


default search action
Yoram Singer
Person information
- affiliation: Google
- affiliation: Hebrew University of Jerusalem, Israel
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2022
- [j40]Chiyuan Zhang, Samy Bengio, Yoram Singer:
Are All Layers Created Equal? J. Mach. Learn. Res. 23: 67:1-67:28 (2022) - 2020
- [c99]Inbal Lavi, Shai Avidan, Yoram Singer, Yacov Hel-Or:
Proximity Preserving Binary Code Using Signed Graph-Cut. AAAI 2020: 4535-4544 - [c98]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. ALT 2020: 386-407 - [c97]Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, Yoram Singer:
Identity Crisis: Memorization and Generalization Under Extreme Overparameterization. ICLR 2020 - [i21]Inbal Lavi, Shai Avidan, Yoram Singer, Yacov Hel-Or:
Proximity Preserving Binary Code using Signed Graph-Cut. CoRR abs/2002.01793 (2020) - [i20]Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer:
Second Order Optimization Made Practical. CoRR abs/2002.09018 (2020)
2010 – 2019
- 2019
- [c96]Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer:
Memory Efficient Adaptive Optimization. NeurIPS 2019: 9746-9755 - [i19]Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer:
Memory-Efficient Adaptive Optimization for Large-Scale Learning. CoRR abs/1901.11150 (2019) - [i18]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. CoRR abs/1902.01903 (2019) - [i17]Chiyuan Zhang, Samy Bengio, Yoram Singer:
Are All Layers Created Equal? CoRR abs/1902.01996 (2019) - [i16]Chiyuan Zhang, Samy Bengio, Moritz Hardt, Yoram Singer:
Identity Crisis: Memorization and Generalization under Extreme Overparameterization. CoRR abs/1902.04698 (2019) - [i15]Michael L. Iuzzolino, Yoram Singer, Michael C. Mozer:
Convolutional Bipartite Attractor Networks. CoRR abs/1906.03504 (2019) - 2018
- [c95]Nishal P. Shah, Sasidhar Madugula, E. J. Chichilnisky, Yoram Singer, Jonathon Shlens:
Learning a neural response metric for retinal prosthesis. ICLR (Poster) 2018 - [c94]Vineet Gupta, Tomer Koren, Yoram Singer:
Shampoo: Preconditioned Stochastic Tensor Optimization. ICML 2018: 1837-1845 - [c93]Yuanzhi Li, Yoram Singer:
The Well-Tempered Lasso. ICML 2018: 3030-3038 - [i14]Vineet Gupta, Tomer Koren, Yoram Singer:
Shampoo: Preconditioned Stochastic Tensor Optimization. CoRR abs/1802.09568 (2018) - [i13]Yuanzhi Li, Yoram Singer:
The Well Tempered Lasso. CoRR abs/1806.03190 (2018) - 2017
- [c92]Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar:
Short and Deep: Sketching and Neural Networks. ICLR (Workshop) 2017 - [i12]Amit Daniely, Roy Frostig, Vineet Gupta, Yoram Singer:
Random Features for Compositional Kernels. CoRR abs/1703.07872 (2017) - [i11]Vineet Gupta, Tomer Koren, Yoram Singer:
A Unified Approach to Adaptive Regularization in Online and Stochastic Optimization. CoRR abs/1706.06569 (2017) - 2016
- [j39]Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, Samy Bengio:
LLORMA: Local Low-Rank Matrix Approximation. J. Mach. Learn. Res. 17: 15:1-15:24 (2016) - [j38]Richard H. Byrd, S. L. Hansen, Jorge Nocedal, Yoram Singer:
A Stochastic Quasi-Newton Method for Large-Scale Optimization. SIAM J. Optim. 26(2): 1008-1031 (2016) - [c91]Moritz Hardt, Ben Recht, Yoram Singer:
Train faster, generalize better: Stability of stochastic gradient descent. ICML 2016: 1225-1234 - [c90]Amit Daniely, Roy Frostig, Yoram Singer:
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity. NIPS 2016: 2253-2261 - [i10]Amit Daniely, Roy Frostig, Yoram Singer:
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity. CoRR abs/1602.05897 (2016) - [i9]Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar:
Sketching and Neural Networks. CoRR abs/1604.05753 (2016) - 2015
- [i8]Moritz Hardt, Benjamin Recht, Yoram Singer:
Train faster, generalize better: Stability of stochastic gradient descent. CoRR abs/1509.01240 (2015) - 2014
- [c89]Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, Yoram Singer:
Local collaborative ranking. WWW 2014: 85-96 - [c88]Mohammad Norouzi, Tomás Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg Corrado, Jeffrey Dean:
Zero-Shot Learning by Convex Combination of Semantic Embeddings. ICLR 2014 - [i7]Richard H. Byrd, S. L. Hansen, Jorge Nocedal, Yoram Singer:
A Stochastic Quasi-Newton Method for Large-Scale Optimization. CoRR abs/1401.7020 (2014) - 2013
- [c87]Mark Stevens, Samy Bengio, Yoram Singer:
Efficient Learning of Sparse Ranking Functions. Empirical Inference 2013: 261-271 - [c86]Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer:
Local Low-Rank Matrix Approximation. ICML (2) 2013: 82-90 - [c85]Indraneel Mukherjee, Kevin Robert Canini, Rafael M. Frongillo
, Yoram Singer:
Parallel Boosting with Momentum. ECML/PKDD (3) 2013: 17-32 - [c84]Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer:
Matrix Approximation under Local Low-Rank Assumption. ICLR (Workshop Poster) 2013 - [i6]Yoram Singer:
Switching Portfolios. CoRR abs/1301.7413 (2013) - [i5]Eric Bauer, Daphne Koller, Yoram Singer:
Update Rules for Parameter Estimation in Bayesian Networks. CoRR abs/1302.1519 (2013) - [i4]Moshe Dubiner, Matan Gavish, Yoram Singer:
The Maximum Entropy Relaxation Path. CoRR abs/1311.1644 (2013) - [i3]Samy Bengio, Jeffrey Dean, Dumitru Erhan, Eugene Ie, Quoc V. Le, Andrew Rabinovich, Jonathon Shlens, Yoram Singer:
Using Web Co-occurrence Statistics for Improving Image Categorization. CoRR abs/1312.5697 (2013) - 2011
- [j37]John C. Duchi, Elad Hazan, Yoram Singer:
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 12: 2121-2159 (2011) - [j36]Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, Andrew Cotter:
Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. 127(1): 3-30 (2011) - [c83]Moshe Dubiner, Yoram Singer:
Entire Relaxation Path for Maximum Entropy Problems. EMNLP 2011: 941-948 - [i2]William W. Cohen, Robert E. Schapire, Yoram Singer:
Learning to Order Things. CoRR abs/1105.5464 (2011) - 2010
- [j35]Shai Shalev-Shwartz, Yoram Singer:
On the equivalence of weak learnability and linear separability: new relaxations and efficient boosting algorithms. Mach. Learn. 80(2-3): 141-163 (2010) - [c82]John C. Duchi, Shai Shalev-Shwartz, Yoram Singer, Ambuj Tewari:
Composite Objective Mirror Descent. COLT 2010: 14-26 - [c81]John C. Duchi, Elad Hazan, Yoram Singer:
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. COLT 2010: 257-269
2000 – 2009
- 2009
- [j34]John C. Duchi, Yoram Singer:
Efficient Online and Batch Learning Using Forward Backward Splitting. J. Mach. Learn. Res. 10: 2899-2934 (2009) - [j33]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
Individual sequence prediction using memory-efficient context trees. IEEE Trans. Inf. Theory 55(11): 5251-5262 (2009) - [c80]John C. Duchi, Yoram Singer:
Boosting with structural sparsity. ICML 2009: 297-304 - [c79]Samy Bengio, Fernando C. N. Pereira, Yoram Singer, Dennis Strelow:
Group Sparse Coding. NIPS 2009: 82-89 - [c78]John C. Duchi, Yoram Singer:
Efficient Learning using Forward-Backward Splitting. NIPS 2009: 495-503 - 2008
- [j32]Yonatan Amit, Shai Shalev-Shwartz, Yoram Singer:
Online Learning of Complex Prediction Problems Using Simultaneous Projections. J. Mach. Learn. Res. 9: 1399-1435 (2008) - [j31]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
The Forgetron: A Kernel-Based Perceptron on a Budget. SIAM J. Comput. 37(5): 1342-1372 (2008) - [c77]Shai Shalev-Shwartz, Yoram Singer:
On the Equivalence of Weak Learnability and Linear Separability: New Relaxations and Efficient Boosting Algorithms. COLT 2008: 311-322 - [c76]John C. Duchi, Shai Shalev-Shwartz, Yoram Singer, Tushar Chandra:
Efficient projections onto the l1-ball for learning in high dimensions. ICML 2008: 272-279 - [e2]John C. Platt, Daphne Koller, Yoram Singer, Sam T. Roweis:
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007. Curran Associates, Inc. 2008 [contents] - 2007
- [j30]Ofer Dekel, Philip M. Long, Yoram Singer:
Online Learning of Multiple Tasks with a Shared Loss. J. Mach. Learn. Res. 8: 2233-2264 (2007) - [j29]Shai Shalev-Shwartz, Yoram Singer:
A primal-dual perspective of online learning algorithms. Mach. Learn. 69(2-3): 115-142 (2007) - [j28]Joseph Keshet
, Shai Shalev-Shwartz, Yoram Singer, Dan Chazan:
A Large Margin Algorithm for Speech-to-Phoneme and Music-to-Score Alignment. IEEE Trans. Speech Audio Process. 15(8): 2373-2382 (2007) - [c75]Andrea Frome, Yoram Singer, Fei Sha, Jitendra Malik:
Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification. ICCV 2007: 1-8 - [c74]Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro:
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. ICML 2007: 807-814 - [c73]Yonatan Amit, Ofer Dekel, Yoram Singer:
A Boosting Algorithm for Label Covering in Multilabel Problems. AISTATS 2007: 27-34 - [c72]Shai Shalev-Shwartz, Yoram Singer:
A Unified Algorithmic Approach for Efficient Online Label Ranking. AISTATS 2007: 452-459 - 2006
- [j27]Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer:
Online Passive-Aggressive Algorithms. J. Mach. Learn. Res. 7: 551-585 (2006) - [j26]Shai Shalev-Shwartz, Yoram Singer:
Efficient Learning of Label Ranking by Soft Projections onto Polyhedra. J. Mach. Learn. Res. 7: 1567-1599 (2006) - [c71]Shai Shalev-Shwartz, Yoram Singer:
Online Learning Meets Optimization in the Dual. COLT 2006: 423-437 - [c70]Ofer Dekel, Philip M. Long, Yoram Singer:
Online Multitask Learning. COLT 2006: 453-467 - [c69]Michael Fink, Shai Shalev-Shwartz, Yoram Singer, Shimon Ullman:
Online multiclass learning by interclass hypothesis sharing. ICML 2006: 313-320 - [c68]Joseph Keshet, Shai Shalev-Shwartz, Samy Bengio, Yoram Singer, Dan Chazan:
Discriminative kernel-based phoneme sequence recognition. INTERSPEECH 2006 - [c67]Yonatan Amit, Shai Shalev-Shwartz, Yoram Singer:
Online Classification for Complex Problems Using Simultaneous Projections. NIPS 2006: 17-24 - [c66]Ofer Dekel, Yoram Singer:
Support Vector Machines on a Budget. NIPS 2006: 345-352 - [c65]Andrea Frome, Yoram Singer, Jitendra Malik:
Image Retrieval and Classification Using Local Distance Functions. NIPS 2006: 417-424 - [c64]Shai Shalev-Shwartz, Yoram Singer:
Convex Repeated Games and Fenchel Duality. NIPS 2006: 1265-1272 - 2005
- [j25]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
Smooth epsiloon-Insensitive Regression by Loss Symmetrization. J. Mach. Learn. Res. 6: 711-741 (2005) - [j24]Koby Crammer, Yoram Singer:
Online Ranking by Projecting. Neural Comput. 17(1): 145-175 (2005) - [j23]Lavi Shpigelman, Yoram Singer, Rony Paz
, Eilon Vaadia:
Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces. Neural Comput. 17(3): 671-690 (2005) - [c63]Koby Crammer, Yoram Singer:
Loss Bounds for Online Category Ranking. COLT 2005: 48-62 - [c62]Shai Shalev-Shwartz, Yoram Singer:
A New Perspective on an Old Perceptron Algorithm. COLT 2005: 264-278 - [c61]Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, Dan Chazan:
Phoneme alignment based on discriminative learning. INTERSPEECH 2005: 2961-2964 - [c60]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
The Forgetron: A Kernel-Based Perceptron on a Fixed Budget. NIPS 2005: 259-266 - [c59]Ofer Dekel, Yoram Singer:
Data-Driven Online to Batch Conversions. NIPS 2005: 267-274 - 2004
- [c58]Ofer Dekel, Joseph Keshet, Yoram Singer:
Large margin hierarchical classification. ICML 2004 - [c57]Nir Krause, Yoram Singer:
Leveraging the margin more carefully. ICML 2004 - [c56]Shai Shalev-Shwartz, Yoram Singer, Andrew Y. Ng:
Online and batch learning of pseudo-metrics. ICML 2004 - [c55]Shai Shalev-Shwartz, Joseph Keshet, Yoram Singer:
Learning to Align Polyphonic Music. ISMIR 2004 - [c54]Ofer Dekel, Joseph Keshet, Yoram Singer:
An Online Algorithm for Hierarchical Phoneme Classification. MLMI 2004: 146-158 - [c53]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
The Power of Selective Memory: Self-Bounded Learning of Prediction Suffix Trees. NIPS 2004: 345-352 - [c52]Lavi Shpigelman, Koby Crammer, Rony Paz, Eilon Vaadia, Yoram Singer:
A Temporal Kernel-Based Model for Tracking Hand Movements from Neural Activities. NIPS 2004: 1273-1280 - [e1]John Shawe-Taylor, Yoram Singer:
Learning Theory, 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004, Proceedings. Lecture Notes in Computer Science 3120, Springer 2004, ISBN 3-540-22282-0 [contents] - 2003
- [j22]Eleazar Eskin, William Stafford Noble, Yoram Singer:
Protein Family Classification Using Sparse Markov Transducers. J. Comput. Biol. 10(2): 187-213 (2003) - [j21]Koby Crammer, Yoram Singer:
Ultraconservative Online Algorithms for Multiclass Problems. J. Mach. Learn. Res. 3: 951-991 (2003) - [j20]Koby Crammer, Yoram Singer:
A Family of Additive Online Algorithms for Category Ranking. J. Mach. Learn. Res. 3: 1025-1058 (2003) - [j19]Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer:
An Efficient Boosting Algorithm for Combining Preferences. J. Mach. Learn. Res. 4: 933-969 (2003) - [c51]Koby Crammer, Yoram Singer:
Learning Algorithm for Enclosing Points in Bregmanian Spheres. COLT 2003: 388-402 - [c50]Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:
Smooth e-Intensive Regression by Loss Symmetrization. COLT 2003: 433-447 - [c49]Kristina Toutanova, Dan Klein, Christopher D. Manning, Yoram Singer:
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. HLT-NAACL 2003 - [c48]Koby Crammer, Jaz S. Kandola, Yoram Singer:
Online Classification on a Budget. NIPS 2003: 225-232 - [c47]Ofer Dekel, Christopher D. Manning, Yoram Singer:
Log-Linear Models for Label Ranking. NIPS 2003: 497-504 - [c46]Shai Shalev-Shwartz, Koby Crammer, Ofer Dekel, Yoram Singer:
Online Passive-Aggressive Algorithms. NIPS 2003: 1229-1236 - 2002
- [j18]Eleazar Eskin, William Stafford Noble, Yoram Singer:
Using Substitution Matrices to Estimate Probability Distributions for Biological Sequences. J. Comput. Biol. 9(6): 775-791 (2002) - [j17]Koby Crammer, Yoram Singer:
On the Learnability and Design of Output Codes for Multiclass Problems. Mach. Learn. 47(2-3): 201-233 (2002) - [j16]Michael Collins, Robert E. Schapire, Yoram Singer:
Logistic Regression, AdaBoost and Bregman Distances. Mach. Learn. 48(1-3): 253-285 (2002) - [c45]Sanjoy Dasgupta, Elan Pavlov, Yoram Singer:
An Efficient PAC Algorithm for Reconstructing a Mixture of Lines. ALT 2002: 351-364 - [c44]Lavi Shpigelman, Yoram Singer, Rony Paz, Eilon Vaadia:
Spikernels: Embedding Spiking Neurons in Inner-Product Spaces. NIPS 2002: 125-132 - [c43]Koby Crammer, Joseph Keshet, Yoram Singer:
Kernel Design Using Boosting. NIPS 2002: 537-544 - [c42]Ofer Dekel, Yoram Singer:
Multiclass Learning by Probabilistic Embeddings. NIPS 2002: 945-952 - [c41]Ehud Ben-Reuven, Yoram Singer:
Discriminative Binaural Sound Localization. NIPS 2002: 1229-1236 - [c40]Koby Crammer, Yoram Singer:
A new family of online algorithms for category ranking. SIGIR 2002: 151-158 - [c39]Shai Shalev-Shwartz, Shlomo Dubnov
, Nir Friedman
, Yoram Singer:
Robust temporal and spectral modeling for query By melody. SIGIR 2002: 331-338 - 2001
- [j15]Koby Crammer, Yoram Singer:
On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. J. Mach. Learn. Res. 2: 265-292 (2001) - [j14]Yoram Singer:
Guest Editor's Introduction. Mach. Learn. 43(3): 71-172 (2001) - [c38]Koby Crammer, Yoram Singer:
Ultraconservative Online Algorithms for Multiclass Problems. COLT/EuroCOLT 2001: 99-115 - [c37]Eleazar Eskin, William Noble Grundy, Yoram Singer:
Using mixtures of common ancestors for estimating the probabilities of discrete events in biological sequences. ISMB (Supplement of Bioinformatics) 2001: 65-73 - [c36]Koby Crammer, Yoram Singer:
Pranking with Ranking. NIPS 2001: 641-647 - 2000
- [j13]Erin L. Allwein, Robert E. Schapire, Yoram Singer:
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. J. Mach. Learn. Res. 1: 113-141 (2000) - [j12]Robert E. Schapire, Yoram Singer:
BoosTexter: A Boosting-based System for Text Categorization. Mach. Learn. 39(2/3): 135-168 (2000) - [c35]Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal:
Boosting for Document Routing. CIKM 2000: 70-77 - [c34]Koby Crammer, Yoram Singer:
On the Learnability and Design of Output Codes for Multiclass Problems. COLT 2000: 35-46 - [c33]Michael Collins, Robert E. Schapire, Yoram Singer:
Logistic Regression, AdaBoost and Bregman Distances. COLT 2000: 158-169 - [c32]Erin L. Allwein, Robert E. Schapire, Yoram Singer:
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. ICML 2000: 9-16 - [c31]Peter Ju, Leslie Pack Kaelbling, Yoram Singer:
State-based Classification of Finger Gestures from Electromyographic Signals. ICML 2000: 439-446 - [c30]Eleazar Eskin, William Noble Grundy, Yoram Singer:
Protein Family Classification Using Sparse Markov Transducers. ISMB 2000: 134-145 - [c29]Koby Crammer, Yoram Singer:
Improved Output Coding for Classification Using Continuous Relaxation. NIPS 2000: 437-443
1990 – 1999
- 1999
- [j11]William W. Cohen, Robert E. Schapire, Yoram Singer:
Learning to Order Things. J. Artif. Intell. Res. 10: 243-270 (1999) - [j10]Fernando C. N. Pereira, Yoram Singer:
An Efficient Extension to Mixture Techniques for Prediction and Decision Trees. Mach. Learn. 36(3): 183-199 (1999) - [j9]Robert E. Schapire, Yoram Singer:
Improved Boosting Algorithms Using Confidence-rated Predictions. Mach. Learn. 37(3): 297-336 (1999) - [j8]William W. Cohen, Yoram Singer:
Context-Sensitive Learning Methods for Text Categorization. ACM Trans. Inf. Syst. 17(2): 141-173 (1999) - [c28]William W. Cohen, Yoram Singer:
A Simple, Fast, and Effictive Rule Learner. AAAI/IAAI 1999: 335-342 - [c27]Steven Abney, Robert E. Schapire, Yoram Singer:
Boosting Applied to Tagging and PP Attachment. EMNLP 1999 - [c26]Michael Collins, Yoram Singer:
Unsupervised Models for Named Entity Classification. EMNLP 1999 - [c25]Yoram Singer:
Leveraged Vector Machines. NIPS 1999: 610-616 - 1998
- [j7]Dana Ron
, Yoram Singer, Naftali Tishby:
On the Learnability and Usage of Acyclic Probabilistic Finite Automata. J. Comput. Syst. Sci. 56(2): 133-152 (1998) - [j6]Shai Fine, Yoram Singer, Naftali Tishby:
The Hierarchical Hidden Markov Model: Analysis and Applications. Mach. Learn. 32(1): 41-62 (1998) - [c24]Robert E. Schapire, Yoram Singer:
Improved Boosting Algorithms using Confidence-Rated Predictions. COLT 1998: 80-91 - [c23]Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer:
An Efficient Boosting Algorithm for Combining Preferences. ICML 1998: 170-178 - [c22]Nir Friedman, Yoram Singer:
Efficient Bayesian Parameter Estimation in Large Discrete Domains. NIPS 1998: 417-423 - [c21]Yoram Singer, Manfred K. Warmuth:
Batch and On-Line Parameter Estimation of Gaussian Mixtures Based on the Joint Entropy. NIPS 1998: 578-584 - [c20]Robert E. Schapire, Yoram Singer, Amit Singhal:
Boosting and Rocchio Applied to Text Filtering. SIGIR 1998: 215-223 - [c19]Yoram Singer:
Switching Portfolios. UAI 1998: 488-495 - 1997
- [j5]Yoram Singer:
Switching Portfolios. Int. J. Neural Syst. 8(4): 445-455 (1997) - [j4]David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth:
A Comparison of New and Old Algorithms for a Mixture Estimation Problem. Mach. Learn. 27(1): 97-119 (1997) - [j3]Yoram Singer:
Adaptive Mixtures of Probabilistic Transducers. Neural Comput. 9(8): 1711-1733 (1997) - [c18]Fernando C. N. Pereira, Yoram Singer:
An Efficient Extension to Mixture Techniques for Prediction and Decision Trees. COLT 1997: 114-121 - [c17]Yoshua Bengio, Samy Bengio, Jean-Franc Isabelle, Yoram Singer:
Shared Context Probabilistic Transducers. NIPS 1997: 409-415 - [c16]William W. Cohen, Robert E. Schapire, Yoram Singer:
Learning to Order Things. NIPS 1997: 451-457 - [c15]Yoav Freund, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth:
Using and Combining Predictors That Specialize. STOC 1997: 334-343 - [c14]Eric Bauer, Daphne Koller, Yoram Singer:
Update Rules for Parameter Estimation in Bayesian Networks. UAI 1997: 3-13 - 1996
- [j2]Dana Ron, Yoram Singer, Naftali Tishby:
The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length. Mach. Learn. 25(2-3): 117-149 (1996) - [c13]David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth:
On-Line Portfolio Selection Using Multiplicative Updates. ICML 1996: 243-251 - [c12]Yoram Singer, Manfred K. Warmuth:
Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions. NIPS 1996: 641-647 - [c11]William W. Cohen, Yoram Singer:
Context-sensitive Learning Methods for Text Categorization. SIGIR 1996: 307-315 - [i1]Fernando C. N. Pereira, Yoram Singer, Naftali Tishby:
Beyond Word N-Grams. CoRR cmp-lg/9607016 (1996) - 1995
- [b1]Yoram Singer:
"What has been will be again": a machine learning approach to the analysis of natural language. Hebrew University of Jerusalem, Israel, 1995 - [c10]Fernando Pereira, Yoram Singer, Naftali Tishby:
Beyond Word N-Grams. VLC@ACL 1995 - [c9]Dana Ron, Yoram Singer, Naftali Tishby:
On the Learnability and Usage of Acyclic Probabilistic Finite Automata. COLT 1995: 31-40 - [c8]David P. Helmbold, Yoram Singer, Robert E. Schapire, Manfred K. Warmuth:
A Comparison of New and Old Algorithms for a Mixture Estimation Problem. COLT 1995: 69-78 - [c7]Yoram Singer:
Adaptive Mixture of Probabilistic Transducers. NIPS 1995: 381-387 - 1994
- [j1]Yoram Singer, Naftali Tishby:
Dynamical encoding of cursive handwriting. Biol. Cybern. 71(3): 227-237 (1994) - [c6]Hinrich Schütze, Yoram Singer:
Part-of-Speech Tagging using a Variable Memory Markov Model. ACL 1994: 181-187 - [c5]Dana Ron
, Yoram Singer, Naftali Tishby:
Learning Probabilistic Automata with Variable Memory Length. COLT 1994: 35-46 - 1993
- [c4]Yoram Singer, Naftali Tishby:
Dynamical encoding of cursive handwriting. CVPR 1993: 341-346 - [c3]Dana Ron, Yoram Singer, Naftali Tishby:
The Power of Amnesia. NIPS 1993: 176-183 - [c2]Yoram Singer, Naftali Tishby:
Decoding Cursive Scripts. NIPS 1993: 833-840 - 1992
- [c1]Yoram Singer, Eyal Yair:
Learning class probabilities from labeled data. ICPR (2) 1992: 553-556
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-04-25 17:52 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint