default search action
Caiwen Ding
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j12]Sanbao Su, Songyang Han, Yiming Li, Zhili Zhang, Chen Feng, Caiwen Ding, Fei Miao:
Collaborative Multi-Object Tracking With Conformal Uncertainty Propagation. IEEE Robotics Autom. Lett. 9(4): 3323-3330 (2024) - [j11]Songyang Han, Shanglin Zhou, Jiangwei Wang, Lynn Pepin, Caiwen Ding, Jie Fu, Fei Miao:
A Multi-Agent Reinforcement Learning Approach for Safe and Efficient Behavior Planning of Connected Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 25(5): 3654-3670 (2024) - [c101]Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Md Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David R. Kaeli, Caiwen Ding:
MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training. ASPLOS (2) 2024: 683-698 - [c100]Yanyue Xie, Peiyan Dong, Geng Yuan, Zhengang Li, Masoud Zabihi, Chao Wu, Sung-En Chang, Xufeng Zhang, Xue Lin, Caiwen Ding, Nobuyuki Yoshikawa, Olivia Chen, Yanzhi Wang:
SuperFlow: A Fully-Customized RTL-to-GDS Design Automation Flow for Adiabatic Quantum- Flux - Parametron Superconducting Circuits. DATE 2024: 1-6 - [c99]Shengkun Tang, Yaqing Wang, Caiwen Ding, Yi Liang, Yao Li, Dongkuan Xu:
AdaDiff: Accelerating Diffusion Models Through Step-Wise Adaptive Computation. ECCV (79) 2024: 73-90 - [c98]Deniz Gurevin, Mohsin Shan, Shaoyi Huang, Md Amit Hasan, Caiwen Ding, Omer Khan:
PruneGNN: Algorithm-Architecture Pruning Framework for Graph Neural Network Acceleration. HPCA 2024: 108-123 - [c97]Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, Zhenman Fang:
Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers. ICS 2024: 324-337 - [c96]Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin J. Barker, Ang Li:
Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs. ICPE (Companion) 2024: 14-20 - [d2]Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David R. Kaeli, Caiwen Ding:
ASPLOS 2024 Artifact for "MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training". Version 1. Zenodo, 2024 [all versions] - [d1]Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David R. Kaeli, Caiwen Ding:
ASPLOS 2024 Artifact for "MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training". Version 2. Zenodo, 2024 [all versions] - [i84]Bin Lei, Le Chen, Caiwen Ding:
FlashVideo: A Framework for Swift Inference in Text-to-Video Generation. CoRR abs/2401.00869 (2024) - [i83]Bingbing Li, Geng Yuan, Zigeng Wang, Shaoyi Huang, Hongwu Peng, Payman Behnam, Wujie Wen, Hang Liu, Caiwen Ding:
Zero-Space Cost Fault Tolerance for Transformer-based Language Models on ReRAM. CoRR abs/2401.11664 (2024) - [i82]Jiahui Zhao, Ziyi Meng, Stepan Gordeev, Zijie Pan, Dongjin Song, Sandro Steinbach, Caiwen Ding:
Key Information Retrieval to Classify the Unstructured Data Content of Preferential Trade Agreements. CoRR abs/2401.12520 (2024) - [i81]Binghao Lu, Caiwen Ding, Jinbo Bi, Dongjin Song:
Weakly Supervised Change Detection via Knowledge Distillation and Multiscale Sigmoid Inference. CoRR abs/2403.05796 (2024) - [i80]Shijin Duan, Chenghong Wang, Hongwu Peng, Yukui Luo, Wujie Wen, Caiwen Ding, Xiaolin Xu:
SSNet: A Lightweight Multi-Party Computation Scheme for Practical Privacy-Preserving Machine Learning Service in the Cloud. CoRR abs/2406.02629 (2024) - [i79]Tong Zhou, Jiahui Zhao, Yukui Luo, Xi Xie, Wujie Wen, Caiwen Ding, Xiaolin Xu:
AdaPI: Facilitating DNN Model Adaptivity for Efficient Private Inference in Edge Computing. CoRR abs/2407.05633 (2024) - [i78]Zijie Pan, Stepan Gordeev, Jiahui Zhao, Ziyi Meng, Caiwen Ding, Sandro Steinbach, Dongjin Song:
International Trade Flow Prediction with Bilateral Trade Provisions. CoRR abs/2407.13698 (2024) - [i77]Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, Zhenman Fang:
Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers. CoRR abs/2407.18175 (2024) - [i76]Yanyue Xie, Peiyan Dong, Geng Yuan, Zhengang Li, Masoud Zabihi, Chao Wu, Sung-En Chang, Xufeng Zhang, Xue Lin, Caiwen Ding, Nobuyuki Yoshikawa, Olivia Chen, Yanzhi Wang:
SuperFlow: A Fully-Customized RTL-to-GDS Design Automation Flow for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. CoRR abs/2407.18209 (2024) - 2023
- [j10]Zeinab S. Jalali, Chenghong Wang, Griffin Kearney, Geng Yuan, Caiwen Ding, Yinan Zhou, Yanzhi Wang, Sucheta Soundarajan:
Memristor-Based Spectral Decomposition of Matrices and Its Applications. IEEE Trans. Computers 72(5): 1460-1472 (2023) - [j9]Shanglin Zhou, Mikhail A. Bragin, Deniz Gurevin, Lynn Pepin, Fei Miao, Caiwen Ding:
Surrogate Lagrangian Relaxation: A Path to Retrain-Free Deep Neural Network Pruning. ACM Trans. Design Autom. Electr. Syst. 28(6): 102:1-102:19 (2023) - [c95]Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang, Dongkuan Xu:
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model. CVPR 2023: 10781-10791 - [c94]Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, Dongkuan Xu:
Accelerating Dataset Distillation via Model Augmentation. CVPR 2023: 11950-11959 - [c93]Yifan Gong, Pu Zhao, Zheng Zhan, Yushu Wu, Chao Wu, Zhenglun Kong, Minghai Qin, Caiwen Ding, Yanzhi Wang:
Condense: A Framework for Device and Frequency Adaptive Neural Network Models on the Edge. DAC 2023: 1-6 - [c92]Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan Xu, Wujie Wen, Caiwen Ding:
Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration. DAC 2023: 1-6 - [c91]Shaoyi Huang, Bowen Lei, Dongkuan Xu, Hongwu Peng, Yue Sun, Mimi Xie, Caiwen Ding:
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off. DAC 2023: 1-6 - [c90]Zhuo Liu, Yunan Yang, Zhenyu Pan, Anshujit Sharma, Amit Hasan, Caiwen Ding, Ang Li, Michael C. Huang, Tong Geng:
Ising-CF: A Pathbreaking Collaborative Filtering Method Through Efficient Ising Machine Learning. DAC 2023: 1-6 - [c89]Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Chenghong Wang, Tong Geng, Wujie Wen, Xiaolin Xu, Caiwen Ding:
PASNet: Polynomial Architecture Search Framework for Two-party Computation-based Secure Neural Network Deployment. DAC 2023: 1-6 - [c88]Shanglin Zhou, Yingjie Li, Minhan Lou, Weilu Gao, Zhijie Shi, Cunxi Yu, Caiwen Ding:
Physics-aware Roughness Optimization for Diffractive Optical Neural Networks. DAC 2023: 1-6 - [c87]Andy Trinh, Shivam Sheth, Anil Gaihre, Caiwen Ding, Jieyang Chen, Feiyi Wang, David Pugmire, Scott Klasky, Hang Liu, Lipeng Wan:
Understanding Node Allocation on Leadership-Class Supercomputers with Graph Analytics. HPCC/DSS/SmartCity/DependSys 2023: 780-787 - [c86]Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, Chunhua Liao:
Creating a Dataset for High-Performance Computing Code Translation using LLMs: A Bridge Between OpenMP Fortran and C++. HPEC 2023: 1-7 - [c85]Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang, Wei Zhang, Tong Geng, Omer Khan, Caiwen Ding:
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks. ICCAD 2023: 1-9 - [c84]Hongwu Peng, Shaoyi Huang, Tong Zhou, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui Zhao, Xi Xie, Ang Li, Tony Geng, Kaleel Mahmood, Wujie Wen, Xiaolin Xu, Caiwen Ding:
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference. ICCV 2023: 5155-5165 - [c83]Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu, Caiwen Ding, Wujie Wen:
SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference. ICML 2023: 28718-28728 - [c82]Sanbao Su, Yiming Li, Sihong He, Songyang Han, Chen Feng, Caiwen Ding, Fei Miao:
Uncertainty Quantification of Collaborative Detection for Self-Driving. ICRA 2023: 5588-5594 - [c81]Bingbing Li, Zigeng Wang, Shaoyi Huang, Mikhail A. Bragin, Ji Li, Caiwen Ding:
Towards Lossless Head Pruning through Automatic Peer Distillation for Language Models. IJCAI 2023: 5113-5121 - [c80]Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, Omer Khan:
MergePath-SpMM: Parallel Sparse Matrix-Matrix Algorithm for Graph Neural Network Acceleration. ISPASS 2023: 145-156 - [c79]Ya-sine Agrignan, Shanglin Zhou, Jun Bai, Sahidul Islam, Sheida Nabavi, Mimi Xie, Caiwen Ding:
A Deep Learning Approach for Ventricular Arrhythmias Classification using Microcontroller. ISQED 2023: 1-5 - [c78]Zigeng Wang, Bingbing Li, Xia Xiao, Tianyun Zhang, Mikhail A. Bragin, Bing Yan, Caiwen Ding, Sanguthevar Rajasekaran:
Automatic Subnetwork Search Through Dynamic Differentiable Neuron Pruning. ISQED 2023: 1-6 - [c77]Yukui Luo, Nuo Xu, Hongwu Peng, Chenghong Wang, Shijin Duan, Kaleel Mahmood, Wujie Wen, Caiwen Ding, Xiaolin Xu:
AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with Adaptive Quantization. MICRO 2023: 628-640 - [c76]Hongwu Peng, Ran Ran, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran Thorat, Tong Geng, Chenghong Wang, Xiaolin Xu, Wujie Wen, Caiwen Ding:
LinGCN: Structural Linearized Graph Convolutional Network for Homomorphically Encrypted Inference. NeurIPS 2023 - [c75]Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, Hang Liu:
TANGO: re-thinking quantization for graph neural network training on GPUs. SC 2023: 38:1-38:14 - [c74]Ce Feng, Nuo Xu, Wujie Wen, Parv Venkitasubramaniam, Caiwen Ding:
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering. SP 2023: 1944-1960 - [i75]Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Shaoyi Huang, Xi Xie, Chenghong Wang, Tong Geng, Wujie Wen, Xiaolin Xu, Caiwen Ding:
RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation Based Private Inference. CoRR abs/2302.02292 (2023) - [i74]Songyang Han, Shanglin Zhou, Lynn Pepin, Jiangwei Wang, Caiwen Ding, Fei Miao:
Shared Information-Based Safe And Efficient Behavior Planning For Connected Autonomous Vehicles. CoRR abs/2302.04321 (2023) - [i73]Sanbao Su, Songyang Han, Yiming Li, Zhili Zhang, Chen Feng, Caiwen Ding, Fei Miao:
Collaborative Multi-Object Tracking with Conformal Uncertainty Propagation. CoRR abs/2303.14346 (2023) - [i72]Shanglin Zhou, Yingjie Li, Minhan Lou, Weilu Gao, Zhijie Shi, Cunxi Yu, Caiwen Ding:
Physics-aware Roughness Optimization for Diffractive Optical Neural Networks. CoRR abs/2304.01500 (2023) - [i71]Shanglin Zhou, Mikhail A. Bragin, Lynn Pepin, Deniz Gurevin, Fei Miao, Caiwen Ding:
Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural Network Pruning. CoRR abs/2304.04120 (2023) - [i70]Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan Xu, Wujie Wen, Caiwen Ding:
Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration. CoRR abs/2304.12214 (2023) - [i69]Lijun Zhang, Xiao Liu, Kaleel Mahmood, Caiwen Ding, Hui Guan:
Dynamic Gradient Balancing for Enhanced Adversarial Attacks on Multi-Task Models. CoRR abs/2305.12066 (2023) - [i68]Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Chenghong Wang, Tong Geng, Wujie Wen, Xiaolin Xu, Caiwen Ding:
PASNet: Polynomial Architecture Search Framework for Two-party Computation-based Secure Neural Network Deployment. CoRR abs/2306.15513 (2023) - [i67]Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, Chunhua Liao:
Creating a Dataset for High-Performance Computing Code Translation: A Bridge Between HPC Fortran and C++. CoRR abs/2307.07686 (2023) - [i66]Ce Feng, Nuo Xu, Wujie Wen, Parv Venkitasubramaniam, Caiwen Ding:
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering. CoRR abs/2307.13231 (2023) - [i65]Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, Hang Liu:
Tango: rethinking quantization for graph neural network training on GPUs. CoRR abs/2308.00890 (2023) - [i64]Bin Lei, Pei-Hung Lin, Chunhua Liao, Caiwen Ding:
Boosting Logical Reasoning in Large Language Models through a New Framework: The Graph of Thought. CoRR abs/2308.08614 (2023) - [i63]Bin Lei, Sheng Lin, Pei-Hung Lin, Chunhua Liao, Caiwen Ding:
Towards Zero Memory Footprint Spiking Neural Network Training. CoRR abs/2308.08649 (2023) - [i62]Hongwu Peng, Shaoyi Huang, Tong Zhou, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui Zhao, Xi Xie, Ang Li, Tony Geng, Kaleel Mahmood, Wujie Wen, Xiaolin Xu, Caiwen Ding:
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference. CoRR abs/2308.10134 (2023) - [i61]Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang, Wei Zhang, Tong Geng, Omer Khan, Caiwen Ding:
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks. CoRR abs/2308.11825 (2023) - [i60]Hongwu Peng, Ran Ran, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran Thorat, Tong Geng, Chenghong Wang, Xiaolin Xu, Wujie Wen, Caiwen Ding:
LinGCN: Structural Linearized Graph Convolutional Network for Homomorphically Encrypted Inference. CoRR abs/2309.14331 (2023) - [i59]Shengkun Tang, Yaqing Wang, Caiwen Ding, Yi Liang, Yao Li, Dongkuan Xu:
DeeDiff: Dynamic Uncertainty-Aware Early Exiting for Accelerating Diffusion Model Generation. CoRR abs/2309.17074 (2023) - [i58]Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin J. Barker, Ang Li:
Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs. CoRR abs/2311.04417 (2023) - [i57]Kiran Thorat, Jiahui Zhao, Yaotian Liu, Hongwu Peng, Xi Xie, Bin Lei, Jeff Zhang, Caiwen Ding:
Advanced Large Language Model (LLM)-Driven Verilog Development: Enhancing Power, Performance, and Area Optimization in Code Synthesis. CoRR abs/2312.01022 (2023) - [i56]Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Md Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David R. Kaeli, Caiwen Ding:
MaxK-GNN: Towards Theoretical Speed Limits for Accelerating Graph Neural Networks Training. CoRR abs/2312.08656 (2023) - 2022
- [j8]Jiangce Chen, Horea T. Ilies, Caiwen Ding:
Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching. Comput. Aided Des. 143: 103125 (2022) - [c73]Shaoyi Huang, Dongkuan Xu, Ian En-Hsu Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Sanguthevar Rajasekaran, Hang Liu, Caiwen Ding:
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm. ACL (1) 2022: 190-200 - [c72]Yijue Wang, Nuo Xu, Shaoyi Huang, Kaleel Mahmood, Dan Guo, Caiwen Ding, Wujie Wen, Sanguthevar Rajasekaran:
Analyzing and Defending against Membership Inference Attacks in Natural Language Processing Classification. IEEE Big Data 2022: 5823-5832 - [c71]Bingyu Liu, Rujia Wang, Zhongjie Ba, Shanglin Zhou, Caiwen Ding, Yuan Hong:
Poster: Cryptographic Inferences for Video Deep Neural Networks. CCS 2022: 3395-3397 - [c70]Hongwu Peng, Shaoyi Huang, Shiyang Chen, Bingbing Li, Tong Geng, Ang Li, Weiwen Jiang, Wujie Wen, Jinbo Bi, Hang Liu, Caiwen Ding:
A length adaptive algorithm-hardware co-design of transformer on FPGA through sparse attention and dynamic pipelining. DAC 2022: 1135-1140 - [c69]Sahidul Islam, Jieren Deng, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie:
Enabling Fast Deep Learning on Tiny Energy-Harvesting IoT Devices. DATE 2022: 921-926 - [c68]Sahidul Islam, Shanglin Zhou, Ran Ran, Yufang Jin, Wujie Wen, Caiwen Ding, Mimi Xie:
EVE: Environmental Adaptive Neural Network Models for Low-Power Energy Harvesting System. ICCAD 2022: 35:1-35:9 - [c67]Yifan Gong, Zheng Zhan, Pu Zhao, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai Qin, Yanzhi Wang:
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management. ICCAD 2022: 133:1-133:9 - [c66]Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding, Omer Khan:
Towards Real-Time Temporal Graph Learning. ICCD 2022: 263-271 - [c65]Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen Jiang, Omer Khan, Caiwen Ding:
Towards Sparsification of Graph Neural Networks. ICCD 2022: 272-279 - [c64]Yixuan Luo, Payman Behnam, Kiran Thorat, Zhuo Liu, Hongwu Peng, Shaoyi Huang, Shu Zhou, Omer Khan, Alexey Tumanov, Caiwen Ding, Tong Geng:
CoDG-ReRAM: An Algorithm-Hardware Co-design to Accelerate Semi-Structured GNNs on ReRAM. ICCD 2022: 280-289 - [c63]Zhirui Hu, Jinyang Li, Zhenyu Pan, Shanglin Zhou, Lei Yang, Caiwen Ding, Omer Khan, Tong Geng, Weiwen Jiang:
On the Design of Quantum Graph Convolutional Neural Network in the NISQ-Era and Beyond. ICCD 2022: 290-297 - [c62]Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Chao Shang, Binghui Wang, Qin Cao, Caiwen Ding, Sanguthevar Rajasekaran:
Variance of the Gradient Also Matters: Privacy Leakage from Gradients. IJCNN 2022: 1-8 - [c61]Md. Oli-Uz-Zaman, Saleh Ahmad Khan, Geng Yuan, Yanzhi Wang, Zhiheng Liao, Jingyan Fu, Caiwen Ding, Jinhui Wang:
Reliability Improvement in RRAM-based DNN for Edge Computing. ISCAS 2022: 581-585 - [c60]Shaoyi Huang, Ning Liu, Yueying Liang, Hongwu Peng, Hongjia Li, Dongkuan Xu, Mimi Xie, Caiwen Ding:
An Automatic and Efficient BERT Pruning for Edge AI Systems. ISQED 2022: 1-6 - [c59]Wei Wei, Sahidul Islam, Jishnu Banerjee, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie:
An Intermittent OTA Approach to Update the DL Weights on Energy Harvesting Devices. ISQED 2022: 1-6 - [c58]Samuel Alexander Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai Xu, Caiwen Ding:
QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity. MLSys 2022 - [i55]Jieren Deng, Chenghong Wang, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding:
A Secure and Efficient Federated Learning Framework for NLP. CoRR abs/2201.11934 (2022) - [i54]Shaoyi Huang, Ning Liu, Yueying Liang, Hongwu Peng, Hongjia Li, Dongkuan Xu, Mimi Xie, Caiwen Ding:
An Automatic and Efficient BERT Pruning for Edge AI Systems. CoRR abs/2206.10461 (2022) - [i53]Sahidul Islam, Shanglin Zhou, Ran Ran, Yufang Jin, Wujie Wen, Caiwen Ding, Mimi Xie:
EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System. CoRR abs/2207.09258 (2022) - [i52]Hongwu Peng, Shaoyi Huang, Shiyang Chen, Bingbing Li, Tong Geng, Ang Li, Weiwen Jiang, Wujie Wen, Jinbo Bi, Hang Liu, Caiwen Ding:
A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA Through Sparse Attention and Dynamic Pipelining. CoRR abs/2208.03646 (2022) - [i51]Nuo Xu, Kaleel Mahmood, Haowen Fang, Ethan Rathbun, Caiwen Ding, Wujie Wen:
Securing the Spike: On the Transferabilty and Security of Spiking Neural Networks to Adversarial Examples. CoRR abs/2209.03358 (2022) - [i50]Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen Jiang, Omer Khan, Caiwen Ding:
Towards Sparsification of Graph Neural Networks. CoRR abs/2209.04766 (2022) - [i49]Sanbao Su, Yiming Li, Sihong He, Songyang Han, Chen Feng, Caiwen Ding, Fei Miao:
Uncertainty Quantification of Collaborative Detection for Self-Driving. CoRR abs/2209.08162 (2022) - [i48]Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding, Omer Khan:
Towards Real-Time Temporal Graph Learning. CoRR abs/2210.04114 (2022) - [i47]Caiwu Ding, Hongwu Peng, Lu Lu, Caiwen Ding:
Aerial Manipulation Using a Novel Unmanned Aerial Vehicle Cyber-Physical System. CoRR abs/2210.15632 (2022) - [i46]Bin Lei, Shaoyi Huang, Caiwen Ding, Monika Filipovska:
Efficient Traffic State Forecasting using Spatio-Temporal Network Dependencies: A Sparse Graph Neural Network Approach. CoRR abs/2211.03033 (2022) - [i45]Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang, Dongkuan Xu:
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model. CoRR abs/2211.11152 (2022) - [i44]Ethan Rathbun, Kaleel Mahmood, Sohaib Ahmad, Caiwen Ding, Marten van Dijk:
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning. CoRR abs/2211.14669 (2022) - [i43]Shaoyi Huang, Bowen Lei, Dongkuan Xu, Hongwu Peng, Yue Sun, Mimi Xie, Caiwen Ding:
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off. CoRR abs/2211.16667 (2022) - [i42]Yifan Gong, Zheng Zhan, Pu Zhao, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai Qin, Yanzhi Wang:
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management. CoRR abs/2212.05122 (2022) - [i41]Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, Dongkuan Xu:
Accelerating Dataset Distillation via Model Augmentation. CoRR abs/2212.06152 (2022) - 2021
- [j7]Caiwu Ding, Lu Lu, Cong Wang, Caiwen Ding:
Design, Sensing, and Control of a Novel UAV Platform for Aerial Drilling and Screwing. IEEE Robotics Autom. Lett. 6(2): 3176-3183 (2021) - [j6]Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian, Bolong Zheng, Xiaoye S. Li, Lingda Li, Adolfy Hoisie, Caiwen Ding, Dong Li, Hang Liu:
Trust: Triangle Counting Reloaded on GPUs. IEEE Trans. Parallel Distributed Syst. 32(11): 2646-2660 (2021) - [c57]Hongwu Peng, Shanglin Zhou, Scott Weitze, Jiaxin Li, Sahidul Islam, Tong Geng, Ang Li, Wei Zhang, Minghu Song, Mimi Xie, Hang Liu, Caiwen Ding:
Binary Complex Neural Network Acceleration on FPGA : (Invited Paper). ASAP 2021: 85-92 - [c56]Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Caiwen Ding, Makan Fardad, Yanzhi Wang:
A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods. DAC 2021: 493-498 - [c55]Yuhong Song, Weiwen Jiang, Bingbing Li, Panjie Qi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Sakyasingha Dasgupta, Yiyu Shi, Caiwen Ding:
Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices. DAC 2021: 1003-1008 - [c54]Geng Yuan, Payman Behnam, Yuxuan Cai, Ali Shafiee, Jingyan Fu, Zhiheng Liao, Zhengang Li, Xiaolong Ma, Jieren Deng, Jinhui Wang, Mahdi Nazm Bojnordi, Yanzhi Wang, Caiwen Ding:
TinyADC: Peripheral Circuit-aware Weight Pruning Framework for Mixed-signal DNN Accelerators. DATE 2021: 926-931 - [c53]Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, Caiwen Ding:
TAG: Gradient Attack on Transformer-based Language Models. EMNLP (Findings) 2021: 3600-3610 - [c52]Chenghong Wang, Jieren Deng, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding:
A Secure and Efficient Federated Learning Framework for NLP. EMNLP (1) 2021: 7676-7682 - [c51]Shaoyi Huang, Shiyang Chen, Hongwu Peng, Daniel Manu, Zhenglun Kong, Geng Yuan, Lei Yang, Shusen Wang, Hang Liu, Caiwen Ding:
HMC-TRAN: A Tensor-core Inspired Hierarchical Model Compression for Transformer-based DNNs on GPU. ACM Great Lakes Symposium on VLSI 2021: 169-174 - [c50]Daniel Manu, Shaoyi Huang, Caiwen Ding, Lei Yang:
Co-Exploration of Graph Neural Network and Network-on-Chip Design Using AutoML. ACM Great Lakes Symposium on VLSI 2021: 175-180 - [c49]Daniel Manu, Yi Sheng, Junhuan Yang, Jieren Deng, Tong Geng, Ang Li, Caiwen Ding, Weiwen Jiang, Lei Yang:
FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery: Special Session Paper. ICCAD 2021: 1-7 - [c48]Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A. Weitze, Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang,