


default search action
Santosh Devasia
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j43]Wade Marquette
, Kyle Schultz, Vamsi Jonnalagadda
, Benjamin Wong
, Joseph L. Garbini, Santosh Devasia
:
Semi-Autonomous Teleoperation Using Differential Flatness of a Crane Robot for Aircraft In-Wing Inspection. IEEE Robotics Autom. Lett. 10(3): 2742-2749 (2025) - [i18]Benjamin Wong, Ryan H. Lee, Tyler M. Paine, Santosh Devasia, Ashis G. Banerjee:
Rapidly Converging Time-Discounted Ergodicity on Graphs for Active Inspection of Confined Spaces. CoRR abs/2503.10853 (2025) - 2024
- [j42]Yoshua Gombo
, Anuj Tiwari
, Mohamed Safwat
, Henry Chang
, Santosh Devasia
:
Delayed Self-Reinforcement to Reduce Deformation During Decentralized Flexible-Object Transport. IEEE Trans. Robotics 40: 999-1018 (2024) - [c43]Leon Liangwu Yan, Santosh Devasia:
Output-Sampled Model Predictive Path Integral Control (o-MPPI) for Increased Efficiency. ICRA 2024: 14279-14285 - [i17]Wade Marquette, Kyle Schultz, Vamsi Jonnalagadda, Benjamin Wong, Joseph L. Garbini, Santosh Devasia:
Semi-autonomous Teleoperation using Differential Flatness of a Crane Robot for Aircraft In-Wing Inspection. CoRR abs/2412.10973 (2024) - 2023
- [j41]Yudong Lin
, Anuj Tiwari
, Brian C. Fabien
, Santosh Devasia
:
Constant-Spacing Connected Platoons With Robustness to Communication Delays. IEEE Trans. Intell. Transp. Syst. 24(3): 3370-3382 (2023) - [i16]Leon Yan, Santosh Devasia:
Output-Sampled Model Predictive Path Integral Control (o-MPPI) for Increased Efficiency. CoRR abs/2309.13201 (2023) - [i15]Benjamin Wong, Tyler M. Paine, Santosh Devasia, Ashis G. Banerjee:
Active Anomaly Detection in Confined Spaces Using Ergodic Traversal of Directed Region Graphs. CoRR abs/2310.00588 (2023) - 2022
- [j40]Anuj Tiwari
, Santosh Devasia
:
Decentralized Cohesive Response During Transitions for Higher-Order Agents Under Network Delays. IEEE Trans. Autom. Control. 67(11): 6303-6309 (2022) - [i14]Leon Yan, Santosh Devasia:
Precision Data-enabled Koopman-type Inverse Operators for Linear Systems. CoRR abs/2207.00855 (2022) - 2021
- [j39]Leon Yan, Nathan Banka, Parker Owan, Walter Tony Piaskowy, Joseph L. Garbini, Santosh Devasia:
MIMO ILC using complex-kernel regression and application to Precision SEA robots. Autom. 127: 109550 (2021) - [j38]Santosh Devasia
:
Faster response in bounded-update-rate, discrete-time linear networks using delayed self-reinforcement. Int. J. Control 94(5): 1286-1296 (2021) - [j37]Yoshua Gombo
, Anuj Tiwari
, Santosh Devasia
:
Accelerated-Gradient-Based Flexible-Object Transport With Decentralized Robot Teams. IEEE Robotics Autom. Lett. 6(1): 151-158 (2021) - [j36]Veniamin Tereshchuk, Nikolay Bykov
, Samuel Pedigo
, Santosh Devasia
, Ashis G. Banerjee
:
A scheduling method for multi-robot assembly of aircraft structures with soft task precedence constraints. Robotics Comput. Integr. Manuf. 71: 102154 (2021) - [j35]Anuj Tiwari
, Santosh Devasia
:
Rapid Transitions With Robust Accelerated Delayed-Self-Reinforcement for Consensus-Based Networks. IEEE Trans. Control. Syst. Technol. 29(5): 2115-2128 (2021) - [c42]Yoshua Gombo, Anuj Tiwari, Santosh Devasia:
Communication-free Cohesive Flexible-Object Transport using Decentralized Robot Networks. ACC 2021: 106-111 - [i13]Yoshua Gombo, Anuj Tiwari, Santosh Devasia:
Communication-free Cohesive Flexible-Object Transport using Decentralized Robot Networks. CoRR abs/2102.09056 (2021) - 2020
- [j34]Santosh Devasia:
Cohesive networks using delayed self reinforcement. Autom. 112 (2020) - [j33]Parker Owan
, Joseph L. Garbini, Santosh Devasia
:
Faster Confined Space Manufacturing Teleoperation Through Dynamic Autonomy With Task Dynamics Imitation Learning. IEEE Robotics Autom. Lett. 5(2): 2357-2364 (2020) - [i12]Santosh Devasia:
Cohesive Networks using Delayed Self Reinforcement. CoRR abs/2003.06679 (2020) - [i11]Anuj Tiwari, Santosh Devasia:
Rapid Transitions with Robust Accelerated Delayed Self Reinforcement for Consensus-based Multi Agent Networks. CoRR abs/2006.16295 (2020) - [i10]Leon Yan, Nathan Banka, Parker Owan, Walter Tony Piaskowy, Joseph L. Garbini, Santosh Devasia:
MIMO ILC for Precision SEA robots using Input-weighted Complex-Kernel Regression. CoRR abs/2010.04487 (2020)
2010 – 2019
- 2019
- [j32]Behnoosh Parsa
, Ekta U. Samani, Rose Hendrix, Cameron Devine
, Shashi M. Singh, Santosh Devasia
, Ashis G. Banerjee
:
Toward Ergonomic Risk Prediction via Segmentation of Indoor Object Manipulation Actions Using Spatiotemporal Convolutional Networks. IEEE Robotics Autom. Lett. 4(4): 3153-3160 (2019) - [j31]Veniamin Tereshchuk
, John Stewart, Nikolay Bykov
, Samuel Pedigo, Santosh Devasia
, Ashis G. Banerjee
:
An Efficient Scheduling Algorithm for Multi-Robot Task Allocation in Assembling Aircraft Structures. IEEE Robotics Autom. Lett. 4(4): 3844-3851 (2019) - [j30]Santosh Devasia
:
Iterative Machine Learning for Output Tracking. IEEE Trans. Control. Syst. Technol. 27(2): 516-526 (2019) - [c41]Santosh Devasia:
Accelerated Consensus for Multi-Agent Networks through Delayed Self Reinforcement. ICPS 2019: 319-324 - [i9]Behnoosh Parsa, Ekta U. Samani, Rose Hendrix, Shashi M. Singh, Santosh Devasia, Ashis G. Banerjee:
Predicting Ergonomic Risks During Indoor Object Manipulation Using Spatiotemporal Convolutional Networks. CoRR abs/1902.05176 (2019) - [i8]Veniamin Tereshchuk, John Stewart, Nikolay Bykov, Samuel Pedigo, Santosh Devasia, Ashis G. Banerjee:
An Efficient Scheduling Algorithm for Multi-Robot Task Allocation in Assembling Aircraft Structures. CoRR abs/1902.08905 (2019) - 2018
- [j29]Santosh Devasia, Chien Chern Cheah
, Marcello Pellicciari, Margherita Peruzzini:
Guest editorial: focused section on human-centered robotics. Int. J. Intell. Robotics Appl. 2(2): 133-135 (2018) - [j28]Jonathan Realmuto
, Rahul B. Warrier, Santosh Devasia:
Data-Inferred Personalized Human-Robot Models for Iterative Collaborative Output Tracking. J. Intell. Robotic Syst. 91(2): 137-153 (2018) - [c40]Nathan Banka, W. Tony Piaskowy, Joseph L. Garbini, Santosh Devasia:
Iterative machine learning for precision trajectory tracking with series elastic actuators. AMC 2018: 234-239 - [c39]Parker Owan, Joseph L. Garbini, Santosh Devasia:
Managing Off-Nominal Events in Shared Teleoperation with Learned Task Compliance. IROS 2018: 5509-5516 - [c38]Rahul B. Warrier, Santosh Devasia:
Kernel-Based Human-Dynamics Inversion for Precision Robot Motion-Primitives. IROS 2018: 6037-6042 - [i7]Santosh Devasia:
Rapid Information Transfer in Networks with Delayed Self Reinforcement. CoRR abs/1801.00910 (2018) - [i6]Santosh Devasia:
Faster Response in Bounded-Update-Rate, Discrete-time Networks using Delayed Self-Reinforcement. CoRR abs/1804.08611 (2018) - [i5]Santosh Devasia:
Accelerated Consensus for Multi-Agent Networks through Delayed Self Reinforcement. CoRR abs/1812.11536 (2018) - 2017
- [j27]Santosh Devasia:
Iterative Control for Networked Heterogeneous Multi-Agent Systems With Uncertainties. IEEE Trans. Autom. Control. 62(1): 431-437 (2017) - [j26]Rahul B. Warrier, Santosh Devasia
:
Inferring Intent for Novice Human-in-the-Loop Iterative Learning Control. IEEE Trans. Control. Syst. Technol. 25(5): 1698-1710 (2017) - [c37]Parker Owan, Joseph L. Garbini, Santosh Devasia:
Addressing agent disagreement in mixed-initiative traded control for confined-space manufacturing. AIM 2017: 227-234 - [c36]Colin Morris, Yuxin Fu, Scott McCormick, Bradley Wachter, Santosh Devasia:
Low-cost assistive robot for mirror therapy rehabilitation. ROBIO 2017: 2057-2062 - [i4]Santosh Devasia:
Iterative Machine Learning for Output Tracking. CoRR abs/1705.07826 (2017) - [i3]Nathan Banka, W. Tony Piaskowy, Joseph L. Garbini, Santosh Devasia:
Iterative Machine Learning for Precision Trajectory Tracking with Series Elastic Actuators. CoRR abs/1710.09691 (2017) - 2016
- [j25]Santosh Devasia:
Iterative learning control with time-partitioned update for collaborative output tracking. Autom. 69: 258-264 (2016) - [j24]Arom Boekfah, Santosh Devasia:
Output-Boundary Regulation Using Event-Based Feedforward for Nonminimum-Phase Systems. IEEE Trans. Control. Syst. Technol. 24(1): 265-275 (2016) - [j23]Rahul B. Warrier, Santosh Devasia:
Iterative Learning From Novice Human Demonstrations for Output Tracking. IEEE Trans. Hum. Mach. Syst. 46(4): 510-521 (2016) - [c35]W. Tony Piaskowy, Lance McCann, Joseph L. Garbini, Santosh Devasia:
Variable-impedance-based human-machine control for docking of manufacturing fixtures. ACC 2016: 1723-1728 - [c34]Rahul B. Warrier, Santosh Devasia:
Inverse control for inferring intent in novice human-in-the-loop iterative learning. ACC 2016: 2148-2154 - [i2]Santosh Devasia, Alexander Lee:
A Scalable Low-Cost-UAV Traffic Network (uNet). CoRR abs/1601.01952 (2016) - 2015
- [c33]Arom Boekfah, Santosh Devasia:
Output-boundary regulation for nonminimum-phase systems. ACC 2015: 4030-4035 - [i1]Parker Owan, Joseph L. Garbini, Santosh Devasia:
Uncertainty-based Arbitration of Human-Machine Shared Control. CoRR abs/1511.05996 (2015) - 2014
- [j22]Jeff D. Yoo, Santosh Devasia:
On-Demand Conflict Resolution Procedures for Air-Traffic Intersections. IEEE Trans. Intell. Transp. Syst. 15(4): 1538-1549 (2014) - 2013
- [j21]Jeff Yoo, Santosh Devasia:
Provably Safe Conflict Resolution With Bounded Turn Rate for Air Traffic Control. IEEE Trans. Control. Syst. Technol. 21(6): 2280-2289 (2013) - [c32]Jeff D. Yoo, Santosh Devasia:
On-demand Conflict Resolution Procedures for Air Traffic intersections. ACC 2013: 6322-6327 - [c31]Jeff D. Yoo, Santosh Devasia:
Decoupled Conflict Resolution Procedures for non-perpendicular Air Traffic intersections with different speeds. CDC 2013: 275-280 - 2012
- [j20]Santosh Devasia:
Time-Optimal Control With Pre/Post Actuation for Dual-Stage Systems. IEEE Trans. Control. Syst. Technol. 20(2): 323-334 (2012) - [c30]Jiradech Kongthon, Santosh Devasia:
Iterative inversion-based control of piezoactuator for evaluating cilia-based micro-mixing. ACC 2012: 1826-1831 - [c29]Jeff Yoo, Santosh Devasia:
Application of provably-safe conflict resolution for air traffic control. CDC 2012: 478-483 - 2011
- [j19]Santosh Devasia:
Nonlinear minimum-time control with pre- and post-actuation. Autom. 47(7): 1379-1387 (2011) - [j18]Santosh Devasia, Dhanakorn Iamratanakul, Gano Chatterji, George Meyer:
Decoupled Conflict-Resolution Procedures for Decentralized Air Traffic Control. IEEE Trans. Intell. Transp. Syst. 12(2): 422-437 (2011) - [c28]Jeff Yoo, Santosh Devasia:
Flow-capacity-maintaining, decentralized, conflict resolution with aircraft turn dynamics. ACC 2011: 2759-2764 - [c27]Scott Wilcox, Santosh Devasia:
Modeling and feedforward control of a large-range, piezo nano-stepper. ACC 2011: 2855-2860 - 2010
- [c26]Santosh Devasia:
Output Transition with Pre- and Post-actuation for Dual-stage Flexible Structures. CCA 2010: 216-221 - [c25]Santosh Devasia:
Nonlinear minimum-time feedforward control for output transition with pre- and post-actuation. ACC 2010: 2320-2325
2000 – 2009
- 2009
- [c24]Santosh Devasia, Dhanakorn Iamratanakul, Gano Chatterji, George Meyer:
Decoupled conflict-resolution procedures for decentralized air traffic control. CCA/ISIC 2009: 837-842 - [c23]Garrett M. Clayton
, Santosh Devasia:
Theory for image-based identification of SPM dynamics. ACC 2009: 1670-1675 - 2008
- [j17]Dhanakorn Iamratanakul, Benjamin Jordan, Kam K. Leang, Santosh Devasia:
Optimal Output Transitions for Dual-Stage Systems. IEEE Trans. Control. Syst. Technol. 16(5): 869-881 (2008) - [c22]Szuchi Tien, Santosh Devasia:
AFM imaging of large soft samples in liquid medium using iterative inverse feedforward control. ACC 2008: 3201-3206 - [c21]Dhanakorn Iamratanakul, Santosh Devasia:
Feedforward input design for minimum-time/energy, output transitions for dual-stage systems. ACC 2008: 3263-3268 - 2007
- [j16]Qingze Zou, Santosh Devasia:
Precision preview-based stable-inversion for nonlinear nonminimum-phase systems: The VTOL example. Autom. 43(1): 117-127 (2007) - [j15]Santosh Devasia, Evangelos Eleftheriou, S. O. Reza Moheimani
:
A Survey of Control Issues in Nanopositioning. IEEE Trans. Control. Syst. Technol. 15(5): 802-823 (2007) - [j14]Kam K. Leang, Santosh Devasia:
Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators. IEEE Trans. Control. Syst. Technol. 15(5): 927-935 (2007) - [c20]Santosh Devasia:
Optimal Output Transition for Settling Control in Hard-Disk Drives with Dual-Stage Actuators. ISIC 2007: 308-314 - 2006
- [c19]Dhanakorn Iamratanakul, Benjamin Jordan, Kam K. Leang, Santosh Devasia:
Optimal seek-trajectory design for dual-stage systems. ACC 2006 - 2005
- [j13]Szuchi Tien, Qingze Zou, Santosh Devasia:
Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation. IEEE Trans. Control. Syst. Technol. 13(6): 921-931 (2005) - [c18]Benjamin Jordan, Dhanakorn Iamratanakul, Santosh Devasia:
Optimal output transitions for dual-stage systems: disk drive example. ACC 2005: 519-526 - 2004
- [j12]Qingze Zou, Santosh Devasia:
Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy. IEEE Trans. Control. Syst. Technol. 12(3): 375-386 (2004) - [c17]Szuchi Tien, Qingze Zou, Santosh Devasia:
Iterative control of dynamics-coupling effects in piezo-based nano-positioners for high-speed AFM. CCA 2004: 711-717 - [c16]Szuchi Tien, Qingze Zou, Santosh Devasia:
Control of dynamics-coupling effects in piezo-actuator for high-speed AFM operation. ACC 2004: 3116-3121 - [c15]Clint V. Giessen, Qingze Zou, Santosh Devasia:
Inversion-based precision-positioning of switching inertial reaction devices. ACC 2004: 3788-3793 - [c14]Dhanakom Iamratanahl, Santosh Devasia:
Minimum-time/energy output-transitions in linear systems. ACC 2004: 4831-4836 - [c13]Dhanakorn Iamratanakul, George Meyer, Gano Chatterji, Santosh Devasia:
Quantification of airspace sector capacity using decentralized conflict resolution procedures. CDC 2004: 2003-2009 - [c12]Qingze Zou, Santosh Devasia:
Preview-based inversion of nonlinear nonminimum-phase systems: VTOL example. CDC 2004: 4350-4356 - 2003
- [j11]Hector Perez, Santosh Devasia:
Optimal output-transitions for linear systems. Autom. 39(2): 181-192 (2003) - [c11]Dhanakorn Iamratanakul, Hector Perez, Santosh Devasia:
Feedforward trajectory design for output transitions in discrete-time systems: disk-drive example. ACC 2003: 3142-3147 - [c10]Kam K. Leang, Santosh Devasia:
Iterative feedforward compensation of hysteresis in piezo positioners. CDC 2003: 2626-2631 - 2002
- [j10]Santosh Devasia:
Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Trans. Autom. Control. 47(11): 1865-1871 (2002) - [j9]Hector Perez, Babatunde Ogunnaike
, Santosh Devasia:
Output tracking between operating points for nonlinear processes: Van de Vusse example. IEEE Trans. Control. Syst. Technol. 10(4): 611-617 (2002) - [c9]Santosh Devasia, Michael Heymann, George Meyer:
Automation procedures for air traffic management: a token-based approach. ACC 2002: 736-741 - [c8]Hector Perez, Qingze Zou, Santosh Devasia:
Design and control of optimal feedforward trajectories for scanners: STM example. ACC 2002: 2305-2312 - [c7]Hector Perez, Babatunde Ogunnaike, Santosh Devasia:
Output tracking between operating points for nonlinear processes: Van de Vusse example. ACC 2002: 3281-3286 - [c6]Qingze Zou, Santosh Devasia:
Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy. CDC 2002: 79-85 - 2001
- [j8]Shane Stilson, Annette McClellan, Santosh Devasia:
High-speed solution switching using piezo-based micropositioning stages. IEEE Trans. Biomed. Eng. 48(7): 806-814 (2001) - [c5]Shane Stilson, Annette McClellan, Santosh Devasia:
High-speed solution switching using piezo-based micro-positioning stages. ACC 2001: 2238-2243 - [c4]Hector Perez, Santosh Devasia:
Optimal output transitions for linear systems. CDC 2001: 3164-3174 - 2000
- [j7]Marshall Mattingly, Robert B. Roemer, Santosh Devasia:
Exact temperature tracking for hyperthermia: a model-based approach. IEEE Trans. Control. Syst. Technol. 8(6): 979-992 (2000) - [c3]Santosh Devasia:
Robust inversion-based feedforward controllers for output tracking under plant uncertainty. ACC 2000: 497-502 - [c2]D. Croft, G. Shedd, Santosh Devasia:
Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ACC 2000: 2123-2128 - [c1]Rob Brinkerhoff, Santosh Devasia:
Output tracking for actuator deficient/redundant systems. ACC 2000: 2649-2653
1990 – 1999
- 1999
- [j6]Santosh Devasia:
Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics. IEEE Trans. Autom. Control. 44(7): 1419-1425 (1999) - 1998
- [j5]Santosh Devasia, Brad E. Paden:
Stable inversion for nonlinear nonminimum-phase time-varying systems. IEEE Trans. Autom. Control. 43(2): 283-288 (1998) - [j4]Marshall Mattingly, Ernest A. Bailey, Andrew W. Dutton, Robert B. Roemer, Santosh Devasia:
Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach. IEEE Trans. Biomed. Eng. 45(9): 1154-1162 (1998) - 1996
- [j3]Philippe Martin
, Santosh Devasia, Brad Paden:
A different look at output tracking: control of a vtol aircraft. Autom. 32(1): 101-107 (1996) - [j2]Santosh Devasia, Degang Chen, Brad Paden:
Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control. 41(7): 930-942 (1996) - 1994
- [j1]Ragnar Ledesma, Santosh Devasia, Eduardo Bayo
:
Inverse dynamics of spatial open-chain flexible manipulators with lumped and distributed actuators. J. Field Robotics 11(4): 327-338 (1994)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-04-14 21:10 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint