default search action
René Vidal
Person information
- affiliation: The Johns Hopkins University, Department of Biomedical Engineering
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c221]Pablo Messina, René Vidal, Denis Parra, Alvaro Soto, Vladimir Araujo:
Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation. ACL (Findings) 2024: 3955-3986 - [c220]Konstantinos Emmanouilidis, René Vidal, Nicolas Loizou:
Stochastic Extragradient with Random Reshuffling: Improved Convergence for Variational Inequalities. AISTATS 2024: 3682-3690 - [c219]Oscar Loch, Pablo Messina, Rafael Elberg, Diego Campanini, Álvaro Soto, René Vidal, Denis Parra:
iHealth-Chile-3&2 at RRG24: Template Based Report Generation. BioNLP@ACL 2024: 614-623 - [c218]Tianyu Huang, Liangzu Peng, René Vidal, Yun-Hui Liu:
Scalable 3D Registration via Truncated Entry-Wise Absolute Residuals. CVPR 2024: 27467-27477 - [c217]Aditya Chattopadhyay, Kwan Ho Ryan Chan, René Vidal:
Bootstrapping Variational Information Pursuit with Large Language and Vision Models for Interpretable Image Classification. ICLR 2024 - [c216]Tianzhe Chu, Shengbang Tong, Tianjiao Ding, Xili Dai, Benjamin David Haeffele, René Vidal, Yi Ma:
Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models. ICLR 2024 - [c215]Hancheng Min, Enrique Mallada, René Vidal:
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization. ICLR 2024 - [c214]Aditya Chattopadhyay, Benjamin David Haeffele, René Vidal, Donald Geman:
Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024 - [c213]Hancheng Min, René Vidal:
Can Implicit Bias Imply Adversarial Robustness? ICML 2024 - [c212]Yashar Deldjoo, Zhankui He, Julian J. McAuley, Anton Korikov, Scott Sanner, Arnau Ramisa, René Vidal, Maheswaran Sathiamoorthy, Atoosa Kasirzadeh, Silvia Milano:
A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys). KDD 2024: 6448-6458 - [c211]Carolina Pacheco, Florence Yellin, René Vidal, Benjamin D. Haeffele:
Vertex Proportion Loss for Multi-class Cell Detection from Label Proportions. MICCAI (12) 2024: 366-376 - [c210]Yutao Tang, Benjamín Béjar, René Vidal:
Semantic-aware Video Representation for Few-shot Action Recognition. WACV 2024: 6444-6454 - [i99]Konstantinos Emmanouilidis, René Vidal, Nicolas Loizou:
Stochastic Extragradient with Random Reshuffling: Improved Convergence for Variational Inequalities. CoRR abs/2403.07148 (2024) - [i98]Kyle Poe, Enrique Mallada, René Vidal:
Invertibility of Discrete-Time Linear Systems with Sparse Inputs. CoRR abs/2403.20294 (2024) - [i97]Yashar Deldjoo, Zhankui He, Julian J. McAuley, Anton Korikov, Scott Sanner, Arnau Ramisa, René Vidal, Maheswaran Sathiamoorthy, Atoosa Kasirzadeh, Silvia Milano:
A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys). CoRR abs/2404.00579 (2024) - [i96]Tianyu Huang, Liangzu Peng, René Vidal, Yun-Hui Liu:
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals. CoRR abs/2404.00915 (2024) - [i95]Ambar Pal, René Vidal, Jeremias Sulam:
Certified Robustness against Sparse Adversarial Perturbations via Data Localization. CoRR abs/2405.14176 (2024) - [i94]Hancheng Min, René Vidal:
Can Implicit Bias Imply Adversarial Robustness? CoRR abs/2405.15942 (2024) - [i93]Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan Thaker, Aditya Chattopadhyay, Chris Callison-Burch, René Vidal:
PaCE: Parsimonious Concept Engineering for Large Language Models. CoRR abs/2406.04331 (2024) - [i92]Pablo Messina, René Vidal, Denis Parra, Álvaro Soto, Vladimir Araujo:
Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation. CoRR abs/2407.01948 (2024) - [i91]Anton Korikov, Scott Sanner, Yashar Deldjoo, Zhankui He, Julian J. McAuley, Arnau Ramisa, René Vidal, Mahesh Sathiamoorthy, Atoosa Kasirzadeh, Silvia Milano, Francesco Ricci:
Large Language Model Driven Recommendation. CoRR abs/2408.10946 (2024) - [i90]Arnau Ramisa, René Vidal, Yashar Deldjoo, Zhankui He, Julian J. McAuley, Anton Korikov, Scott Sanner, Mahesh Sathiamoorthy, Atoosa Kasrizadeh, Silvia Milano, Francesco Ricci:
Multi-modal Generative Models in Recommendation System. CoRR abs/2409.10993 (2024) - [i89]Yashar Deldjoo, Zhankui He, Julian J. McAuley, Anton Korikov, Scott Sanner, Arnau Ramisa, René Vidal, Maheswaran Sathiamoorthy, Atoosa Kasrizadeh, Silvia Milano, Francesco Ricci:
Recommendation with Generative Models. CoRR abs/2409.15173 (2024) - [i88]Liangzu Peng, Juan Elenter, Joshua Agterberg, Alejandro Ribeiro, René Vidal:
ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models. CoRR abs/2410.00645 (2024) - [i87]Paris Giampouras, HanQin Cai, René Vidal:
Guarantees of a Preconditioned Subgradient Algorithm for Overparameterized Asymmetric Low-rank Matrix Recovery. CoRR abs/2410.16826 (2024) - 2023
- [j63]Aditya Chattopadhyay, Stewart Slocum, Benjamin D. Haeffele, René Vidal, Donald Geman:
Interpretable by Design: Learning Predictors by Composing Interpretable Queries. IEEE Trans. Pattern Anal. Mach. Intell. 45(6): 7430-7443 (2023) - [j62]Guilherme França, Daniel P. Robinson, René Vidal:
A Nonsmooth Dynamical Systems Perspective on Accelerated Extensions of ADMM. IEEE Trans. Autom. Control. 68(5): 2966-2978 (2023) - [j61]Gregory N. McKay, Anisha Oommen, Carolina Pacheco, Mason T. Chen, Stuart C. Ray, René Vidal, Benjamin D. Haeffele, Nicholas J. Durr:
Lens Free Holographic Imaging for Urinary Tract Infection Screening. IEEE Trans. Biomed. Eng. 70(3): 1053-1061 (2023) - [c209]Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal:
Linear Convergence of Gradient Descent For Finite Width Over-parametrized Linear Networks With General Initialization. AISTATS 2023: 2262-2284 - [c208]Kaleab Alemayehu Kinfu, René Vidal:
Efficient Vision Transformer for Human Pose Estimation via Patch Selection. BMVC 2023: 167-171 - [c207]Kyle Poe, Enrique Mallada, René Vidal:
Necessary and Sufficient Conditions for Simultaneous State and Input Recovery of Linear Systems with Sparse Inputs by ℓ1 -Minimization. CDC 2023: 6499-6506 - [c206]Liangzu Peng, Christian Kümmerle, René Vidal:
On the Convergence of IRLS and Its Variants in Outlier-Robust Estimation. CVPR 2023: 17808-17818 - [c205]Zhizhang Hu, Xinliang Zhu, Son Tran, René Vidal, Arnab Dhua:
ProVLA: Compositional Image Search with Progressive Vision-Language Alignment and Multimodal Fusion. ICCV (Workshops) 2023: 2764-2769 - [c204]Christiaan Lamers, René Vidal, Nabil Belbachir, Niki van Stein, Thomas Bäck, Paris Giampouras:
Clustering-based Domain-Incremental Learning. ICCV (Workshops) 2023: 3376-3384 - [c203]Aditya Chattopadhyay, Kwan Ho Ryan Chan, Benjamin David Haeffele, Donald Geman, René Vidal:
Variational Information Pursuit for Interpretable Predictions. ICLR 2023 - [c202]Juan Cerviño, Luiz F. O. Chamon, Benjamin David Haeffele, René Vidal, Alejandro Ribeiro:
Learning Globally Smooth Functions on Manifolds. ICML 2023: 3815-3854 - [c201]Hancheng Min, René Vidal, Enrique Mallada:
On the Convergence of Gradient Flow on Multi-layer Linear Models. ICML 2023: 24850-24887 - [c200]Liangzu Peng, Paris Giampouras, René Vidal:
The Ideal Continual Learner: An Agent That Never Forgets. ICML 2023: 27585-27610 - [c199]Aditya Chattopadhyay, Ryan Pilgrim, René Vidal:
Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable AI. NeurIPS 2023 - [c198]Ambar Pal, Jeremias Sulam, René Vidal:
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness. NeurIPS 2023 - [c197]Aditya Chattopadhyay, Xi Zhang, David Paul Wipf, Himanshu Arora, René Vidal:
Learning Graph Variational Autoencoders with Constraints and Structured Priors for Conditional Indoor 3D Scene Generation. WACV 2023: 785-794 - [i86]Aditya Chattopadhyay, Kwan Ho Ryan Chan, Benjamin D. Haeffele, Donald Geman, René Vidal:
Variational Information Pursuit for Interpretable Predictions. CoRR abs/2302.02876 (2023) - [i85]Kyle Poe, Enrique Mallada, René Vidal:
Necessary and Sufficient Conditions for Simultaneous State and Input Recovery of Linear Systems with Sparse Inputs by 𝓁1-Minimization. CoRR abs/2304.05526 (2023) - [i84]Liangzu Peng, Paris V. Giampouras, René Vidal:
The Ideal Continual Learner: An Agent That Never Forgets. CoRR abs/2305.00316 (2023) - [i83]Kaleab Alemayehu Kinfu, René Vidal:
Efficient Vision Transformer for Human Pose Estimation via Patch Selection. CoRR abs/2306.04225 (2023) - [i82]Darshan Thaker, Paris Giampouras, René Vidal:
A Linearly Convergent GAN Inversion-based Algorithm for Reverse Engineering of Deceptions. CoRR abs/2306.04756 (2023) - [i81]Tianzhe Chu, Shengbang Tong, Tianjiao Ding, Xili Dai, Benjamin David Haeffele, René Vidal, Yi Ma:
Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models. CoRR abs/2306.05272 (2023) - [i80]Hancheng Min, René Vidal, Enrique Mallada:
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization. CoRR abs/2307.12851 (2023) - [i79]Kwan Ho Ryan Chan, Aditya Chattopadhyay, Benjamin David Haeffele, René Vidal:
Variational Information Pursuit with Large Language and Multimodal Models for Interpretable Predictions. CoRR abs/2308.12562 (2023) - [i78]Christiaan Lamers, René Vidal, Ahmed Nabil Belbachir, Niki van Stein, Thomas Bäck, Paris Giampouras:
Clustering-based Domain-Incremental Learning. CoRR abs/2309.12078 (2023) - [i77]Ambar Pal, Jeremias Sulam, René Vidal:
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness. CoRR abs/2309.16096 (2023) - [i76]Yutao Tang, Benjamín Béjar, René Vidal:
Semantic-aware Video Representation for Few-shot Action Recognition. CoRR abs/2311.06218 (2023) - [i75]Jinqi Luo, Kwan Ho Ryan Chan, Dimitris Dimos, René Vidal:
Knowledge Pursuit Prompting for Zero-Shot Multimodal Synthesis. CoRR abs/2311.17898 (2023) - [i74]Stefan Kolek, Aditya Chattopadhyay, Kwan Ho Ryan Chan, Héctor Andrade-Loarca, Gitta Kutyniok, René Vidal:
Learning Interpretable Queries for Explainable Image Classification with Information Pursuit. CoRR abs/2312.11548 (2023) - 2022
- [j60]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
The vision of self-evolving computing systems. J. Integr. Des. Process. Sci. 26(3-4): 351-367 (2022) - [j59]Chong You, Chi Li, Daniel P. Robinson, René Vidal:
Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 44(5): 2698-2711 (2022) - [j58]Benjamín Béjar Haro, Ivan Dokmanic, René Vidal:
The Fastest $\ell _{1, \infty }$ℓ1, ∞ Prox in the West. IEEE Trans. Pattern Anal. Mach. Intell. 44(7): 3858-3869 (2022) - [c196]Kaleab Alemayehu Kinfu, René Vidal:
Analysis and Extensions of Adversarial Training for Video Classification. CVPR Workshops 2022: 3415-3424 - [c195]Liangzu Peng, Manolis C. Tsakiris, René Vidal:
ARCS: Accurate Rotation and Correspondence Search. CVPR 2022: 11143-11153 - [c194]Effrosyni Mavroudi, René Vidal:
Weakly-Supervised Generation and Grounding of Visual Descriptions with Conditional Generative Models. CVPR 2022: 15523-15533 - [c193]Liangzu Peng, Mahyar Fazlyab, René Vidal:
Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not. ECCV (23) 2022: 673-691 - [c192]Paris Giampouras, Benjamin David Haeffele, René Vidal:
Implicit Bias of Projected Subgradient Method Gives Provable Robust Recovery of Subspaces of Unknown Codimension. ICLR 2022 - [c191]Tianjiao Ding, Derek Lim, René Vidal, Benjamin D. Haeffele:
Understanding Doubly Stochastic Clustering. ICML 2022: 5153-5165 - [c190]Darshan Thaker, Paris Giampouras, René Vidal:
Reverse Engineering ℓp attacks: A block-sparse optimization approach with recovery guarantees. ICML 2022: 21253-21271 - [c189]Yutao Tang, Benjamín Béjar, Joey K.-Y. Essoe, Joseph F. McGuire, René Vidal:
Facial Tic Detection in Untrimmed Videos of Tourette Syndrome Patients. ICPR 2022: 3152-3159 - [c188]René Vidal:
Semantic Information Pursuit. IMPROVE 2022: 9 - [c187]Liangzu Peng, Christian Kümmerle, René Vidal:
Global Linear and Local Superlinear Convergence of IRLS for Non-Smooth Robust Regression. NeurIPS 2022 - [c186]Effrosyni Mavroudi, Prashast Bindal, René Vidal:
Actor-Centric Tubelets for Real-Time Activity Detection in Extended Videos. WACV (Workshops) 2022: 172-181 - [i73]Joshua T. Vogelstein, Timothy D. Verstynen, Konrad P. Kording, Leyla Isik, John W. Krakauer, Ralph Etienne-Cummings, Elizabeth L. Ogburn, Carey E. Priebe, Randal C. Burns, Kwame S. Kutten, James J. Knierim, James B. Potash, Thomas Hartung, Lena Smirnova, Paul Worley, Alena V. Savonenko, Ian Phillips, Michael I. Miller, René Vidal, Jeremias Sulam, Adam Charles, Noah J. Cowan, Maxim Bichuch, Archana Venkataraman, Chen Li, Nitish V. Thakor, Justus M. Kebschull, Marilyn S. Albert, Jinchong Xu, Marshall G. Hussain Shuler, Brian Caffo, J. Tilak Ratnanather, Ali Geisa, Seung-Eon Roh, Eva Yezerets, Meghana Madhyastha, Javier J. How, Tyler M. Tomita, Jayanta Dey, Ningyuan Huang, Jong M. Shin, Kaleab Alemayehu Kinfu, Pratik Chaudhari, Ben Baker, Anna Schapiro, Dinesh Jayaraman, Eric Eaton, Michael L. Platt, Lyle H. Ungar, Leila Wehbe, Ádám Kepecs, Amy Christensen, Onyema Osuagwu, Bing Brunton, Brett Mensh, Alysson R. Muotri, Gabriel A. Silva, Francesca Puppo, Florian Engert, Elizabeth Hillman, Julia Brown, Chris White, Weiwei Yang:
Prospective Learning: Back to the Future. CoRR abs/2201.07372 (2022) - [i72]Paris V. Giampouras, Benjamin D. Haeffele, René Vidal:
Implicit Bias of Projected Subgradient Method Gives Provable Robust Recovery of Subspaces of Unknown Codimension. CoRR abs/2201.09079 (2022) - [i71]Darshan Thaker, Paris Giampouras, René Vidal:
Reverse Engineering 𝓁p attacks: A block-sparse optimization approach with recovery guarantees. CoRR abs/2203.04886 (2022) - [i70]Liangzu Peng, Manolis C. Tsakiris, René Vidal:
ARCS: Accurate Rotation and Correspondence Search. CoRR abs/2203.14493 (2022) - [i69]Aditya Chattopadhyay, Xi Zhang, David Paul Wipf, Himanshu Arora, René Vidal:
Structured Graph Variational Autoencoders for Indoor Furniture layout Generation. CoRR abs/2204.04867 (2022) - [i68]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
The Vision of Self-Evolving Computing Systems. CoRR abs/2204.06825 (2022) - [i67]Kaleab Alemayehu Kinfu, René Vidal:
Analysis and Extensions of Adversarial Training for Video Classification. CoRR abs/2206.07953 (2022) - [i66]Aditya Chattopadhyay, Stewart Slocum, Benjamin D. Haeffele, René Vidal, Donald Geman:
Interpretable by Design: Learning Predictors by Composing Interpretable Queries. CoRR abs/2207.00938 (2022) - [i65]Liangzu Peng, Mahyar Fazlyab, René Vidal:
Towards Understanding The Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search. CoRR abs/2207.08350 (2022) - [i64]Juan Cerviño, Luiz F. O. Chamon, Benjamin D. Haeffele, René Vidal, Alejandro Ribeiro:
Learning Globally Smooth Functions on Manifolds. CoRR abs/2210.00301 (2022) - [i63]Yutao Tang, Benjamín Béjar, Joey K.-Y. Essoe, Joseph F. McGuire, René Vidal:
Facial Tic Detection in Untrimmed Videos of Tourette Syndrome Patients. CoRR abs/2211.03895 (2022) - [i62]Ambar Pal, Arnau Ramisa, Amit Kumar K. C, René Vidal:
On Utilizing Relationships for Transferable Few-Shot Fine-Grained Object Detection. CoRR abs/2212.00770 (2022) - 2021
- [j57]Mustafa Devrim Kaba, Mengnan Zhao, René Vidal, Daniel P. Robinson, Enrique Mallada:
What is the Largest Sparsity Pattern That Can Be Recovered by 1-Norm Minimization? IEEE Trans. Inf. Theory 67(5): 3060-3074 (2021) - [c185]Tianyu Ding, Zhihui Zhu, Manolis C. Tsakiris, René Vidal, Daniel P. Robinson:
Dual Principal Component Pursuit for Learning a Union of Hyperplanes: Theory and Algorithms. AISTATS 2021: 2944-2952 - [c184]Shangzhi Zhang, Chong You, René Vidal, Chun-Guang Li:
Learning a Self-Expressive Network for Subspace Clustering. CVPR 2021: 12393-12403 - [c183]Benjamin David Haeffele, Chong You, René Vidal:
A Critique of Self-Expressive Deep Subspace Clustering. ICLR 2021 - [c182]Tianyu Ding, Zhihui Zhu, René Vidal, Daniel P. Robinson:
Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach. ICML 2021: 2739-2748 - [c181]Mustafa Devrim Kaba, Chong You, Daniel P. Robinson, Enrique Mallada, René Vidal:
A Nullspace Property for Subspace-Preserving Recovery. ICML 2021: 5180-5188 - [c180]Hancheng Min, Salma Tarmoun, René Vidal, Enrique Mallada:
On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks. ICML 2021: 7760-7768 - [c179]Salma Tarmoun, Guilherme França, Benjamin D. Haeffele, René Vidal:
Understanding the Dynamics of Gradient Flow in Overparameterized Linear models. ICML 2021: 10153-10161 - [i61]Hancheng Min, Salma Tarmoun, René Vidal, Enrique Mallada:
On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks. CoRR abs/2105.06351 (2021) - [i60]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
Lifelong Computing. CoRR abs/2108.08802 (2021) - [i59]Yunchen Yang, Xinyue Zhang, Tianjiao Ding, Daniel P. Robinson, René Vidal, Manolis C. Tsakiris:
Boosting RANSAC via Dual Principal Component Pursuit. CoRR abs/2110.02918 (2021) - [i58]Shangzhi Zhang, Chong You, René Vidal, Chun-Guang Li:
Learning a Self-Expressive Network for Subspace Clustering. CoRR abs/2110.04318 (2021) - 2020
- [j56]Hans Lobel, René Vidal, Alvaro Soto:
CompactNets: Compact Hierarchical Compositional Networks for Visual Recognition. Comput. Vis. Image Underst. 191: 102841 (2020) - [j55]Joan Bruna, Eldad Haber, Gitta Kutyniok, Thomas Pock, René Vidal:
Special Issue on the Mathematical Foundations of Deep Learning in Imaging Science. J. Math. Imaging Vis. 62(3): 277-278 (2020) - [j54]Benjamin D. Haeffele, René Vidal:
Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 42(6): 1468-1482 (2020) - [j53]Xiao Li, Zhihui Zhu, Anthony Man-Cho So, René Vidal:
Nonconvex Robust Low-Rank Matrix Recovery. SIAM J. Optim. 30(1): 660-686 (2020) - [c178]Tianjiao Ding, Yunchen Yang, Zhihui Zhu, Daniel P. Robinson, René Vidal, Laurent Kneip, Manolis C. Tsakiris:
Robust Homography Estimation via Dual Principal Component Pursuit. CVPR 2020: 6079-6088 - [c177]Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele:
On the Regularization Properties of Structured Dropout. CVPR 2020: 7668-7676 - [c176]Effrosyni Mavroudi, Benjamín Béjar Haro, René Vidal:
Representation Learning on Visual-Symbolic Graphs for Video Understanding. ECCV (29) 2020: 71-90 - [c175]Carolina Pacheco, Effrosyni Mavroudi, Elena Kokkoni, Herbert G. Tanner, René Vidal:
A Detection-based Approach to Multiview Action Classification in Infants. ICPR 2020: 6112-6119 - [c174]Guilherme França, Jeremias Sulam, Daniel P. Robinson, René Vidal:
Conformal Symplectic and Relativistic Optimization. NeurIPS 2020 - [c173]Paris Giampouras, René Vidal, Athanasios A. Rontogiannis, Benjamin D. Haeffele:
A novel variational form of the Schatten-$p$ quasi-norm. NeurIPS 2020 - [c172]Ambar Pal, René Vidal:
A Game Theoretic Analysis of Additive Adversarial Attacks and Defenses. NeurIPS 2020 - [i57]Qing Qu, Zhihui Zhu, Xiao Li, Manolis C. Tsakiris, John Wright, René Vidal:
Finding the Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications. CoRR abs/2001.06970 (2020) - [i56]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Is an Affine Constraint Needed for Affine Subspace Clustering? CoRR abs/2005.03888 (2020) - [i55]Chong You, Chi Li, Daniel P. Robinson, René Vidal:
Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. CoRR abs/2006.04246 (2020) - [i54]Ambar Pal, René Vidal:
A Game Theoretic Analysis of Additive Adversarial Attacks and Defenses. CoRR abs/2009.06530 (2020) - [i53]Benjamin D. Haeffele, Chong You, René Vidal:
A Critique of Self-Expressive Deep Subspace Clustering. CoRR abs/2010.03697 (2020) - [i52]Paris Giampouras, René Vidal, Athanasios A. Rontogiannis, Benjamin D. Haeffele:
A novel variational form of the Schatten-p quasi-norm. CoRR abs/2010.13927 (2020) - [i51]Derek Lim, René Vidal, Benjamin D. Haeffele:
Doubly Stochastic Subspace Clustering. CoRR abs/2011.14859 (2020)
2010 – 2019
- 2019
- [j52]Evan Schwab, Benjamin D. Haeffele, René Vidal, Nicolas Charon:
Global Optimality in Separable Dictionary Learning with Applications to the Analysis of Diffusion MRI. SIAM J. Imaging Sci. 12(4): 1967-2008 (2019) - [c171]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Is an Affine Constraint Needed for Affine Subspace Clustering? ICCV 2019: 9914-9923 - [c170]Connor Lane, Ron Boger, Chong You, Manolis C. Tsakiris, Benjamin D. Haeffele, René Vidal:
Classifying and Comparing Approaches to Subspace Clustering with Missing Data. ICCV Workshops 2019: 669-677 - [c169]Connor Lane, Benjamin D. Haeffele, René Vidal:
Adaptive Online k-Subspaces with Cooperative Re-Initialization. ICCV Workshops 2019: 678-688 - [c168]Tianyu Ding, Zhihui Zhu, Tianjiao Ding, Yunchen Yang, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal:
Noisy Dual Principal Component Pursuit. ICML 2019: 1617-1625 - [c167]Benjamin D. Haeffele, Christian Pick, Ziduo Lin, Evelien Mathieu, Stuart C. Ray, René Vidal:
An Optical Model of Whole Blood for Detecting Platelets in Lens-Free Images. SASHIMI@MICCAI 2019: 140-150 - [c166]Florence Yellin, Benjamín Béjar Haro, Benjamin D. Haeffele, Evelien Mathieu, Christian Pick, Stuart C. Ray, René Vidal:
Joint Holographic Detection and Reconstruction. MLMI@MICCAI 2019: 664-672 - [c165]Carolina Pacheco, René Vidal:
An Unsupervised Domain Adaptation Approach to Classification of Stem Cell-Derived Cardiomyocytes. MICCAI (1) 2019: 806-814 - [c164]Zhihui Zhu, Tianyu Ding, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal:
A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning. NeurIPS 2019: 9437-9447 - [i50]