


default search action
Daniel Nikovski
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c88]Daniel Nikovski, Junmin Zhong, William Yerazunis:
Memory-Based Global Iterative Linear Quadratic Control. CoDIT 2024: 1056-1061 - [c87]Daniel Nikovski, William Yerazunis:
Adaptive Velocity Estimators for Learning Control. CoDIT 2024: 1062-1067 - [c86]Daniel Nikovski, Junmin Zhong, William Yerazunis:
Memory-Based Learning of Global Control Policies from Local Controllers. ICINCO (1) 2024: 237-244 - [c85]Junmin Zhong, Daniel Nikovski, William Yerazunis, T. Ando:
Learning Time-Optimal Control of Gantry Cranes. ICMLA 2024: 945-950 - 2023
- [c84]Chuizheng Kong
, William Yerazunis, Daniel Nikovski:
Learning Object Manipulation With Under-Actuated Impulse Generator Arrays. ACC 2023: 710-717 - [c83]Fabio Amadio
, Alberto Dalla Libera, Daniel Nikovski, Ruggero Carli, Diego Romeres:
Learning Control from Raw Position Measurements. ACC 2023: 2171-2178 - [c82]Yinsong Wang, Jing Zhang, Daniel Nikovski, Takuro Kojima:
Estimating traffic density using transformer decoders. ANT/EDI40 2023: 1027-1032 - [c81]Abhishek Sharma, Jing Zhang, Daniel Nikovski, Finale Doshi-Velez:
Travel-time prediction using neural-network-based mixture models. ANT/EDI40 2023: 1033-1038 - [c80]Daniel Nikovski, William Yerazunis, Abraham Goldsmith:
Model-Based Learning Controller Design for a Furuta Pendulum. CoDIT 2023: 764-767 - [c79]Devesh K. Jha, Siddarth Jain, Diego Romeres, William Yerazunis, Daniel Nikovski:
Generalizable Human-Robot Collaborative Assembly Using Imitation Learning and Force Control. ECC 2023: 1-8 - [c78]Devesh K. Jha, Diego Romeres, Siddarth Jain, William Yerazunis, Daniel Nikovski:
Design of Adaptive Compliance Controllers for Safe Robotic Assembly. ECC 2023: 1-8 - [c77]Chuizheng Kong, William Yerazunis, Daniel Nikovski:
Stochastic Learning Manipulation of Object Pose With Under-Actuated Impulse Generator Arrays. ICMLA 2023: 112-119 - [c76]Seiji Shaw, Devesh K. Jha, Arvind U. Raghunathan, Radu Corcodel, Diego Romeres, George Konidaris, Daniel Nikovski:
Constrained Dynamic Movement Primitives for Collision Avoidance in Novel Environments. IROS 2023: 3672-3679 - [c75]Anping Zhou, Hongbo Sun, Shoichi Kitamura, Daniel Nikovski:
A Decision-Dependent Chance-Constrained Planning Model for Distribution Networks Under Extreme Weather Events. ISGT EUROPE 2023: 1-5 - [i28]Fabio Amadio, Alberto Dalla Libera, Daniel Nikovski, Ruggero Carli, Diego Romeres:
Learning Control from Raw Position Measurements. CoRR abs/2301.13183 (2023) - [i27]Chuizheng Kong, William Yerazunis, Daniel Nikovski:
Learning Object Manipulation With Under-Actuated Impulse Generator Arrays. CoRR abs/2303.03282 (2023) - [i26]Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli, Daniel Nikovski, Diego Romeres:
Forward Dynamics Estimation from Data-Driven Inverse Dynamics Learning. CoRR abs/2307.05093 (2023) - 2022
- [j12]Fabio Amadio
, Alberto Dalla Libera
, Riccardo Antonello
, Daniel Nikovski
, Ruggero Carli
, Diego Romeres
:
Model-Based Policy Search Using Monte Carlo Gradient Estimation With Real Systems Application. IEEE Trans. Robotics 38(6): 3879-3898 (2022) - [c74]Jing Zhang, Athanasios Tsiligkaridis, Hiroshi Taguchi, Arvind U. Raghunathan, Daniel Nikovski:
Transformer Networks for Predictive Group Elevator Control. ECC 2022: 1429-1435 - [c73]Devesh K. Jha, Diego Romeres, William Yerazunis, Daniel Nikovski:
Imitation and Supervised Learning of Compliance for Robotic Assembly. ECC 2022: 1882-1889 - [c72]Hideyuki Masui, Diego Romeres, Daniel Nikovski:
Transfer Learning for Bayesian Optimization with Principal Component Analysis. ICMLA 2022: 1077-1084 - [c71]Takumi Suda, Daniel Nikovski:
Deep Reinforcement Learning for Optimal Sailing Upwind. IJCNN 2022: 1-8 - [c70]Athanasios Tsiligkaridis, Jing Zhang, Ioannis Ch. Paschalidis, Hiroshi Taguchi, Satoko Sakajo, Daniel Nikovski:
Context-Aware Destination and Time-To-Destination Prediction Using Machine learning. ISC2 2022: 1-7 - [c69]Hongbo Sun, Shoichi Kitamura, Daniel Nikovski:
Fair Blackout Rotation for Distribution Systems under Extreme Weather Events. ISGT-Europe 2022: 1-6 - [i25]Devesh K. Jha, Diego Romeres, Siddarth Jain, William Yerazunis, Daniel Nikovski:
Design of Adaptive Compliance Controllers for Safe Robotic Assembly. CoRR abs/2204.10447 (2022) - [i24]Jing Zhang, Athanasios Tsiligkaridis, Hiroshi Taguchi, Arvind U. Raghunathan, Daniel Nikovski:
Transformer Networks for Predictive Group Elevator Control. CoRR abs/2208.08948 (2022) - [i23]Seiji Shaw, Devesh K. Jha, Arvind U. Raghunathan, Radu Corcodel, Diego Romeres, George Konidaris, Daniel Nikovski:
Constrained Dynamic Movement Primitives for Safe Learning of Motor Skills. CoRR abs/2209.14461 (2022) - [i22]Devesh K. Jha, Siddarth Jain, Diego Romeres, William Yerazunis, Daniel Nikovski:
Generalizable Human-Robot Collaborative Assembly Using Imitation Learning and Force Control. CoRR abs/2212.01434 (2022) - 2021
- [j11]Kei Ota
, Devesh K. Jha
, Diego Romeres
, Jeroen van Baar, Kevin A. Smith, Takayuki Semitsu, Tomoaki Oiki, Alan Sullivan, Daniel Nikovski
, Joshua B. Tenenbaum:
Data-Efficient Learning for Complex and Real-Time Physical Problem Solving Using Augmented Simulation. IEEE Robotics Autom. Lett. 6(2): 4241-4248 (2021) - [c68]Emil Laftchiev, Diego Romeres, Daniel Nikovski:
Personalizing Individual Comfort in the Group Setting. AAAI 2021: 15339-15346 - [c67]Emil Laftchiev, Diego Romeres, Daniel Nikovski:
Dynamic Thermal Comfort Optimization for Groups. ACC 2021: 1456-1463 - [c66]Alberto Dalla Libera, Fabio Amadio
, Daniel Nikovski, Ruggero Carli, Diego Romeres:
Control of Mechanical Systems via Feedback Linearization Based on Black-Box Gaussian Process Models. ECC 2021: 243-248 - [c65]Siyuan Dong, Devesh K. Jha, Diego Romeres, Sangwoon Kim, Daniel Nikovski, Alberto Rodriguez:
Tactile-RL for Insertion: Generalization to Objects of Unknown Geometry. ICRA 2021: 6437-6443 - [c64]Hongbo Sun, Shunsuke Kawano, Daniel Nikovski, Tomihiro Takano, Kazuyuki Mori:
Distribution Fault Location Using Graph Neural Network with Both Node and Link Attributes. ISGT-Europe 2021: 1-6 - [i21]Fabio Amadio, Alberto Dalla Libera, Ruggero Carli, Daniel Nikovski, Diego Romeres:
Model-based Policy Search for Partially Measurable Systems. CoRR abs/2101.08740 (2021) - [i20]Fabio Amadio, Alberto Dalla Libera, Riccardo Antonello, Daniel Nikovski, Ruggero Carli, Diego Romeres:
Model-Based Policy Search Using Monte Carlo Gradient Estimation with Real Systems Application. CoRR abs/2101.12115 (2021) - [i19]Siyuan Dong, Devesh K. Jha, Diego Romeres, Sangwoon Kim, Daniel Nikovski, Alberto Rodriguez:
Tactile-RL for Insertion: Generalization to Objects of Unknown Geometry. CoRR abs/2104.01167 (2021) - [i18]Alberto Dalla Libera, Fabio Amadio, Daniel Nikovski, Ruggero Carli, Diego Romeres:
Control of Mechanical Systems via Feedback Linearization Based on Black-Box Gaussian Process Models. CoRR abs/2104.12854 (2021) - [i17]Devesh K. Jha, Diego Romeres, William Yerazunis, Daniel Nikovski:
Imitation and Supervised Learning of Compliance for Robotic Assembly. CoRR abs/2111.10488 (2021) - 2020
- [j10]Alberto Dalla Libera
, Diego Romeres
, Devesh K. Jha
, Bill Yerazunis, Daniel Nikovski
:
Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements. IEEE Robotics Autom. Lett. 5(2): 3548-3555 (2020) - [c63]Emil Laftchiev, Qing Yan, Daniel Nikovski:
The Missing Input Problem. IEEE BigData 2020: 1565-1573 - [c62]Kei Ota, Devesh K. Jha, Tadashi Onishi, Asako Kanezaki, Yusuke Yoshiyasu, Yoko Sasaki, Toshisada Mariyama, Daniel Nikovski:
Deep Reactive Planning in Dynamic Environments. CoRL 2020: 1943-1957 - [c61]Kei Ota, Tomoaki Oiki, Devesh K. Jha, Toshisada Mariyama, Daniel Nikovski:
Can Increasing Input Dimensionality Improve Deep Reinforcement Learning? ICML 2020: 7424-7433 - [c60]Patrik Kolaric, Devesh K. Jha, Arvind U. Raghunathan, Frank L. Lewis, Mouhacine Benosman, Diego Romeres, Daniel Nikovski:
Local Policy Optimization for Trajectory-Centric Reinforcement Learning. ICRA 2020: 5094-5100 - [c59]Athanasios Tsiligkaridis, Jing Zhang, Hiroshi Taguchi, Daniel Nikovski:
Personalized Destination Prediction Using Transformers in a Contextless Data Setting. IJCNN 2020: 1-7 - [c58]Shiva Poudel, Hongbo Sun, Daniel Nikovski, Jinyun Zhang:
Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. ISGT 2020: 1-5 - [c57]Dongliang Xiao
, Hongbo Sun, Daniel Nikovski, Shoichi Kitamura, Kazuyuki Mori, Hiroyuki Hashimoto:
CVaR-constrained Stochastic Bidding Strategy for a Virtual Power Plant with Mobile Energy Storages. ISGT-Europe 2020: 1171-1175 - [i16]Patrik Kolaric, Devesh K. Jha, Arvind U. Raghunathan, Frank L. Lewis, Mouhacine Benosman, Diego Romeres, Daniel Nikovski:
Local Policy Optimization for Trajectory-Centric Reinforcement Learning. CoRR abs/2001.08092 (2020) - [i15]Wenyu Zhang, Devesh K. Jha, Emil Laftchiev, Daniel Nikovski:
Multi-label Prediction in Time Series Data using Deep Neural Networks. CoRR abs/2001.10098 (2020) - [i14]Alberto Dalla Libera, Diego Romeres, Devesh K. Jha, Bill Yerazunis, Daniel Nikovski:
Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements. CoRR abs/2002.10621 (2020) - [i13]Kei Ota, Tomoaki Oiki, Devesh K. Jha, Toshisada Mariyama, Daniel Nikovski:
Can Increasing Input Dimensionality Improve Deep Reinforcement Learning? CoRR abs/2003.01629 (2020) - [i12]Tong Huang, Hongbo Sun, Kyeong Jin Kim, Daniel Nikovski, Le Xie:
A Holistic Framework for Parameter Coordination of Interconnected Microgrids against Disasters. CoRR abs/2006.13840 (2020) - [i11]Yifang Liu, Diego Romeres, Devesh K. Jha, Daniel Nikovski:
Understanding Multi-Modal Perception Using Behavioral Cloning for Peg-In-a-Hole Insertion Tasks. CoRR abs/2007.11646 (2020) - [i10]Kei Ota, Devesh K. Jha, Tadashi Onishi, Asako Kanezaki, Yusuke Yoshiyasu, Yoko Sasaki, Toshisada Mariyama, Daniel Nikovski:
Deep Reactive Planning in Dynamic Environments. CoRR abs/2011.00155 (2020) - [i9]Kei Ota, Devesh K. Jha, Diego Romeres, Jeroen van Baar, Kevin A. Smith, Takayuki Semitsu, Tomoaki Oiki, Alan Sullivan, Daniel Nikovski, Joshua B. Tenenbaum:
Towards Human-Level Learning of Complex Physical Puzzles. CoRR abs/2011.07193 (2020)
2010 – 2019
- 2019
- [j9]Yan Zhu
, Makoto Imamura, Daniel Nikovski, Eamonn J. Keogh:
Introducing time series chains: a new primitive for time series data mining. Knowl. Inf. Syst. 60(2): 1135-1161 (2019) - [j8]Hanchen Xu
, Hongbo Sun
, Daniel Nikovski, Shoichi Kitamura, Kazuyuki Mori, Hiroyuki Hashimoto:
Deep Reinforcement Learning for Joint Bidding and Pricing of Load Serving Entity. IEEE Trans. Smart Grid 10(6): 6366-6375 (2019) - [c56]Diego Romeres, Devesh K. Jha, William Yerazunis, Daniel Nikovski, Hoang Anh Dau:
Anomaly Detection for Insertion Tasks in Robotic Assembly Using Gaussian Process Models. ECC 2019: 1017-1022 - [c55]Ariana Minot, Hongbo Sun, Daniel Nikovski, Jinyun Zhang:
Distributed Estimation and Detection of Cyber-Physical Attacks in Power Systems. ICC Workshops 2019: 1-6 - [c54]Jing Zhang, Daniel Nikovski, Teng-Yok Lee
, Tomoya Fujino:
Fault Detection and Classification of Time Series Using Localized Matrix Profiles. ICPHM 2019: 1-7 - [c53]Diego Romeres, Devesh K. Jha, Alberto Dalla Libera
, Bill Yerazunis, Daniel Nikovski:
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze. ICRA 2019: 3195-3202 - [c52]Jeroen van Baar, Alan Sullivan, Radu Cordorel, Devesh K. Jha, Diego Romeres, Daniel Nikovski:
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic Tasks involving Complex Dynamics. ICRA 2019: 6001-6007 - [c51]Kei Ota, Devesh K. Jha, Tomoaki Oiki, Mamoru Miura, Takashi Nammoto, Daniel Nikovski, Toshisada Mariyama:
Trajectory Optimization for Unknown Constrained Systems using Reinforcement Learning. IROS 2019: 3487-3494 - [c50]Hanchen Xu, Hongbo Sun, Daniel Nikovski, Shoichi Kitamura, Kazuyuki Mori:
Learning Dynamical Demand Response Model in Real-Time Pricing Program. ISGT 2019: 1-5 - [i8]Kei Ota, Devesh K. Jha, Tomoaki Oiki, Mamoru Miura, Takashi Nammoto, Daniel Nikovski, Toshisada Mariyama:
Trajectory Optimization for Unknown Constrained Systems using Reinforcement Learning. CoRR abs/1903.05751 (2019) - [i7]Jonathan Chang, Nishanth Kumar, Sean Hastings, Aaron Gokaslan
, Diego Romeres, Devesh K. Jha, Daniel Nikovski, George Dimitri Konidaris, Stefanie Tellex:
Learning Deep Parameterized Skills from Demonstration for Re-targetable Visuomotor Control. CoRR abs/1910.10628 (2019) - 2018
- [c49]Yangchen Pan
, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, Daniel Nikovski:
Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control. ICML 2018: 3983-3992 - [c48]Yan Zhu, Makoto Imamura, Daniel Nikovski, Eamonn J. Keogh:
Time Series Chains: A Novel Tool for Time Series Data Mining. IJCAI 2018: 5414-5418 - [c47]Emil Laftchiev, Xinmaio Sun, Hoang Anh Dau, Daniel Nikovski:
Anomaly Detection in Discrete Manufacturing Systems using Event Relationship Tables. DX 2018 - [i6]Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, Daniel Nikovski:
Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control. CoRR abs/1806.06931 (2018) - [i5]Jeroen van Baar, Alan Sullivan, Radu Cordorel, Devesh K. Jha, Diego Romeres, Daniel Nikovski:
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic Tasks involving Complex Dynamics. CoRR abs/1809.04720 (2018) - [i4]Diego Romeres, Devesh K. Jha, Alberto Dalla Libera, William Yerazunis, Daniel Nikovski:
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze. CoRR abs/1809.04993 (2018) - [i3]Hanchen Xu, Hongbo Sun, Daniel Nikovski, Shoichi Kitamura, Kazuyuki Mori:
Learning Dynamical Demand Response Model in Real-Time Pricing Program. CoRR abs/1812.09567 (2018) - 2017
- [c46]Srikumar Ramalingam, Arvind U. Raghunathan, Daniel Nikovski:
Submodular Function Maximization for Group Elevator Scheduling. ICAPS 2017: 233-241 - [c45]Amir Massoud Farahmand, André Barreto, Daniel Nikovski:
Value-Aware Loss Function for Model-based Reinforcement Learning. AISTATS 2017: 1486-1494 - [c44]Amir-massoud Farahmand, Saleh Nabi, Daniel Nikolaev Nikovski:
Deep reinforcement learning for partial differential equation control. ACC 2017: 3120-3127 - [c43]Yan Zhu, Makoto Imamura, Daniel Nikovski, Eamonn J. Keogh:
Matrix Profile VII: Time Series Chains: A New Primitive for Time Series Data Mining (Best Student Paper Award). ICDM 2017: 695-704 - [c42]Hongbo Sun, Yusuke Takaguchi, Daniel Nikovski, Hiroyuki Hashimoto:
Three-level co-optimization model for generation scheduling of integrated energy and regulation market. ISGT Asia 2017: 1-6 - [c41]Amir-massoud Farahmand, Sepideh Pourazarm, Daniel Nikovski:
Random Projection Filter Bank for Time Series Data. NIPS 2017: 6562-6572 - [c40]Devesh K. Jha, Daniel Nikovski, William Yerazunis, Amir-massoud Farahmand:
Learning to regulate rolling ball motion. SSCI 2017: 1-6 - [i2]Srikumar Ramalingam, Arvind U. Raghunathan, Daniel Nikovski:
Submodular Function Maximization for Group Elevator Scheduling. CoRR abs/1707.00617 (2017) - 2016
- [j7]Michael Jones
, Daniel Nikovski, Makoto Imamura, Takahisa Hirata:
Exemplar learning for extremely efficient anomaly detection in real-valued time series. Data Min. Knowl. Discov. 30(6): 1427-1454 (2016) - [j6]Nikita Korolko, Zafer Sahinoglu, Daniel Nikovski:
Modeling and Forecasting Self-Similar Power Load Due to EV Fast Chargers. IEEE Trans. Smart Grid 7(3): 1620-1629 (2016) - [c39]Amir-massoud Farahmand, Daniel Nikolaev Nikovski, Yuji Igarashi, Hiroki Konaka:
Truncated Approximate Dynamic Programming with Task-Dependent Terminal Value. AAAI 2016: 3123-3129 - [c38]Jingyang Xu, Daniel Nikovski:
A humidity integrated building thermal model. ACC 2016: 1492-1499 - [c37]Amir-massoud Farahmand, Saleh Nabi, Piyush Grover
, Daniel Nikovski:
Learning to control partial differential equations: Regularized Fitted Q-Iteration approach. CDC 2016: 4578-4585 - [c36]Daniel Nikovski, Kiran Byadarhaly:
Regularized covariance matrix estimation with high dimensional data for supervised anomaly detection problems. IJCNN 2016: 2811-2818 - [c35]Hongbo Sun, Ariana Minot, Daniel Nikovski, Hiroyuki Hashimoto, Tomihiro Takano, Yusuke Takaguchi:
Mitigating substation demand fluctuations using decoupled price schemes for demand response. ISGT 2016: 1-5 - [c34]Emil Laftchiev, Daniel Nikovski:
An IoT system to estimate personal thermal comfort. WF-IoT 2016: 672-677 - 2015
- [j5]Daniel Nikolaev Nikovski:
Barycentric quantization for planning in continuous domains. AI Commun. 28(3): 539-551 (2015) - [c33]Jingyang Xu, Daniel Nikovski, Sae Kimura:
A framework for real-time near-optimal train run-curve computation with dynamic travel time and speed limits. ACC 2015: 533-540 - [c32]Zhao Wang
, Hongbo Sun, Daniel Nikovski:
Static voltage stability detection using local measurement for microgrids in a power distribution network. CDC 2015: 3254-3259 - [c31]Anamika Dubey
, Hongbo Sun, Daniel Nikovski, Tomihiro Takano, Yasuhiro Kojima, Tetsufumi Ohno:
Locating double-line-to-ground faults using hybrid current profile approach. ISGT 2015: 1-5 - [c30]Sanujit Sahoo, Daniel Nikovski, Toru Muso, Kaoru Tsuru:
Electricity theft detection using smart meter data. ISGT 2015: 1-5 - [c29]Zhenyu Tan, Hongbo Sun, Daniel Nikovski, Tomihiro Takano, Yasuhiro Kojima, Tetsufumi Ohno:
A generalized admittance based method for fault location analysis of distribution systems. ISGT 2015: 1-5 - 2014
- [c28]Yiming Zhao, Yebin Wang, Scott A. Bortoff, Daniel Nikovski:
Energy-efficient collision-free trajectory planning using Alternating Quadratic Programming. ACC 2014: 1249-1254 - 2013
- [c27]Ajit Gopalakrishnan, Arvind U. Raghunathan, Daniel Nikovski, Lorenz T. Biegler
:
Global optimization of multi-period optimal power flow. ACC 2013: 1157-1164 - [c26]Hongbo Sun, Daniel Nikovski, Tomihiro Takano, Yasuhiro Kojima, Tetsufumi Ohno:
Estimating locations of single-phase-to-ground faults of ungrounded distribution systems. ISGT Europe 2013: 1-5 - [c25]Michael Jones, Yanfeng Geng, Daniel Nikovski, Takahisa Hirata:
Predicting link travel times from floating car data. ITSC 2013: 1756-1763 - [c24]Daniel Nikolaev Nikovski, Zhenhua Wang, Alan Esenther, Hongbo Sun, Keisuke Sugiura, Toru Muso, Kaoru Tsuru:
Smart Meter Data Analysis for Power Theft Detection. MLDM 2013: 379-389 - 2012
- [c23]Ajit Gopalakrishnan, Arvind U. Raghunathan, Daniel Nikovski, Lorenz T. Biegler
:
Global optimization of Optimal Power Flow using a branch & bound algorithm. Allerton Conference 2012: 609-616 - [c22]Daniel Nikovski, Alan Esenther, Xiang Ye, Mitsuteru Shiba, Shigenobu Takayama:
Bayesian Networks for Matcher Composition in Automatic Schema Matching. ICEIS (1) 2012: 48-55 - [c21]Daniel Nikovski, Alan Esenther, Xiang Ye, Mitsuteru Shiba, Shigenobu Takayama:
Matcher Composition Methods for Automatic Schema Matching. ICEIS 2012: 108-123 - [c20]Hongbo Sun, Daniel Nikovski, Tetsufumi Ohno, Tomihiro Takano, Yasuhiro Kojima:
Hybrid three-phase load flow method for ungrounded distribution systems. ISGT Europe 2012: 1-8 - [i1]Daniel Nikovski, Matthew Brand:
Marginalizing Out Future Passengers in Group Elevator Control. CoRR abs/1212.2499 (2012) - 2011
- [c19]Daniel Nikovski, Alan Esenther:
Construction of embedded Markov decision processes for optimal control of non-linear systems with continuous state spaces. CDC/ECC 2011: 7944-7949 - 2010
- [j4]Daniel Nikovski, Ankur Jain:
Fast adaptive algorithms for abrupt change detection. Mach. Learn. 79(3): 283-306 (2010)
2000 – 2009
- 2009
- [c18]Daniel Nikovski, Alan Esenther, Akihiro Baba:
Semi-supervised Information Extraction from Variable-length Web-page Lists. ICEIS (1) 2009: 261-266 - [c17]Daniel Nikovski, Ganesan Ramachandran:
Memory-Based Modeling of Seasonality for Prediction of Climatic Time Series. MLDM 2009: 734-748 - 2008
- [j3]Ankur Jain, Daniel Nikovski:
Incremental exemplar learning schemes for classification on embedded devices. Mach. Learn. 72(3): 189-203 (2008) - [c16]Daniel Nikovski:
Workflow Trees for Representation and Mining of Implicitly Concurrent Business Processes. ICEIS (3-2) 2008: 30-36 - [c15]Ankur Jain, Daniel Nikovski:
Incremental Exemplar Learning Schemes for Classification on Embedded Devices. ECML/PKDD (1) 2008: 11 - 2006
- [c14]Daniel Nikovski, Veselin Kulev:
Induction of compact decision trees for personalized recommendation. SAC 2006: 575-581 - 2004
- [j2]Daniel Nikovski, Matthew Brand:
Exact calculation of expected waiting times for group elevator control. IEEE Trans. Autom. Control. 49(10): 1820-1823 (2004) - [c13]Matthew Brand, Daniel Nikovski:
Optimal Parking in Group Elevator Control. ICRA 2004: 1002-1008 - [c12]Matthew Brand, Sarah F. Frisken Gibson, Neal Lesh, Joe Marks, Daniel Nikovski, Ronald N. Perry, Jonathan S. Yedidia:
Theory and Applied Computing: Observations and Anecdotes. MFCS 2004: 106-118 - 2003
- [c11]Daniel Nikovski, Matthew Brand:
Decision-Theoretic Group Elevator Scheduling. ICAPS 2003: 133-142 - [c10]Daniel Nikovski, Matthew Brand:
Marginalizing Out Future Passengers in Group Elevator Control. UAI 2003: 443-450 - 2002
- [c9]Daniel Nikovski, Illah R. Nourbakhsh:
Learning probabilistic models for state tracking of mobile robots. IROS 2002: 1026-1031 - [c8]Daniel Nikovski, Illah R. Nourbakhsh:
Learning probabilistic models for optimal visual servo control of dynamic manipulation. IROS 2002: 1068-1073 - 2000
- [j1]Daniel Nikovski:
Constructing Bayesian Networks for Medical Diagnosis from Incomplete and Partially Correct Statistics. IEEE Trans. Knowl. Data Eng. 12(4): 509-516 (2000) - [c7]Daniel Nikovski:
Grounding State Representations in Sensory Experience for Reasoning and Planning by Mobile Robots. AAAI/IAAI 2000: 1108 - [c6]Daniel Nikovski, Illah R. Nourbakhsh:
Learning Probabilistic Models for Decision-Theoretic Navigation of Mobile Robots. ICML 2000: 671-678
1990 – 1999
- 1999
- [c5]Daniel Nikovski, Illah R. Nourbakhsh:
Learning discrete Bayesian models for autonomous agent navigation. CIRA 1999: 137-143 - 1996
- [c4]Reid G. Simmons, Sebastian Thrun, Greg Armstrong, Richard Goodwin, Karen Zita Haigh, Sven Koenig, Shyjan Mahamud, Daniel Nikovski, Joseph O'Sullivan:
Amelia. AAAI/IAAI, Vol. 2 1996: 1358 - [c3]Daniel Nikovski, Mehdi Zargham:
Comparison of Two Learning Networks for Time Series Prediction. IEA/AIE 1996: 531-536 - 1993
- [c2]Nikola K. Kasabov
, Daniel Nikovski, Emilian Peev:
Speech recognition based on Kohonen self-organizing feature maps and hybrid connectionist systems. ANNES 1993: 113-117 - 1992
- [c1]Nikola K. Kasabov, Daniel Nikovski:
Prognostic Expert Systems on a Hybrid Connectionist Environment. AIMSA 1992: 141-148
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-28 23:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint