


Остановите войну!
for scientists:


default search action
Scott Sanner
Person information

- affiliation: University of Toronto, Department of Mechanical and Industrial Engineering, Canada
- affiliation: Australian National University, Acton, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j20]Tianshu Shen
, Jiaru Li, Mohamed Reda Bouadjenek, Zheda Mai, Scott Sanner:
Towards understanding and mitigating unintended biases in language model-driven conversational recommendation. Inf. Process. Manag. 60(1): 103139 (2023) - [j19]Ruiwen Li, Zheda Mai, Zhibo Zhang, Jongseong Jang, Scott Sanner:
TransCAM: Transformer attention-based CAM refinement for Weakly supervised semantic segmentation. J. Vis. Commun. Image Represent. 92: 103800 (2023) - [j18]Mohamed Reda Bouadjenek, Scott Sanner, Ga Wu:
A User-Centric Analysis of Social Media for Stock Market Prediction. ACM Trans. Web 17(2): 9:1-9:22 (2023) - [c112]Jihwan Jeong, Scott Sanner, Akshat Kumar:
A Mixed-Integer Linear Programming Reduction of Disjoint Bilinear Programs via Symbolic Variable Elimination. CPAIOR 2023: 79-95 - [c111]Aravinth Chembu, Scott Sanner, Elias B. Khalil:
Scalable and Near-Optimal ε-Tube Clusterwise Regression. CPAIOR 2023: 254-263 - [c110]Mohammad Mahdi Abdollah Pour, Parsa Farinneya, Armin Toroghi, Anton Korikov, Ali Pesaranghader, Touqir Sajed, Manasa Bharadwaj, Borislav Mavrin, Scott Sanner:
Self-supervised Contrastive BERT Fine-tuning for Fusion-Based Reviewed-Item Retrieval. ECIR (1) 2023: 3-17 - [i42]Siow Meng Low, Akshat Kumar, Scott Sanner:
Safe MDP Planning by Learning Temporal Patterns of Undesirable Trajectories and Averting Negative Side Effects. CoRR abs/2304.03081 (2023) - [i41]Zhenwei Tang, Griffin Floto, Armin Toroghi, Shichao Pei, Xiangliang Zhang, Scott Sanner:
LogicRec: Recommendation with Users' Logical Requirements. CoRR abs/2304.11722 (2023) - [i40]Aravinth Chembu, Scott Sanner:
A Generalized Framework for Predictive Clustering and Optimization. CoRR abs/2305.04364 (2023) - 2022
- [j17]Zheda Mai
, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, Scott Sanner:
Online continual learning in image classification: An empirical survey. Neurocomputing 469: 28-51 (2022) - [j16]Ga Wu
, Justin Domke, Scott Sanner:
Arbitrary conditional inference in variational autoencoders via fast prior network training. Mach. Learn. 111(7): 2537-2559 (2022) - [j15]Mohamed Reda Bouadjenek
, Scott Sanner, Zahra Iman, Lexing Xie
, Daniel Xiaoliang Shi:
A longitudinal study of topic classification on Twitter. PeerJ Comput. Sci. 8: e991 (2022) - [c109]Siow Meng Low, Akshat Kumar, Scott Sanner:
Sample-Efficient Iterative Lower Bound Optimization of Deep Reactive Policies for Planning in Continuous MDPs. AAAI 2022: 9840-9848 - [c108]Noah Patton, Jihwan Jeong, Mike Gimelfarb, Scott Sanner:
A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs. AAAI 2022: 9894-9901 - [c107]Jihwan Jeong, Parth Jaggi, Andrew Butler, Scott Sanner:
An Exact Symbolic Reduction of Linear Smart Predict+Optimize to Mixed Integer Linear Programming. ICML 2022: 10053-10067 - [c106]Mathieu Tuli, Andrew C. Li, Pashootan Vaezipoor, Toryn Q. Klassen, Scott Sanner, Sheila A. McIlraith:
Learning to Follow Instructions in Text-Based Games. NeurIPS 2022 - [c105]Riley Moher, Michael Gruninger, Scott Sanner:
What's in a (Data) Type? Meaningful Type Safety for Data Science. RCIS 2022: 20-38 - [c104]Zhaolin Gao, Tianshu Shen, Zheda Mai, Mohamed Reda Bouadjenek, Isaac Waller, Ashton Anderson, Ron Bodkin, Scott Sanner:
Mitigating the Filter Bubble While Maintaining Relevance: Targeted Diversification with VAE-based Recommender Systems. SIGIR 2022: 2524-2531 - [c103]Tianshu Shen, Zheda Mai, Ga Wu, Scott Sanner:
Distributional Contrastive Embedding for Clarification-based Conversational Critiquing. WWW 2022: 2422-2432 - [i39]Tianshu Shen, Jiaru Li, Mohamed Reda Bouadjenek, Zheda Mai, Scott Sanner:
Unintended Bias in Language Model-driven Conversational Recommendation. CoRR abs/2201.06224 (2022) - [i38]Ruiwen Li, Zheda Mai, Chiheb Trabelsi, Zhibo Zhang, Jongseong Jang, Scott Sanner:
TransCAM: Transformer Attention-based CAM Refinement for Weakly Supervised Semantic Segmentation. CoRR abs/2203.07239 (2022) - [i37]Siow Meng Low, Akshat Kumar, Scott Sanner:
Sample-efficient Iterative Lower Bound Optimization of Deep Reactive Policies for Planning in Continuous MDPs. CoRR abs/2203.12679 (2022) - [i36]Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai, Scott Sanner:
Conservative Bayesian Model-Based Value Expansion for Offline Policy Optimization. CoRR abs/2210.03802 (2022) - [i35]Yudong Xu, Elias B. Khalil, Scott Sanner:
Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus. CoRR abs/2210.09880 (2022) - [i34]Mathieu Tuli, Andrew C. Li, Pashootan Vaezipoor, Toryn Q. Klassen, Scott Sanner, Sheila A. McIlraith:
Learning to Follow Instructions in Text-Based Games. CoRR abs/2211.04591 (2022) - [i33]Ayal Taitler, Michael Gimelfarb, Sriram Gopalakrishnan, Xiaotian Liu, Scott Sanner:
pyRDDLGym: From RDDL to Gym Environments. CoRR abs/2211.05939 (2022) - [i32]Xiaoyu Wang, Scott Sanner, Baher Abdulhai:
A Critical Review of Traffic Signal Control and A Novel Unified View of Reinforcement Learning and Model Predictive Control Approaches for Adaptive Traffic Signal Control. CoRR abs/2211.14426 (2022) - 2021
- [j14]Yew Meng Khaw
, Amir Abiri Jahromi
, Mohammadreza Fakhari Moghaddam Arani, Scott Sanner, Deepa Kundur
, Marthe Kassouf
:
A Deep Learning-Based Cyberattack Detection System for Transmission Protective Relays. IEEE Trans. Smart Grid 12(3): 2554-2565 (2021) - [c102]Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, Jongseong Jang:
Online Class-Incremental Continual Learning with Adversarial Shapley Value. AAAI 2021: 9630-9638 - [c101]Zheda Mai, Ruiwen Li, Hyunwoo Kim, Scott Sanner:
Supervised Contrastive Replay: Revisiting the Nearest Class Mean Classifier in Online Class-Incremental Continual Learning. CVPR Workshops 2021: 3589-3599 - [c100]Mike Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Bayesian Experience Reuse for Learning from Multiple Demonstrators. IJCAI 2021: 2425-2431 - [c99]Jihwan Jeong, Parth Jaggi, Scott Sanner:
Symbolic Dynamic Programming for Continuous State MDPs with Linear Program Transitions. IJCAI 2021: 4083-4089 - [c98]Ta Jiun Ting, Xiaocan Li, Scott Sanner, Baher Abdulhai:
Revisiting Random Forests in a Comparative Evaluation of Graph Convolutional Neural Network Variants for Traffic Prediction. ITSC 2021: 1259-1265 - [c97]Parth Jaggi, Xiaoyu Wang, Nicolas Carrara, Scott Sanner, Baher Abdulhai:
Microscopic Model-Based RL Approaches for Traffic Signal Control Generalize Better than Model-Free RL Approaches. ITSC 2021: 2525-2532 - [c96]Michael Gimelfarb, André Barreto, Scott Sanner, Chi-Guhn Lee:
Risk-Aware Transfer in Reinforcement Learning using Successor Features. NeurIPS 2021: 17298-17310 - [c95]Yi Sui, Ga Wu, Scott Sanner:
Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models. NeurIPS 2021: 23347-23358 - [c94]Hojin Yang, Tianshu Shen, Scott Sanner:
Bayesian Critiquing with Keyphrase Activation Vectors for VAE-based Recommender Systems. SIGIR 2021: 2111-2115 - [c93]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Contextual policy transfer in reinforcement learning domains via deep mixtures-of-experts. UAI 2021: 1787-1797 - [c92]Hojin Yang, Scott Sanner, Ga Wu, Jin Peng Zhou:
Bayesian Preference Elicitation with Keyphrase-Item Coembeddings for Interactive Recommendation. UMAP 2021: 55-64 - [c91]Shengnan Lyu, Arpit Rana, Scott Sanner, Mohamed Reda Bouadjenek
:
A Workflow Analysis of Context-driven Conversational Recommendation. WWW 2021: 866-877 - [i31]Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, Scott Sanner:
Online Continual Learning in Image Classification: An Empirical Survey. CoRR abs/2101.10423 (2021) - [i30]Zheda Mai, Ruiwen Li, Hyunwoo Kim, Scott Sanner:
Supervised Contrastive Replay: Revisiting the Nearest Class Mean Classifier in Online Class-Incremental Continual Learning. CoRR abs/2103.13885 (2021) - [i29]Michael Gimelfarb, André Barreto, Scott Sanner, Chi-Guhn Lee:
Risk-Aware Transfer in Reinforcement Learning using Successor Features. CoRR abs/2105.14127 (2021) - [i28]Ruiwen Li, Zhibo Zhang, Jiani Li, Scott Sanner, Jongseong Jang, Yeonjeong Jeong, Dongsub Shim:
EDDA: Explanation-driven Data Augmentation to Improve Model and Explanation Alignment. CoRR abs/2105.14162 (2021) - [i27]Noah Patton, Jihwan Jeong, Michael Gimelfarb, Scott Sanner:
RAPTOR: End-to-end Risk-Aware MDP Planning and Policy Learning by Backpropagation. CoRR abs/2106.07260 (2021) - [i26]Buser Say, Scott Sanner, Jo Devriendt, Jakob Nordström, Peter J. Stuckey:
Planning with Learned Binarized Neural Networks Benchmarks for MaxSAT Evaluation 2021. CoRR abs/2108.00633 (2021) - [i25]Yi Sui, Ga Wu, Scott Sanner:
Multi-axis Attentive Prediction for Sparse EventData: An Application to Crime Prediction. CoRR abs/2110.01794 (2021) - [i24]Zhibo Zhang, Jongseong Jang, Chiheb Trabelsi, Ruiwen Li, Scott Sanner, Yeonjeong Jeong, Dongsub Shim:
ExCon: Explanation-driven Supervised Contrastive Learning for Image Classification. CoRR abs/2111.14271 (2021) - 2020
- [j13]Buser Say, Scott Sanner:
Compact and efficient encodings for planning in factored state and action spaces with learned Binarized Neural Network transition models. Artif. Intell. 285: 103291 (2020) - [j12]Dusan Sovilj, Paul Budnarain, Scott Sanner, Geoff Salmon, Mohan Rao:
A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams. Expert Syst. Appl. 159: 113577 (2020) - [j11]Mohamed Reda Bouadjenek
, Scott Sanner, Yihao Du:
Relevance- and interface-driven clustering for visual information retrieval. Inf. Syst. 94: 101592 (2020) - [j10]Ga Wu, Buser Say, Scott Sanner:
Scalable Planning with Deep Neural Network Learned Transition Models. J. Artif. Intell. Res. 68: 571-606 (2020) - [j9]Bohan Zhang
, Scott Sanner, Mohamed Reda Bouadjenek
, Shagun Gupta
:
Bayesian Networks for Data Integration in the Absence of Foreign Keys. IEEE Trans. Knowl. Data Eng. 32(4): 803-808 (2020) - [c90]Zheda Mai, Ga Wu, Kai Luo, Scott Sanner:
Attentive Autoencoders for Multifaceted Preference Learning in One-class Collaborative Filtering. ICDM (Workshops) 2020: 165-172 - [c89]Hanze Li, Scott Sanner, Kai Luo, Ga Wu:
A Ranking Optimization Approach to Latent Linear Critiquing for Conversational Recommender Systems. RecSys 2020: 13-22 - [c88]Kai Luo, Hojin Yang, Ga Wu, Scott Sanner:
Deep Critiquing for VAE-based Recommender Systems. SIGIR 2020: 1269-1278 - [c87]Kai Luo, Scott Sanner, Ga Wu
, Hanze Li, Hojin Yang:
Latent Linear Critiquing for Conversational Recommender Systems. WWW 2020: 2535-2541 - [i23]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Contextual Policy Reuse using Deep Mixture Models. CoRR abs/2003.00203 (2020) - [i22]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Bayesian Experience Reuse for Learning from Multiple Demonstrators. CoRR abs/2006.05725 (2020) - [i21]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
ε-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning. CoRR abs/2007.00869 (2020) - [i20]Zheda Mai, Hyunwoo Kim, Jihwan Jeong, Scott Sanner:
Batch-level Experience Replay with Review for Continual Learning. CoRR abs/2007.05683 (2020) - [i19]Jin Peng Zhou, Ga Wu, Zheda Mai, Scott Sanner:
Noise Contrastive Estimation for Autoencoding-based One-Class Collaborative Filtering. CoRR abs/2008.01246 (2020) - [i18]Zheda Mai, Dongsub Shim, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, Jongseong Jang:
Adversarial Shapley Value Experience Replay for Task-Free Continual Learning. CoRR abs/2009.00093 (2020) - [i17]Zheda Mai, Ga Wu, Kai Luo, Scott Sanner:
Attentive Autoencoders for Multifaceted Preference Learning in One-class Collaborative Filtering. CoRR abs/2010.12803 (2020)
2010 – 2019
- 2019
- [c86]Thiago Pereira Bueno, Leliane N. de Barros, Denis Deratani Mauá, Scott Sanner:
Deep Reactive Policies for Planning in Stochastic Nonlinear Domains. AAAI 2019: 7530-7537 - [c85]Mohamed Reda Bouadjenek
, Scott Sanner:
Relevance-driven Clustering for Visual Information Retrieval on Twitter. CHIIR 2019: 349-353 - [c84]Buser Say, Scott Sanner, Sylvie Thiébaux:
Reward Potentials for Planning with Learned Neural Network Transition Models. CP 2019: 674-689 - [c83]Buser Say, Scott Sanner:
Metric Hybrid Factored Planning in Nonlinear Domains with Constraint Generation. CPAIOR 2019: 502-518 - [c82]Ga Wu
, Kai Luo, Scott Sanner, Harold Soh:
Deep language-based critiquing for recommender systems. RecSys 2019: 137-145 - [c81]Yakun Wang, Ga Wu, Mohamed Reda Bouadjenek
, Scott Sanner, Sen Su, Zhongbao Zhang:
A Novel Regularizer for Temporally Stable Learning with an Application to Twitter Topic Classification. SDM 2019: 217-225 - [c80]Ga Wu
, Maksims Volkovs, Chee Loong Soon, Scott Sanner, Himanshu Rai:
Noise Contrastive Estimation for One-Class Collaborative Filtering. SIGIR 2019: 135-144 - [c79]Ga Wu
, Mohamed Reda Bouadjenek
, Scott Sanner:
One-Class Collaborative Filtering with the Queryable Variational Autoencoder. SIGIR 2019: 921-924 - [c78]Yew Meng Khaw, Amir Abiri Jahromi, Mohammadreza Fakhari Moghaddam Arani, Deepa Kundur, Scott Sanner, Marthe Kassouf:
Preventing False Tripping Cyberattacks Against Distance Relays: A Deep Learning Approach. SmartGridComm 2019: 1-6 - [c77]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Epsilon-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning. UAI 2019: 476-485 - [i16]Ga Wu, Buser Say, Scott Sanner:
Scalable Nonlinear Planning with Deep Neural Network Learned Transition Models. CoRR abs/1904.02873 (2019) - [i15]Buser Say, Scott Sanner, Sylvie Thiébaux:
Reward Potentials for Planning with Learned Neural Network Transition Models. CoRR abs/1904.09366 (2019) - [i14]Kasra Safari, Scott Sanner:
Optimizing Search API Queries for Twitter Topic Classifiers Using a Maximum Set Coverage Approach. CoRR abs/1904.10403 (2019) - 2018
- [j8]Sean W. Kortschot, Dusan Sovilj, Greg A. Jamieson, Scott Sanner, Chelsea Carrasco, Harold Soh:
Measuring and Mitigating the Costs of Attentional Switches in Active Network Monitoring for Cybersecurity. Hum. Factors 60(7): 962-977 (2018) - [c76]Zhijiang Ye, Buser Say, Scott Sanner:
Symbolic Bucket Elimination for Piecewise Continuous Constrained Optimization. CPAIOR 2018: 585-594 - [c75]Buser Say, Scott Sanner:
Planning in Factored State and Action Spaces with Learned Binarized Neural Network Transition Models. IJCAI 2018: 4815-4821 - [c74]Samuel Kolb, Martin Mladenov, Scott Sanner, Vaishak Belle, Kristian Kersting:
Efficient Symbolic Integration for Probabilistic Inference. IJCAI 2018: 5031-5037 - [c73]Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:
Reinforcement Learning with Multiple Experts: A Bayesian Model Combination Approach. NeurIPS 2018: 9549-9559 - [c72]Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu
, Yichao Lu, Scott Sanner:
Two-stage Model for Automatic Playlist Continuation at Scale. RecSys Challenge 2018: 9:1-9:6 - [c71]Dusan Sovilj, Scott Sanner, Harold Soh, Hanze Li:
Collaborative Filtering with Behavioral Models. UMAP 2018: 91-99 - [i13]Ga Wu, Justin Domke, Scott Sanner:
Conditional Inference in Pre-trained Variational Autoencoders via Cross-coding. CoRR abs/1805.07785 (2018) - [i12]Yu Qing Zhou, Ga Wu, Scott Sanner, Putra Manggala:
Aesthetic Features for Personalized Photo Recommendation. CoRR abs/1809.00060 (2018) - [i11]Ga Wu, Maksims Volkovs, Chee Loong Soon, Scott Sanner, Himanshu Rai:
Noise Contrastive Estimation for Scalable Linear Models for One-Class Collaborative Filtering. CoRR abs/1811.00697 (2018) - [i10]Buser Say, Scott Sanner:
Compact and Efficient Encodings for Planning in Factored State and Action Spaces with Learned Binarized Neural Network Transition Models. CoRR abs/1811.10433 (2018) - 2017
- [j7]Monica Anderson
, Roman Barták, John S. Brownstein, David L. Buckeridge, Hoda Eldardiry, Christopher W. Geib, Maria L. Gini
, Aaron Isaksen, Sarah Keren, Robert Laddaga, Viliam Lisý, Rodney Martin, David R. Martinez, Martin Michalowski
, Loizos Michael, Reuth Mirsky, Thanh Hai Nguyen, Michael J. Paul, Enrico Pontelli
, Scott Sanner, Arash Shaban-Nejad
, Arunesh Sinha
, Shirin Sohrabi, Kumar Sricharan, Biplav Srivastava, Mark Stefik, William W. Streilein, Nathan R. Sturtevant, Kartik Talamadupula, Michael Thielscher, Julian Togelius
, Tran Cao Son, Long Tran-Thanh, Neal Wagner, Byron C. Wallace, Szymon Wilk
, Jichen Zhu:
Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence. AI Mag. 38(3): 72-82 (2017) - [c70]Shamin Kinathil, Harold Soh, Scott Sanner:
Nonlinear Optimization and Symbolic Dynamic Programming for Parameterized Hybrid Markov Decision Processes. AAAI Workshops 2017 - [c69]Daniela Rosu, Dionne M. Aleman, J. Christopher Beck, Mark H. Chignell, Mariano P. Consens, Mark S. Fox, Michael Gruninger, Chang Liu, Yi Ru, Scott Sanner:
Knowledge-Based Provision of Goods and Services for People with Social Needs: Towards a Virtual Marketplace. AAAI Workshops 2017 - [c68]Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie, Darius Braziunas:
Low-Rank Linear Cold-Start Recommendation from Social Data. AAAI 2017: 1502-1508 - [c67]Aswin Raghavan, Scott Sanner, Roni Khardon, Prasad Tadepalli
, Alan Fern:
Hindsight Optimization for Hybrid State and Action MDPs. AAAI 2017: 3790-3796 - [c66]Daniela Rosu, Dionne M. Aleman, J. Christopher Beck, Mark H. Chignell, Mariano P. Consens, Mark S. Fox, Michael Gruninger, Chang Liu, Yi Ru, Scott Sanner:
Knowledge-Based Provisioning of Goods and Services: Towards a Virtual Social Needs Marketplace. AAAI Spring Symposia 2017 - [c65]Shamin Kinathil, Harold Soh, Scott Sanner:
Analytic Decision Analysis via Symbolic Dynamic Programming for Parameterized Hybrid MDPs. ICAPS 2017: 181-185 - [c64]Zahra Iman, Scott Sanner, Mohamed Reda Bouadjenek, Lexing Xie:
A Longitudinal Study of Topic Classification on Twitter. ICWSM 2017: 552-555 - [c63]Daniela Rosu, Dionne M. Aleman, J. Christopher Beck, Mark H. Chignell, Mariano P. Consens
, Mark S. Fox, Michael Gruninger, Chang Liu, Yi Ru, Scott Sanner:
A virtual marketplace for goods and services for people with social needs. IHTC 2017: 202-206 - [c62]Buser Say, Ga Wu, Yu Qing Zhou, Scott Sanner:
Nonlinear Hybrid Planning with Deep Net Learned Transition Models and Mixed-Integer Linear Programming. IJCAI 2017: 750-756 - [c61]Harold Soh, Scott Sanner, Madeleine White, Greg A. Jamieson:
Deep Sequential Recommendation for Personalized Adaptive User Interfaces. IUI 2017: 589-593 - [c60]Ga Wu, Buser Say, Scott Sanner:
Scalable Planning with Tensorflow for Hybrid Nonlinear Domains. NIPS 2017: 6273-6283 - [c59]Sean W. Kortschot, Dusan Sovilj, Harold Soh, Greg A. Jamieson, Scott Sanner, Chelsea Carrasco, Scott Ralph, Scott Langevin:
An open source adaptive user interface for network monitoring. SMC 2017: 1535-1539 - [c58]Alberto Camacho, Oscar Chen, Scott Sanner, Sheila A. McIlraith:
Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping. SOCS 2017: 159-160 - [c57]Marian-Andrei Rizoiu
, Lexing Xie
, Scott Sanner, Manuel Cebrián, Honglin Yu, Pascal Van Hentenryck:
Expecting to be HIP: Hawkes Intensity Processes for Social Media Popularity. WWW 2017: 735-744 - [r2]Scott Sanner, Kristian Kersting:
Symbolic Dynamic Programming. Encyclopedia of Machine Learning and Data Mining 2017: 1220-1228 - [i9]Roni Khardon, Scott Sanner:
Stochastic Planning and Lifted Inference. CoRR abs/1701.01048 (2017) - [i8]Ga Wu, Buser Say, Scott Sanner:
Scalable Planning with Tensorflow for Hybrid Nonlinear Domains. CoRR abs/1704.07511 (2017) - 2016
- [j6]Karina Valdivia Delgado
, Leliane N. de Barros, Daniel B. Dias, Scott Sanner:
Real-time dynamic programming for Markov decision processes with imprecise probabilities. Artif. Intell. 230: 192-223 (2016) - [c56]Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Darius Braziunas:
On the Effectiveness of Linear Models for One-Class Collaborative Filtering. AAAI 2016: 229-235 - [c55]Hadi Mohasel Afshar, Scott Sanner, Christfried Webers:
Closed-Form Gibbs Sampling for Graphical Models with Algebraic Constraints. AAAI 2016: 3287-3293 - [c54]Shamin Kinathil, Scott Sanner, Sanmay Das, Nicolás Della Penna:
A Symbolic Closed-Form Solution to Sequential Market Making with Inventory. IJCAI 2016: 3609-3615 - [c53]Suvash Sedhain, Hung Bui, Jaya Kawale, Nikos Vlassis, Branislav Kveton, Aditya Krishna Menon, Trung Bui, Scott Sanner:
Practical Linear Models for Large-Scale One-Class Collaborative Filtering. IJCAI 2016: 3854-3860 - [e3]Daniele Magazzeni, Scott Sanner, Sylvie Thiébaux:
Planning for Hybrid Systems, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 13, 2016. AAAI Technical Report WS-16-12, AAAI Press 2016 [contents] - [e2]Amanda Jane Coles, Andrew Coles, Stefan Edelkamp, Daniele Magazzeni, Scott Sanner:
Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling, ICAPS 2016, London, UK, June 12-17, 2016. AAAI Press 2016, ISBN 978-1-57735-757-5 [contents] - [i7]Marian-Andrei Rizoiu
, Lexing Xie, Scott Sanner, Manuel Cebrián, Honglin Yu, Pascal Van Hentenryck:
Can this video be promoted? - Endogenous and exogenous popularity processes in social media. CoRR abs/1602.06033 (2016) - [i6]Kar Wai Lim, Scott Sanner, Shengbo Guo:
On the Mathematical Relationship between Expected n-call@k and the Relevance vs. Diversity Trade-off. CoRR abs/1609.06568 (2016) - 2015
- [j5]Mauro Vallati, Lukás Chrpa, Marek Grzes, Thomas Leo McCluskey, Mark Roberts, Scott Sanner:
The 2014 International Planning Competition: Progress and Trends. AI Mag. 36(3): 90-98 (2015) - [c52]Ga Wu, Scott Sanner, Rodrigo F. S. C. Oliveira:
Bayesian Model Averaging Naive Bayes (BMA-NB): Averaging over an Exponential Number of Feature Models in Linear Time. AAAI 2015: 3094-3100 - [c51]Luis Gustavo Rocha Vianna, Leliane N. de Barros, Scott Sanner:
Real-Time Symbolic Dynamic Programming. AAAI 2015: 3402-3408 - [c50]Ehsan Abbasnejad, Justin Domke, Scott Sanner:
Loss-Calibrated Monte Carlo Action Selection. AAAI 2015: 3447-3453 - [c49]Hadi Mohasel Afshar, Scott Sanner, Ehsan Abbasnejad:
Linear-Time Gibbs Sampling in Piecewise Graphical Models. AAAI 2015: 3461-3467 - [c48]Mohamed Reda Bouadjenek
, Scott Sanner, Gabriela Ferraro
:
A study of query reformulation for patent prior art search with partial patent applications. ICAIL 2015: 23-32 - [c47]