1287-1295 - [c27]Chien-Ju Ho, Aleksandrs Slivkins, Jennifer Wortman Vaughan:
Adaptive contract design for crowdsourcing markets: bandit algorithms for repeated principal-agent problems. EC 2014: 359-376 - [i21]Ashwinkumar Badanidiyuru, John Langford, Aleksandrs Slivkins:
Resourceful Contextual Bandits. CoRR abs/1402.6779 (2014) - [i20]Chien-Ju Ho, Aleksandrs Slivkins, Jennifer Wortman Vaughan:
Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems. CoRR abs/1405.2875 (2014) - [i19]Ittai Abraham, Omar Alonso, Vasilis Kandylas, Rajesh Patel, Steven Shelford, Aleksandrs Slivkins:
Using Worker Quality Scores to Improve Stopping Rules. CoRR abs/1411.0149 (2014) - 2013
- [j8]Aleksandrs Slivkins, Filip Radlinski, Sreenivas Gollapudi:
Ranked bandits in metric spaces: learning diverse rankings over large document collections. J. Mach. Learn. Res. 14(1): 399-436 (2013) - [j7]Aleksandrs Slivkins, Jennifer Wortman Vaughan:
Online decision making in crowdsourcing markets: theoretical challenges. SIGecom Exch. 12(2): 4-23 (2013) - [c26]Ittai Abraham, Omar Alonso, Vasilis Kandylas, Aleksandrs Slivkins:
Adaptive Crowdsourcing Algorithms for the Bandit Survey Problem. COLT 2013: 882-910 - [c25]Ashwinkumar Badanidiyuru, Robert Kleinberg, Aleksandrs Slivkins:
Bandits with Knapsacks. FOCS 2013: 207-216 - [c24]Moshe Babaioff, Robert Kleinberg, Aleksandrs Slivkins:
Multi-parameter mechanisms with implicit payment computation. EC 2013: 35-52 - [c23]David Kempe, Jon M. Kleinberg, Sigal Oren, Aleksandrs Slivkins:
Selection and influence in cultural dynamics. EC 2013: 585-586 - [c22]Ittai Abraham, Shiri Chechik, David Kempe, Aleksandrs Slivkins:
Low-distortion Inference of Latent Similarities from a Multiplex Social Network. SODA 2013: 1853-1872 - [i18]Ittai Abraham, Omar Alonso, Vasilis Kandylas, Aleksandrs Slivkins:
Adaptive Crowdsourcing Algorithms for the Bandit Survey Problem. CoRR abs/1302.3268 (2013) - [i17]Moshe Babaioff, Robert Kleinberg, Aleksandrs Slivkins:
Multi-parameter Mechanisms with Implicit Payment Computation. CoRR abs/1302.4138 (2013) - [i16]David Kempe, Jon M. Kleinberg, Sigal Oren, Aleksandrs Slivkins:
Selection and Influence in Cultural Dynamics. CoRR abs/1304.7468 (2013) - [i15]Ashwinkumar Badanidiyuru, Robert Kleinberg, Aleksandrs Slivkins:
Bandits with Knapsacks. CoRR abs/1305.2545 (2013) - [i14]Aleksandrs Slivkins:
Dynamic Ad Allocation: Bandits with Budgets. CoRR abs/1306.0155 (2013) - [i13]Aleksandrs Slivkins, Jennifer Wortman Vaughan:
Online Decision Making in Crowdsourcing Markets: Theoretical Challenges (Position Paper). CoRR abs/1308.1746 (2013) - [i12]Robert Kleinberg, Aleksandrs Slivkins, Eli Upfal:
Bandits and Experts in Metric Spaces. CoRR abs/1312.1277 (2013) - 2012
- [c21]Moshe Babaioff, Shaddin Dughmi, Robert Kleinberg, Aleksandrs Slivkins:
Dynamic pricing with limited supply. EC 2012: 74-91 - [c20]Sébastien Bubeck, Aleksandrs Slivkins:
The Best of Both Worlds: Stochastic and Adversarial Bandits. COLT 2012: 42.1-42.23 - [i11]Ittai Abraham, Shiri Chechik, David Kempe, Aleksandrs Slivkins:
Low-distortion Inference of Latent Similarities from a Multiplex Social Network. CoRR abs/1202.0922 (2012) - [i10]Sébastien Bubeck, Aleksandrs Slivkins:
The best of both worlds: stochastic and adversarial bandits. CoRR abs/1202.4473 (2012) - 2011
- [c19]Aleksandrs Slivkins:
Multi-armed bandits on implicit metric spaces. NIPS 2011: 1602-1610 - [c18]Aleksandrs Slivkins:
Contextual Bandits with Similarity Information. COLT 2011: 679-702 - [c17]Aleksandrs Slivkins:
Monotone multi-armed bandit allocations. COLT 2011: 829-834 - [i9]Moshe Babaioff, Shaddin Dughmi, Robert Kleinberg, Aleksandrs Slivkins:
Dynamic Pricing with Limited Supply. CoRR abs/1108.4142 (2011) - 2010
- [j6]Aleksandrs Slivkins:
Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs. SIAM J. Discret. Math. 24(1): 146-157 (2010) - [c16]