


default search action
Martin C. Rinard
Person information
- affiliation: Massachusetts Institute of Technology (MIT), CSAIL, Cambridge, MA, USA
- affiliation (PhD 1994): Stanford University, CA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j45]Ajay Brahmakshatriya
, Martin C. Rinard, Manya Ghobadi
, Saman P. Amarasinghe
:
NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks. Proc. ACM Program. Lang. 8(PLDI): 467-491 (2024) - [j44]Mathieu Huot
, Matin Ghavami
, Alexander K. Lew
, Ulrich Schaechtle
, Cameron E. Freer
, Zane Shelby
, Martin C. Rinard
, Feras A. Saad
, Vikash K. Mansinghka
:
GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables. Proc. ACM Program. Lang. 8(PLDI): 790-815 (2024) - [j43]McCoy R. Becker
, Alexander K. Lew
, Xiaoyan Wang
, Matin Ghavami
, Mathieu Huot
, Martin C. Rinard
, Vikash K. Mansinghka
:
Probabilistic Programming with Programmable Variational Inference. Proc. ACM Program. Lang. 8(PLDI): 2123-2147 (2024) - [c190]Charles Jin, Martin C. Rinard:
Emergent Representations of Program Semantics in Language Models Trained on Programs. ICML 2024 - [c189]Martin C. Rinard
:
Software Engineering Research in a World with Generative Artificial Intelligence. ICSE 2024: 2:1-2:5 - [c188]Eva Krebs
, Toni Mattis
, Marius Dörbandt
, Oliver Schulz
, Martin C. Rinard
, Robert Hirschfeld
:
Implementing Babylonian/G by Putting Examples into Game Contexts. Programming 2024 - [c187]Toni Mattis
, Lukas Böhme
, Eva Krebs
, Martin C. Rinard
, Robert Hirschfeld
:
Faster Feedback with AI? A Test Prioritization Study. Programming 2024 - [c186]Toni Mattis
, Eva Krebs
, Martin C. Rinard
, Robert Hirschfeld
:
Examples out of Thin Air: AI-Generated Dynamic Context to Assist Program Comprehension by Example. Programming 2024 - [c185]Farid Arthaud
, Edan Orzech
, Martin C. Rinard
:
Edge-Dominance Games on Graphs. SAGT 2024: 240-257 - [i59]Kai Jia, Martin C. Rinard:
Limited-perception games. CoRR abs/2405.16735 (2024) - [i58]Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin C. Rinard, Feras A. Saad, Vikash K. Mansinghka:
GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables. CoRR abs/2406.15652 (2024) - [i57]McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, Vikash K. Mansinghka:
Probabilistic Programming with Programmable Variational Inference. CoRR abs/2406.15742 (2024) - [i56]Farid Arthaud, Edan Orzech, Martin C. Rinard:
Edge-dominance games on graphs. CoRR abs/2407.07785 (2024) - [i55]Charles Jin, Martin C. Rinard:
Latent Causal Probing: A Formal Perspective on Probing with Causal Models of Data. CoRR abs/2407.13765 (2024) - 2023
- [j42]Alexander K. Lew
, Matin Ghavamizadeh
, Martin C. Rinard
, Vikash K. Mansinghka
:
Probabilistic Programming with Stochastic Probabilities. Proc. ACM Program. Lang. 7(PLDI): 1708-1732 (2023) - [c184]Charles Jin, Melinda Sun, Martin C. Rinard:
Incompatibility Clustering as a Defense Against Backdoor Poisoning Attacks. ICLR 2023 - [c183]Farid Arthaud, Martin C. Rinard:
Depth-bounded Epistemic Logic. TARK 2023: 46-65 - [i54]Yichen Yang, Martin C. Rinard:
Emergence of Locally Suboptimal Behavior in Finitely Repeated Games. CoRR abs/2303.16806 (2023) - [i53]Kai Jia, Martin C. Rinard:
Effective Neural Network L0 Regularization With BinMask. CoRR abs/2304.11237 (2023) - [i52]Charles Jin, Zhang-Wei Hong, Farid Arthaud, Idan Orzech, Martin C. Rinard:
Decentralized Inference via Capability Type Structures in Cooperative Multi-Agent Systems. CoRR abs/2304.13957 (2023) - [i51]Farid Arthaud, Martin C. Rinard:
Depth-bounded epistemic logic. CoRR abs/2305.08607 (2023) - [i50]Charles Jin, Martin C. Rinard:
Evidence of Meaning in Language Models Trained on Programs. CoRR abs/2305.11169 (2023) - [i49]Kai Jia, Pasapol Saowakon, Limor Appelbaum, Martin C. Rinard:
Sound Explanation for Trustworthy Machine Learning. CoRR abs/2306.06134 (2023) - [i48]Idan Orzech, Martin C. Rinard:
Correlated vs. Uncorrelated Randomness in Adversarial Congestion Team Games. CoRR abs/2308.08047 (2023) - [i47]Kai Jia, Martin C. Rinard:
A nonsmooth optimization method. CoRR abs/2311.06205 (2023) - [i46]Edan Orzech, Martin C. Rinard:
Randomness Requirements and Asymmetries in Nash Equilibria. CoRR abs/2312.17364 (2023) - 2022
- [c182]Jiasi Shen
, Martin C. Rinard, Nikos Vasilakis:
Automatic synthesis of parallel unix commands and pipelines with KumQuat. PPoPP 2022: 431-432 - [c181]Yichen Yang, Kai Jia
, Martin C. Rinard:
On the Impact of Player Capability on Congestion Games. SAGT 2022: 311-328 - [i45]Yichen Yang, Kai Jia, Martin C. Rinard:
On the Impact of Player Capability on Congestion Games. CoRR abs/2205.09905 (2022) - [i44]Kai Jia, Martin C. Rinard, Yichen Yang:
Mixed Capability Games. CoRR abs/2208.04516 (2022) - 2021
- [j41]Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, Martin C. Rinard:
An order-aware dataflow model for parallel Unix pipelines. Proc. ACM Program. Lang. 5(ICFP): 1-28 (2021) - [j40]Fatjon Zogaj, José Pablo Cambronero, Martin C. Rinard, Jürgen Cito:
Doing More with Less: Characterizing Dataset Downsampling for AutoML. Proc. VLDB Endow. 14(11): 2059-2072 (2021) - [j39]Jiasi Shen
, Martin C. Rinard:
Active Learning for Inference and Regeneration of Applications that Access Databases. ACM Trans. Program. Lang. Syst. 42(4): 18:1-18:119 (2021) - [c180]Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen
, Martin C. Rinard:
Supply-Chain Vulnerability Elimination via Active Learning and Regeneration. CCS 2021: 1755-1770 - [c179]Charles Jin, Martin C. Rinard:
Towards Context-Agnostic Learning Using Synthetic Data. NeurIPS 2021: 26223-26236 - [c178]Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, Martin C. Rinard:
Program Synthesis Guided Reinforcement Learning for Partially Observed Environments. NeurIPS 2021: 29669-29683 - [c177]Feras A. Saad
, Martin C. Rinard, Vikash K. Mansinghka:
SPPL: probabilistic programming with fast exact symbolic inference. PLDI 2021: 804-819 - [c176]Kai Jia, Martin C. Rinard:
Exploiting Verified Neural Networks via Floating Point Numerical Error. SAS 2021: 191-205 - [c175]Kai Jia, Martin C. Rinard:
Verifying Low-Dimensional Input Neural Networks via Input Quantization. SAS 2021: 206-214 - [c174]Nikos Vasilakis, Grigoris Ntousakis
, Veit Heller, Martin C. Rinard:
Efficient module-level dynamic analysis for dynamic languages with module recontextualization. ESEC/SIGSOFT FSE 2021: 1202-1213 - [i43]Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin C. Rinard, Armando Solar-Lezama:
Neurosymbolic Transformers for Multi-Agent Communication. CoRR abs/2101.03238 (2021) - [i42]Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, Martin C. Rinard:
Program Synthesis Guided Reinforcement Learning. CoRR abs/2102.11137 (2021) - [i41]Shivam Handa, Martin C. Rinard:
Program Synthesis Over Noisy Data with Guarantees. CoRR abs/2103.05030 (2021) - [i40]Thurston H. Y. Dang, José Pablo Cambronero, Martin C. Rinard:
Inferring Drop-in Binary Parsers from Program Executions. CoRR abs/2104.09669 (2021) - [i39]Shivam Handa, Martin C. Rinard:
Inductive Program Synthesis over Noisy Datasets using Abstraction Refinement Based Optimization. CoRR abs/2104.13315 (2021) - [i38]Charles Jin, Melinda Sun, Martin C. Rinard:
Provable Guarantees against Data Poisoning Using Self-Expansion and Compatibility. CoRR abs/2105.03692 (2021) - [i37]Kai Jia, Martin C. Rinard:
Verifying Low-dimensional Input Neural Networks via Input Quantization. CoRR abs/2108.07961 (2021) - [i36]Malavika Samak, José Pablo Cambronero, Martin C. Rinard:
Searching for Replacement Classes. CoRR abs/2110.05638 (2021) - 2020
- [j38]Phillip Stanley-Marbell, Martin C. Rinard:
Warp: A Hardware Platform for Efficient Multimodal Sensing With Adaptive Approximation. IEEE Micro 40(1): 57-66 (2020) - [j37]Feras A. Saad
, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
Optimal approximate sampling from discrete probability distributions. Proc. ACM Program. Lang. 4(POPL): 36:1-36:31 (2020) - [j36]Malavika Samak, Deokhwan Kim, Martin C. Rinard:
Synthesizing replacement classes. Proc. ACM Program. Lang. 4(POPL): 52:1-52:33 (2020) - [c173]Feras Saad, Cameron E. Freer, Martin C. Rinard, Vikash Mansinghka:
The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions. AISTATS 2020: 1036-1046 - [c172]Sara Achour
, Martin C. Rinard:
Noise-Aware Dynamical System Compilation for Analog Devices with Legno. ASPLOS 2020: 149-166 - [c171]Jeff H. Perkins, Jordan Eikenberry, Alessandro Coglio, Martin C. Rinard:
Comprehensive Java Metadata Tracking for Attack Detection and Repair. DSN 2020: 39-51 - [c170]Jürgen Cito, Jiasi Shen
, Martin C. Rinard:
An Empirical Study on the Impact of Deimplicitization on Comprehension in Programs Using Application Frameworks. MSR 2020: 598-601 - [c169]Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin C. Rinard, Armando Solar-Lezama
:
Neurosymbolic Transformers for Multi-Agent Communication. NeurIPS 2020 - [c168]Kai Jia, Martin C. Rinard:
Efficient Exact Verification of Binarized Neural Networks. NeurIPS 2020 - [c167]Shivam Handa, Martin C. Rinard:
Inductive program synthesis over noisy data. ESEC/SIGSOFT FSE 2020: 87-98 - [c166]José Pablo Cambronero, Jürgen Cito, Martin C. Rinard:
AMS: generating AutoML search spaces from weak specifications. ESEC/SIGSOFT FSE 2020: 763-774 - [i35]Feras A. Saad, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
Optimal Approximate Sampling from Discrete Probability Distributions. CoRR abs/2001.04555 (2020) - [i34]Kai Jia, Martin C. Rinard:
Exploiting Verified Neural Networks via Floating Point Numerical Error. CoRR abs/2003.03021 (2020) - [i33]Feras A. Saad, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions. CoRR abs/2003.03830 (2020) - [i32]Charles Jin, Martin C. Rinard:
Manifold Regularization for Adversarial Robustness. CoRR abs/2003.04286 (2020) - [i31]Kai Jia, Martin C. Rinard:
Efficient Exact Verification of Binarized Neural Networks. CoRR abs/2005.03597 (2020) - [i30]Charles Jin, Martin C. Rinard:
Learning From Context-Agnostic Synthetic Data. CoRR abs/2005.14707 (2020) - [i29]Martin C. Rinard, Austin Gadient:
Dataflow Analysis With Prophecy and History Variables. CoRR abs/2007.12015 (2020) - [i28]Shivam Handa, Martin C. Rinard:
Inductive Program Synthesis Over Noisy Data. CoRR abs/2009.10272 (2020) - [i27]Feras A. Saad, Martin C. Rinard, Vikash K. Mansinghka:
Exact Symbolic Inference in Probabilistic Programs via Sum-Product Representations. CoRR abs/2010.03485 (2020) - [i26]Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, Martin C. Rinard:
An Order-aware Dataflow Model for Extracting Shell Script Parallelism. CoRR abs/2012.15422 (2020) - [i25]Nikos Vasilakis, Jiasi Shen
, Martin C. Rinard:
Automatic Synthesis of Parallel and Distributed Unix Commands with KumQuat. CoRR abs/2012.15443 (2020)
2010 – 2019
- 2019
- [j35]Martin C. Rinard:
Technical perspective: Borrowing big code to automate programming activities. Commun. ACM 62(3): 98 (2019) - [j34]José Pablo Cambronero, Martin C. Rinard:
AL: autogenerating supervised learning programs. Proc. ACM Program. Lang. 3(OOPSLA): 175:1-175:28 (2019) - [j33]Feras A. Saad
, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka:
Bayesian synthesis of probabilistic programs for automatic data modeling. Proc. ACM Program. Lang. 3(POPL): 37:1-37:32 (2019) - [c165]Jürgen Cito, Philipp Leitner, Martin C. Rinard, Harald C. Gall
:
Interactive production performance feedback in the IDE. ICSE 2019: 971-981 - [c164]José Pablo Cambronero, Thurston H. Y. Dang, Nikos Vasilakis, Jiasi Shen
, Jerry Wu, Martin C. Rinard:
Active learning for software engineering. Onward! 2019: 62-78 - [c163]Jiasi Shen
, Martin C. Rinard:
Using active learning to synthesize models of applications that access databases. PLDI 2019: 269-285 - [c162]José Pablo Cambronero, Jiasi Shen
, Jürgen Cito, Elena L. Glassman, Martin C. Rinard:
Characterizing Developer Use of Automatically Generated Patches. VL/HCC 2019: 181-185 - [i24]Yichen Yang, Martin C. Rinard:
Correctness Verification of Neural Networks. CoRR abs/1906.01030 (2019) - [i23]Shivam Handa, Vikash Mansinghka, Martin C. Rinard:
Compositional Inference Metaprogramming with Convergence Guarantees. CoRR abs/1907.05451 (2019) - [i22]Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka:
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. CoRR abs/1907.06249 (2019) - [i21]José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena L. Glassman, Martin C. Rinard:
Characterizing Developer Use of Automatically Generated Patches. CoRR abs/1907.06535 (2019) - 2018
- [j32]Phillip Stanley-Marbell, Martin C. Rinard:
Perceived-Color Approximation Transforms for Programs that Draw. IEEE Micro 38(4): 20-29 (2018) - [c161]Vladimir Kiriansky, Haoran Xu, Martin C. Rinard, Saman P. Amarasinghe
:
Cimple: instruction and memory level parallelism: a DSL for uncovering ILP and MLP. PACT 2018: 30:1-30:16 - [c160]Sara Achour
, Martin C. Rinard:
Time Dilation and Contraction for Programmable Analog Devices with Jaunt. ASPLOS 2018: 229-242 - [c159]Martin C. Rinard, Jiasi Shen
, Varun Mangalick:
Active learning for inference and regeneration of computer programs that store and retrieve data. Onward! 2018: 12-28 - [c158]Justin Gottschlich, Armando Solar-Lezama
, Nesime Tatbul, Michael Carbin, Martin C. Rinard, Regina Barzilay, Saman P. Amarasinghe
, Joshua B. Tenenbaum, Tim Mattson:
The three pillars of machine programming. MAPL@PLDI 2018: 69-80 - [c157]Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, Martin C. Rinard:
Probabilistic programming with programmable inference. PLDI 2018: 603-616 - [c156]Martin C. Rinard:
A new approach for software correctness and reliability (keynote). SLE 2018: 1-2 - [i20]Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Martin C. Rinard, Regina Barzilay, Saman P. Amarasinghe, Joshua B. Tenenbaum, Tim Mattson:
The Three Pillars of Machine-Based Programming. CoRR abs/1803.07244 (2018) - [i19]José Pablo Cambronero, Phillip Stanley-Marbell, Martin C. Rinard:
Incremental Color Quantization for Color-Vision-Deficient Observers Using Mobile Gaming Data. CoRR abs/1803.08420 (2018) - [i18]Phillip Stanley-Marbell, Martin C. Rinard:
A Hardware Platform for Efficient Multi-Modal Sensing with Adaptive Approximation. CoRR abs/1804.09241 (2018) - [i17]Vladimir Kiriansky, Haoran Xu, Martin C. Rinard, Saman P. Amarasinghe:
Cimple: Instruction and Memory Level Parallelism. CoRR abs/1807.01624 (2018) - 2017
- [j31]Phillip Stanley-Marbell, Martin C. Rinard:
Error-Efficient Computing Systems. Found. Trends Electron. Des. Autom. 11(4): 362-461 (2017) - [c155]Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, Martin C. Rinard:
CodeCarbonCopy. ESEC/SIGSOFT FSE 2017: 95-105 - [c154]Fan Long, Peter Amidon, Martin C. Rinard:
Automatic inference of code transforms for patch generation. ESEC/SIGSOFT FSE 2017: 727-739 - [c153]Jiasi Shen
, Martin C. Rinard:
Robust programs with filtered iterators. SLE 2017: 244-255 - 2016
- [j30]Michael Carbin, Sasa Misailovic, Martin C. Rinard:
Verifying quantitative reliability for programs that execute on unreliable hardware. Commun. ACM 59(8): 83-91 (2016) - [c152]Fereshte Khani, Martin C. Rinard, Percy Liang:
Unanimous Prediction for 100% Precision with Application to Learning Semantic Mappings. ACL (1) 2016 - [c151]Phillip Stanley-Marbell
, Martin C. Rinard:
Reducing serial I/O power in error-tolerant applications by efficient lossy encoding. DAC 2016: 62:1-62:6 - [c150]Jeff H. Perkins, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson, Stelios Sidiroglou-Douskos, Martin C. Rinard:
AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks. DIMVA 2016: 37-57 - [c149]Phillip Stanley-Marbell, Virginia Estellers, Martin C. Rinard:
Crayon: saving power through shape and color approximation on next-generation displays. EuroSys 2016: 11:1-11:17 - [c148]Phillip Stanley-Marbell, Pier Andrea Francese
, Martin C. Rinard:
Encoder logic for reducing serial I/O power in sensors and sensor hubs. Hot Chips Symposium 2016: 1-2 - [c147]Fan Long, Martin C. Rinard:
An analysis of the search spaces for generate and validate patch generation systems. ICSE 2016: 702-713 - [c146]Julia Rubin, Martin C. Rinard:
The challenges of staying together while moving fast: an exploratory study. ICSE 2016: 982-993 - [c145]Jürgen Cito, Julia Rubin, Phillip Stanley-Marbell
, Martin C. Rinard:
Battery-aware transformations in mobile applications. ASE 2016: 702-707 - [c144]Sara Achour
, Rahul Sarpeshkar, Martin C. Rinard:
Configuration synthesis for programmable analog devices with Arco. PLDI 2016: 177-193 - [c143]Fan Long, Martin C. Rinard:
Automatic patch generation by learning correct code. POPL 2016: 298-312 - [i16]Fan Long, Martin C. Rinard:
An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems. CoRR abs/1602.05643 (2016) - [i15]Fereshte Khani, Martin C. Rinard, Percy Liang:
Unanimous Prediction for 100% Precision with Application to Learning Semantic Mappings. CoRR abs/1606.06368 (2016) - 2015
- [j29]Phillip Stanley-Marbell
, Martin C. Rinard:
Efficiency Limits for Value-Deviation-Bounded Approximate Communication. IEEE Embed. Syst. Lett. 7(4): 109-112 (2015) - [c142]Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhouse, Paolo Piselli, Fan Long, Deokhwan Kim, Martin C. Rinard:
Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement. ASPLOS 2015: 473-486 - [c141]Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard E. Shrobe, Martin C. Rinard, Hamed Okhravi, Stelios Sidiroglou-Douskos:
Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. CCS 2015: 901-913 - [c140]Phillip Stanley-Marbell, Martin C. Rinard:
Lax: Driver Interfaces for Approximate Sensor Device Access. HotOS 2015 - [c139]Peter Amidon, Eli Davis, Stelios Sidiroglou-Douskos, Martin C. Rinard:
Program fracture and recombination for efficient automatic code reuse. HPEC 2015: 1-6 - [c138]Zichao Qi, Fan Long, Sara Achour
, Martin C. Rinard:
An analysis of patch plausibility and correctness for generate-and-validate patch generation systems. ISSTA 2015: 24-36 - [c137]Julia Rubin, Michael I. Gordon, Nguyen Nguyen, Martin C. Rinard:
Covert Communication in Mobile Applications (T). ASE 2015: 647-657 - [c136]Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, Martin C. Rinard:
Information Flow Analysis of Android Applications in DroidSafe. NDSS 2015 - [c135]Brendan Juba, Christopher Musco
, Fan Long, Stelios Sidiroglou-Douskos, Martin C. Rinard:
Principled Sampling for Anomaly Detection. NDSS 2015 - [c134]Sara Achour
, Martin C. Rinard:
Approximate computation with outlier detection in Topaz. OOPSLA 2015: 711-730 - [c133]Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, Martin C. Rinard:
Automatic error elimination by horizontal code transfer across multiple applications. PLDI 2015: 43-54 - [c132]Fan Long, Martin C. Rinard:
Staged program repair with condition synthesis. ESEC/SIGSOFT FSE 2015: 166-178 - [c131]Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang, Howard E. Shrobe, Stelios Sidiroglou-Douskos, Martin C. Rinard, Hamed Okhravi:
Missing the Point(er): On the Effectiveness of Code Pointer Integrity. IEEE Symposium on Security and Privacy 2015: 781-796 - 2014
- [c130]Sasa Misailovic, Michael Carbin, Sara Achour
, Zichao Qi, Martin C. Rinard:
Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. OOPSLA 2014: 309-328 - [c129]