default search action
Joschka Boedecker
Joschka Bödecker
Person information
- affiliation: University of Freiburg, Department of Computer Science, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j15]Ann-Kathrin Kiessner, Robin Tibor Schirrmeister, Joschka Boedecker, Tonio Ball:
Reaching the ceiling? Empirical scaling behaviour for deep EEG pathology classification. Comput. Biol. Medicine 178: 108681 (2024) - [c43]Yuan Zhang, Jasper Hoffmann, Joschka Boedecker:
UDUC: An Uncertainty-Driven Approach for Learning-Based Robust Control. ECAI 2024: 4402-4409 - [c42]Yuan Zhang, Umashankar Deekshith, Jianhong Wang, Joschka Boedecker:
Improving the Efficiency and Efficacy of Multi-Agent Reinforcement Learning on Complex Railway Networks with a Local-Critic Approach. ICAPS 2024: 698-706 - [c41]Shengchao Yan, Baohe Zhang, Yuan Zhang, Joschka Boedecker, Wolfram Burgard:
Learning Continuous Control with Geometric Regularity from Robot Intrinsic Symmetry. ICRA 2024: 49-55 - [c40]Jasper Hoffmann, Diego Fernandez Clausen, Julien Brosseit, Julian Bernhard, Klemens Esterle, Moritz Werling, Michael Karg, Joschka Bödecker:
PlanNetX: Learning an efficient neural network planner from MPC for longitudinal control. L4DC 2024: 1214-1227 - [i50]Yannick Vogt, Mehdi Naouar, Maria Kalweit, Christoph Cornelius Miething, Justus Duyster, Roland Mertelsmann, Gabriel Kalweit, Joschka Boedecker:
Stable Online and Offline Reinforcement Learning for Antibody CDRH3 Design. CoRR abs/2401.05341 (2024) - [i49]Baohe Zhang, Yuan Zhang, Lilli Frison, Thomas Brox, Joschka Bödecker:
Constrained Reinforcement Learning with Smoothed Log Barrier Function. CoRR abs/2403.14508 (2024) - [i48]Mariella Dreissig, Florian Piewak, Joschka Boedecker:
Hierarchical Insights: Exploiting Structural Similarities for Reliable 3D Semantic Segmentation. CoRR abs/2404.06124 (2024) - [i47]Jasper Hoffmann, Diego Fernandez Clausen, Julien Brosseit, Julian Bernhard, Klemens Esterle, Moritz Werling, Michael Karg, Joschka Boedecker:
PlanNetX: Learning an Efficient Neural Network Planner from MPC for Longitudinal Control. CoRR abs/2404.18863 (2024) - [i46]Yuan Zhang, Jasper Hoffmann, Joschka Boedecker:
UDUC: An Uncertainty-driven Approach for Learning-based Robust Control. CoRR abs/2405.02598 (2024) - [i45]Yuan Zhang, Shaohui Yang, Toshiyuki Ohtsuka, Colin Jones, Joschka Boedecker:
Latent Linear Quadratic Regulator for Robotic Control Tasks. CoRR abs/2407.11107 (2024) - [i44]Jan Ole von Hartz, Tim Welschehold, Abhinav Valada, Joschka Boedecker:
The Art of Imitation: Learning Long-Horizon Manipulation Tasks from Few Demonstrations. CoRR abs/2407.13432 (2024) - [i43]Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Boedecker, Carsten F. Dormann, Florian Pappenberger, Gianpaolo Balsamo:
Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators. CoRR abs/2407.16463 (2024) - [i42]David Eckel, Baohe Zhang, Joschka Bödecker:
Revisiting Safe Exploration in Safe Reinforcement learning. CoRR abs/2409.01245 (2024) - [i41]Yannick Vogt, Mehdi Naouar, Maria Kalweit, Christoph Cornelius Miething, Justus Duyster, Joschka Boedecker, Gabriel Kalweit:
BetterBodies: Reinforcement Learning guided Diffusion for Antibody Sequence Design. CoRR abs/2409.16298 (2024) - [i40]Baohe Zhang, Lilli Frison, Thomas Brox, Joschka Bödecker:
Constrained Reinforcement Learning for Safe Heat Pump Control. CoRR abs/2409.19716 (2024) - 2023
- [j14]Maria Kalweit, Andrea M. Burden, Joschka Boedecker, Thomas Hügle, Theresa Burkard:
Patient groups in Rheumatoid arthritis identified by deep learning respond differently to biologic or targeted synthetic DMARDs. PLoS Comput. Biol. 19(6) (2023) - [j13]Nicolai Dorka, Tim Welschehold, Joschka Bödecker, Wolfram Burgard:
Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning. IEEE Robotics Autom. Lett. 8(2): 624-631 (2023) - [j12]Jan Ole von Hartz, Eugenio Chisari, Tim Welschehold, Wolfram Burgard, Joschka Boedecker, Abhinav Valada:
The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation. IEEE Robotics Autom. Lett. 8(11): 6931-6938 (2023) - [c39]Andrea Ghezzi, Jasper Hoffmann, Jonathan Frey, Joschka Boedecker, Moritz Diehl:
Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its Gauss-Newton Approximation. CDC 2023: 4766-4771 - [c38]Yuan Zhang, Jianhong Wang, Joschka Boedecker:
Robust Reinforcement Learning in Continuous Control Tasks with Uncertainty Set Regularization. CoRL 2023: 1400-1424 - [c37]Suresh Guttikonda, Jan Achterhold, Haolong Li, Joschka Boedecker, Joerg Stueckler:
Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model. ECMR 2023: 1-7 - [c36]Rudolf Reiter, Jasper Hoffmann, Joschka Boedecker, Moritz Diehl:
A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing. ECC 2023: 1-8 - [c35]Mariella Dreissig, Florian Piewak, Joschka Boedecker:
On the Calibration of Uncertainty Estimation in LiDAR-Based Semantic Segmentation. ITSC 2023: 4798-4805 - [c34]Mariella Dreissig, Dominik Scheuble, Florian Piewak, Joschka Boedecker:
Survey on LiDAR Perception in Adverse Weather Conditions. IV 2023: 1-8 - [i39]Yuan Zhang, Joschka Boedecker, Chuxuan Li, Guyue Zhou:
Incorporating Recurrent Reinforcement Learning into Model Predictive Control for Adaptive Control in Autonomous Driving. CoRR abs/2301.13313 (2023) - [i38]Mehdi Naouar, Gabriel Kalweit, Ignacio Mastroleo, Philipp Poxleitner, Marc Christian Metzger, Joschka Boedecker, Maria Kalweit:
Robust Tumor Detection from Coarse Annotations via Multi-Magnification Ensembles. CoRR abs/2303.16533 (2023) - [i37]Andrea Ghezzi, Jasper Hoffmann, Jonathan Frey, Joschka Boedecker, Moritz Diehl:
Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its Gauss-Newton Approximation. CoRR abs/2304.01782 (2023) - [i36]Mariella Dreissig, Dominik Scheuble, Florian Piewak, Joschka Boedecker:
Survey on LiDAR Perception in Adverse Weather Conditions. CoRR abs/2304.06312 (2023) - [i35]Jan Ole von Hartz, Eugenio Chisari, Tim Welschehold, Wolfram Burgard, Joschka Boedecker, Abhinav Valada:
The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation. CoRR abs/2305.04718 (2023) - [i34]Shengchao Yan, Yuan Zhang, Baohe Zhang, Joschka Boedecker, Wolfram Burgard:
Geometric Regularity with Robot Intrinsic Symmetry in Reinforcement Learning. CoRR abs/2306.16316 (2023) - [i33]Suresh Guttikonda, Jan Achterhold, Haolong Li, Joschka Boedecker, Joerg Stueckler:
Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model. CoRR abs/2307.09206 (2023) - [i32]Mariella Dreissig, Florian Piewak, Joschka Boedecker:
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation. CoRR abs/2308.02248 (2023) - [i31]Lukas Alexander Wilhelm Gemein, Robin Tibor Schirrmeister, Joschka Boedecker, Tonio Ball:
Brain Age Revisited: Investigating the State vs. Trait Hypotheses of EEG-derived Brain-Age Dynamics with Deep Learning. CoRR abs/2310.07029 (2023) - [i30]Hao Zhu, Brice De La Crompe, Gabriel Kalweit, Artur Schneider, Maria Kalweit, Ilka Diester, Joschka Boedecker:
L(M)V-IQL: Multiple Intention Inverse Reinforcement Learning for Animal Behavior Characterization. CoRR abs/2311.13870 (2023) - [i29]Mehdi Naouar, Gabriel Kalweit, Anusha Klett, Yannick Vogt, Paula Silvestrini, Diana Laura Infante Ramírez, Roland Mertelsmann, Joschka Boedecker, Maria Kalweit:
CellMixer: Annotation-free Semantic Cell Segmentation of Heterogeneous Cell Populations. CoRR abs/2312.00671 (2023) - 2022
- [j11]Eugenio Chisari, Tim Welschehold, Joschka Boedecker, Wolfram Burgard, Abhinav Valada:
Correct Me If I am Wrong: Interactive Learning for Robotic Manipulation. IEEE Robotics Autom. Lett. 7(2): 3695-3702 (2022) - [j10]Gabriel Kalweit, Maria Kalweit, Joschka Boedecker:
Robust and Data-efficient Q-learning by Composite Value-estimation. Trans. Mach. Learn. Res. 2022 (2022) - [c33]Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, Wolfram Burgard:
Latent Plans for Task-Agnostic Offline Reinforcement Learning. CoRL 2022: 1838-1849 - [c32]Maria Kalweit, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Deep Surrogate Q-Learning for Autonomous Driving. ICRA 2022: 1578-1584 - [c31]Jessica Borja-Diaz, Oier Mees, Gabriel Kalweit, Lukás Hermann, Joschka Boedecker, Wolfram Burgard:
Affordance Learning from Play for Sample-Efficient Policy Learning. ICRA 2022: 6372-6378 - [i28]Jessica Borja-Diaz, Oier Mees, Gabriel Kalweit, Lukás Hermann, Joschka Boedecker, Wolfram Burgard:
Affordance Learning from Play for Sample-Efficient Policy Learning. CoRR abs/2203.00352 (2022) - [i27]Branka Mirchevska, Moritz Werling, Joschka Boedecker:
Optimizing Trajectories for Highway Driving with Offline Reinforcement Learning. CoRR abs/2203.10949 (2022) - [i26]Yuan Zhang, Jianhong Wang, Joschka Boedecker:
Robust Reinforcement Learning in Continuous Control Tasks with Uncertainty Set Regularization. CoRR abs/2207.02016 (2022) - [i25]Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, Wolfram Burgard:
Latent Plans for Task-Agnostic Offline Reinforcement Learning. CoRR abs/2209.08959 (2022) - [i24]Mariella Dreissig, Florian Piewak, Joschka Boedecker:
On the calibration of underrepresented classes in LiDAR-based semantic segmentation. CoRR abs/2210.06811 (2022) - [i23]Rudolf Reiter, Jasper Hoffmann, Joschka Boedecker, Moritz Diehl:
A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing. CoRR abs/2212.01607 (2022) - 2021
- [c30]Branka Mirchevska, Maria Hügle, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Amortized Q-learning with Model-based Action Proposals for Autonomous Driving on Highways. ICRA 2021: 1028-1035 - [c29]Maria Kalweit, Gabriel Kalweit, Joschka Boedecker:
AnyNets: Adaptive Deep Neural Networks for Medical Data with Missing Values. AI4Function@IJCAI 2021: 12-21 - [c28]Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, Gerhard Neumann:
Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty. IROS 2021: 2383-2390 - [c27]Gabriel Kalweit, Maria Hügle, Moritz Werling, Joschka Boedecker:
Q-learning with Long-term Action-space Shaping to Model Complex Behavior for Autonomous Lane Changes. IROS 2021: 5641-5648 - [i22]Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, Gerhard Neumann:
Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty. CoRR abs/2106.04306 (2021) - [i21]Eugenio Chisari, Tim Welschehold, Joschka Boedecker, Wolfram Burgard, Abhinav Valada:
Correct Me if I am Wrong: Interactive Learning for Robotic Manipulation. CoRR abs/2110.03316 (2021) - [i20]Nicolai Dorka, Joschka Boedecker, Wolfram Burgard:
Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning. CoRR abs/2111.12673 (2021) - 2020
- [j9]Lukas Alexander Wilhelm Gemein, Robin Tibor Schirrmeister, Patryk Chrabaszcz, Daniel Wilson, Joschka Boedecker, Andreas Schulze-Bonhage, Frank Hutter, Tonio Ball:
Machine-learning-based diagnostics of EEG pathology. NeuroImage 220: 117021 (2020) - [c26]Maria Hügle, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Dynamic Interaction-Aware Scene Understanding for Reinforcement Learning in Autonomous Driving. ICRA 2020: 4329-4335 - [c25]Marina Kollmitz, Torsten Koller, Joschka Boedecker, Wolfram Burgard:
Learning Human-Aware Robot Navigation from Physical Interaction via Inverse Reinforcement Learning. IROS 2020: 11025-11031 - [c24]Gabriel Kalweit, Maria Hügle, Moritz Werling, Joschka Boedecker:
Deep Inverse Q-learning with Constraints. NeurIPS 2020 - [i19]Lukas Alexander Wilhelm Gemein, Robin Tibor Schirrmeister, Patryk Chrabaszcz, Daniel Wilson, Joschka Boedecker, Andreas Schulze-Bonhage, Frank Hutter, Tonio Ball:
Machine-Learning-Based Diagnostics of EEG Pathology. CoRR abs/2002.05115 (2020) - [i18]Gabriel Kalweit, Maria Hügle, Moritz Werling, Joschka Boedecker:
Interpretable Multi Time-scale Constraints in Model-free Deep Reinforcement Learning for Autonomous Driving. CoRR abs/2003.09398 (2020) - [i17]Gabriel Kalweit, Maria Hügle, Moritz Werling, Joschka Boedecker:
Deep Inverse Q-learning with Constraints. CoRR abs/2008.01712 (2020) - [i16]Maria Hügle, Gabriel Kalweit, Thomas Huegle, Joschka Boedecker:
A Dynamic Deep Neural Network For Multimodal Clinical Data Analysis. CoRR abs/2008.06294 (2020) - [i15]Maria Kalweit, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Deep Surrogate Q-Learning for Autonomous Driving. CoRR abs/2010.11278 (2020) - [i14]Branka Mirchevska, Maria Hügle, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Amortized Q-learning with Model-based Action Proposals for Autonomous Driving on Highways. CoRR abs/2012.03234 (2020)
2010 – 2019
- 2019
- [j8]Lukas Dominique Josef Fiederer, Martin Völker, Robin Tibor Schirrmeister, Wolfram Burgard, Joschka Boedecker, Tonio Ball:
Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings With Deep Regression. Frontiers Neurorobotics 13: 76 (2019) - [j7]Jan M. Wülfing, Sreedhar S. Kumar, Joschka Boedecker, Martin A. Riedmiller, Ulrich Egert:
Adaptive long-term control of biological neural networks with Deep Reinforcement Learning. Neurocomputing 342: 66-74 (2019) - [j6]Jingwei Zhang, Lei Tai, Peng Yun, Yufeng Xiong, Ming Liu, Joschka Boedecker, Wolfram Burgard:
VR-Goggles for Robots: Real-to-Sim Domain Adaptation for Visual Control. IEEE Robotics Autom. Lett. 4(2): 1148-1155 (2019) - [j5]Daniel Kuhner, Lukas Dominique Josef Fiederer, Johannes Aldinger, Felix Burget, Martin Völker, Robin Tibor Schirrmeister, Chau Do, Joschka Boedecker, Bernhard Nebel, Tonio Ball, Wolfram Burgard:
A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain-computer interfacing. Robotics Auton. Syst. 116: 98-113 (2019) - [c23]Mohamed Abou-Hussein, Stefan H. Müller, Joschka Boedecker:
Multimodal Spatio-Temporal Information in End-to-End Networks for Automotive Steering Prediction. ICRA 2019: 8641-8647 - [c22]Maria Hügle, Gabriel Kalweit, Branka Mirchevska, Moritz Werling, Joschka Boedecker:
Dynamic Input for Deep Reinforcement Learning in Autonomous Driving. IROS 2019: 7566-7573 - [i13]Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, Wolfram Burgard:
Scheduled Intrinsic Drive: A Hierarchical Take on Intrinsically Motivated Exploration. CoRR abs/1903.07400 (2019) - [i12]Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, Andreas Krause:
Learning-based Model Predictive Control for Safe Exploration and Reinforcement Learning. CoRR abs/1906.12189 (2019) - [i11]Maria Hügle, Gabriel Kalweit, Branka Mirchevska, Moritz Werling, Joschka Boedecker:
Dynamic Input for Deep Reinforcement Learning in Autonomous Driving. CoRR abs/1907.10994 (2019) - [i10]Gabriel Kalweit, Maria Hügle, Joschka Boedecker:
Off-policy Multi-step Q-learning. CoRR abs/1909.13518 (2019) - [i9]Maria Hügle, Gabriel Kalweit, Moritz Werling, Joschka Boedecker:
Dynamic Interaction-Aware Scene Understanding for Reinforcement Learning in Autonomous Driving. CoRR abs/1909.13582 (2019) - 2018
- [c21]Simon Heller, Maria Hügle, Iman Nematollahi, Farrokh Manzouri, Matthias Dümpelmann, Andreas Schulze-Bonhage, Joschka Boedecker, Peter Woias:
Hardware Implementation of a Performance and Energy-optimized Convolutional Neural Network for Seizure Detection. EMBC 2018: 2268-2271 - [c20]Jan Wülfing, Sreedhar S. Kumar, Joschka Boedecker, Martin A. Riedmiller, Ulrich Egert:
Controlling biological neural networks with deep reinforcement learning. ESANN 2018 - [c19]Robert Dürichen, Keshav Deep Verma, Seow Yuen Yee, Thomas Rocznik, Philip Schmidt, Joschka Boedecker, Christian Peters:
Prediction of electrocardiography features points using seismocardiography data: a machine learning approach. UbiComp 2018: 96-99 - [c18]Maria Hügle, Simon Heller, Manuel Watter, Manuel Blum, Farrokh Manzouri, Matthias Dümpelmann, Andreas Schulze-Bonhage, Peter Woias, Joschka Boedecker:
Early Seizure Detection with an Energy-Efficient Convolutional Neural Network on an Implantable Microcontroller. IJCNN 2018: 1-7 - [c17]Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, Joschka Boedecker:
High-level Decision Making for Safe and Reasonable Autonomous Lane Changing using Reinforcement Learning. ITSC 2018: 2156-2162 - [i8]Jingwei Zhang, Lei Tai, Yufeng Xiong, Ming Liu, Joschka Boedecker, Wolfram Burgard:
VR Goggles for Robots: Real-to-sim Domain Adaptation for Visual Control. CoRR abs/1802.00265 (2018) - [i7]Maria Hügle, Simon Heller, Manuel Watter, Manuel Blum, Farrokh Manzouri, Matthias Dümpelmann, Andreas Schulze-Bonhage, Peter Woias, Joschka Boedecker:
Early Seizure Detection with an Energy-Efficient Convolutional Neural Network on an Implantable Microcontroller. CoRR abs/1806.04549 (2018) - 2017
- [c16]Gabriel Kalweit, Joschka Boedecker:
Uncertainty-driven Imagination for Continuous Deep Reinforcement Learning. CoRL 2017: 195-206 - [c15]Felix Burget, Lukas Dominique Josef Fiederer, Daniel Kuhner, Martin Völker, Johannes Aldinger, Robin Tibor Schirrmeister, Chau Do, Joschka Boedecker, Bernhard Nebel, Tonio Ball, Wolfram Burgard:
Acting thoughts: Towards a mobile robotic service assistant for users with limited communication skills. ECMR 2017: 1-6 - [c14]Wolfgang Groß, Sascha Lange, Joschka Bödecker, Manuel Blum:
Predicting Time Series with Space-Time Convolutional and Recurrent Neural Networks. ESANN 2017 - [c13]Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, Wolfram Burgard:
Deep reinforcement learning with successor features for navigation across similar environments. IROS 2017: 2371-2378 - [i6]Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, Ming Liu:
Neural SLAM. CoRR abs/1706.09520 (2017) - [i5]Felix Burget, Lukas Dominique Josef Fiederer, Daniel Kuhner, Martin Voelker, Johannes Aldinger, Robin Tibor Schirrmeister, Chau Do, Joschka Boedecker, Bernhard Nebel, Tonio Ball, Wolfram Burgard:
Acting Thoughts: Towards a Mobile Robotic Service Assistant for Users with Limited Communication Skills. CoRR abs/1707.06633 (2017) - 2016
- [j4]Sreedhar S. Kumar, Jan Wülfing, Samora Okujeni, Joschka Boedecker, Martin A. Riedmiller, Ulrich Egert:
Autonomous Optimization of Targeted Stimulation of Neuronal Networks. PLoS Comput. Biol. 12(8) (2016) - [i4]Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, Wolfram Burgard:
Deep Reinforcement Learning with Successor Features for Navigation across Similar Environments. CoRR abs/1612.05533 (2016) - 2015
- [j3]Wendelin Böhmer, Jost Tobias Springenberg, Joschka Boedecker, Martin A. Riedmiller, Klaus Obermayer:
Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. Künstliche Intell. 29(4): 353-362 (2015) - [c12]Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin A. Riedmiller:
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images. NIPS 2015: 2746-2754 - [i3]Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin A. Riedmiller:
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images. CoRR abs/1506.07365 (2015) - 2014
- [c11]Joschka Boedecker, Jost Tobias Springenberg, Jan Wülfing, Martin A. Riedmiller:
Approximate real-time optimal control based on sparse Gaussian process models. ADPRL 2014: 1-8 - 2013
- [i2]Oliver Obst, Joschka Boedecker, Benedikt Schmidt, Minoru Asada:
On active information storage in input-driven systems. CoRR abs/1303.5526 (2013) - [i1]Oliver Obst, Joschka Boedecker:
Guided Self-Organization of Input-Driven Recurrent Neural Networks. CoRR abs/1309.1524 (2013) - 2012
- [j2]Joschka Boedecker, Oliver Obst, Joseph T. Lizier, Norbert Michael Mayer, Minoru Asada:
Information processing in echo state networks at the edge of chaos. Theory Biosci. 131(3): 205-213 (2012) - [c10]Christoph Hartmann, Joschka Boedecker, Oliver Obst, Shuhei Ikemoto, Minoru Asada:
Real-Time Inverse Dynamics Learning for Musculoskeletal Robots based on Echo State Gaussian Process Regression. Robotics: Science and Systems 2012 - 2011
- [c9]Beata J. Grzyb, Joschka Boedecker, Minoru Asada, Angel P. del Pobil, Linda B. Smith:
Between Frustration and Elation: Sense of Control Regulates the lntrinsic Motivation for Motor Learning. Lifelong Learning 2011 - [c8]Beata J. Grzyb, Joschka Boedecker, Minoru Asada, Angel P. del Pobil, Linda B. Smith:
Trying anyways: How ignoring the errors may help in learning new skills. ICDL-EPIROB 2011: 1-6 - 2010
- [c7]Oliver Obst, Joschka Boedecker, Minoru Asada:
Improving Recurrent Neural Network Performance Using Transfer Entropy. ICONIP (2) 2010: 193-200
2000 – 2009
- 2009
- [j1]Norbert Michael Mayer, Joschka Boedecker, Minoru Asada:
Robot motion description and real-time management with the Harmonic Motion Description Protocol. Robotics Auton. Syst. 57(8): 870-876 (2009) - [c6]Joschka Boedecker, Oliver Obst, Norbert Michael Mayer, Minoru Asada:
Studies on reservoir initialization and dynamics shaping in echo state networks. ESANN 2009 - 2007
- [c5]Norbert Michael Mayer, Joschka Boedecker, Kazuhiro Masui, Masaki Ogino, Minoru Asada:
HMDP: A New Protocol for Motion Pattern Generation Towards Behavior Abstraction. RoboCup 2007: 184-195 - [c4]Rodrigo da Silva Guerra, Joschka Boedecker, Norbert Michael Mayer, Shinzo Yanagimachi, Yasuji Hirosawa, Kazuhiko Yoshikawa, Masaaki Namekawa, Minoru Asada:
Introducing Physical Visualization Sub-league. RoboCup 2007: 496-503 - 2006
- [c3]Norbert Michael Mayer, Joschka Boedecker, Rodrigo da Silva Guerra, Oliver Obst, Minoru Asada:
3D2Real: Simulation League Finals in Real Robots. RoboCup 2006: 25-34 - 2005
- [c2]Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra, Masaaki Kikuchi, Minoru Asada:
Getting closer: How Simulation and Humanoid League can benefit from each other. AMiRE 2005: 93-98 - [c1]Oliver Obst, Joschka Boedecker:
Flexible Coordination of Multiagent Team Behavior Using HTN Planning. RoboCup 2005: 521-528