


default search action
Xiaobo Tan 0001
Person information
- affiliation: Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, USA
- affiliation (PhD 2002): University of Maryland, College Park, MD, USA
Other persons with the same name
- Xiaobo Tan — disambiguation page
- Xiaobo Tan 0002
— Shenyang Ligong University, School of Information Science and Engineering, China (and 1 more) - Xiaobo Tan 0003
— Chongqing University of Posts and Telecommunications, School of Automation, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2026
[j30]Shangyuan Yuan
, Preston Fairchild
, Yu Mei
, Xinyu Zhou
, Xiaobo Tan
:
AFT: Appearance-Based Feature Tracking for Markerless and Training-Free Shape Reconstruction of Soft Robots. IEEE Robotics Autom. Lett. 11(2): 1106-1113 (2026)- 2025
[j29]Pratap Bhanu Solanki
, Shaunak D. Bopardikar
, Xiaobo Tan
:
Computationally Efficient Control for Cooperative Optical Beam Tracking With Guaranteed Finite-Time Convergence. IEEE Trans. Control. Syst. Technol. 33(1): 245-260 (2025)
[c63]Xinyu Zhou, Christian Luedtke, Xinda Qi, Xiaobo Tan:
Dynamic Modeling and Optimization of A Compliant Worm Robot. ACC 2025: 3758-3763
[c62]Ankur Kamboj, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava:
Expediting human motor learning in high-dimensional de-novo tasks via online curriculum design. ACC 2025: 4641-4646
[c61]Yimeng Liu
, Maolin Gan
, Huaili Zeng
, Yidong Ren
, Gen Li
, Jingkai Lin
, Younsuk Dong
, Xiaobo Tan
, Zhichao Cao
:
Proteus: Enhanced mmWave Leaf Wetness Detection with Cross-Modality Knowledge Transfer. SenSys 2025: 43-57
[i14]Yu Mei, Xinyu Zhou, Shuyang Yu, Vaibhav Srivastava, Xiaobo Tan:
Fast Online Adaptive Neural MPC via Meta-Learning. CoRR abs/2504.16369 (2025)
[i13]Yu Mei, Shangyuan Yuan
, Xinda Qi, Preston Fairchild, Xiaobo Tan:
Learning-Based Modeling of Soft Actuators Using Euler Spiral-Inspired Curvature. CoRR abs/2504.18692 (2025)
[i12]Linjin He, Xinda Qi, Dong Chen, Zhaojian Li, Xiaobo Tan:
DiSA-IQL: Offline Reinforcement Learning for Robust Soft Robot Control under Distribution Shifts. CoRR abs/2510.00358 (2025)
[i11]Yu Mei, Xinyu Zhou, Xiaobo Tan:
Modeling and Mixed-Integer Nonlinear MPC of Positive-Negative Pressure Pneumatic Systems. CoRR abs/2510.00433 (2025)
[i10]Cheng Ouyang, Moeen Ul Islam, Dong Chen, Kaixiang Zhang, Zhaojian Li, Xiaobo Tan:
Direct Data-Driven Predictive Control for a Three-dimensional Cable-Driven Soft Robotic Arm. CoRR abs/2510.08953 (2025)
[i9]Preston Fairchild, Claudia Chen, Xiaobo Tan:
Efficient Force and Stiffness Prediction in Robotic Produce Handling with a Piezoresistive Pressure Sensor. CoRR abs/2510.13616 (2025)
[i8]Shangyuan Yuan, Preston Fairchild, Yu Mei, Xinyu Zhou, Xiaobo Tan:
AFT: Appearance-Based Feature Tracking for Markerless and Training-Free Shape Reconstruction of Soft Robots. CoRR abs/2511.18215 (2025)- 2024
[j28]Ian González-Afanador, Claudia Chen, Gerardo Morales-Torres, Scott Meihls, Hongyang Shi, Xiaobo Tan, Nelson Sepúlveda
:
Real-time invasive sea lamprey detection using machine learning classifier models on embedded systems. Neural Comput. Appl. 36(26): 16195-16212 (2024)
[j27]Ankur Kamboj
, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava:
Human motor learning dynamics in high-dimensional tasks. PLoS Comput. Biol. 20(10): 1012455 (2024)
[j26]Xinda Qi
, Dong Chen
, Zhaojian Li
, Xiaobo Tan
:
Back-Stepping Experience Replay With Application to Model-Free Reinforcement Learning for a Soft Snake Robot. IEEE Robotics Autom. Lett. 9(9): 7517-7524 (2024)
[c60]Eric Gaskell
, Xiaobo Tan:
Reachability Analysis for Steerable Drifter Systems. ACC 2024: 4114-4119
[i7]Xinda Qi, Yu Mei, Dong Chen, Zhaojian Li, Xiaobo Tan:
Design and Nonlinear Modeling of a Modular Cable Driven Soft Robotic Arm. CoRR abs/2401.06377 (2024)
[i6]Xinda Qi, Dong Chen, Zhaojian Li, Xiaobo Tan:
Back-stepping Experience Replay with Application to Model-free Reinforcement Learning for a Soft Snake Robot. CoRR abs/2401.11372 (2024)
[i5]Ankur Kamboj, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava:
Human Motor Learning Dynamics in High-dimensional Tasks. CoRR abs/2404.13258 (2024)- 2023
[j25]Jiajia Li, Dong Chen
, Xinda Qi, Zhaojian Li
, Yanbo Huang, Daniel D. Morris
, Xiaobo Tan:
Label-efficient learning in agriculture: A comprehensive review. Comput. Electron. Agric. 215: 108412 (2023)
[j24]Preston Fairchild
, Yu Mei
, Xiaobo Tan
:
Physics-Informed Online Estimation of Stiffness and Shape of Soft Robotic Manipulators. IEEE Control. Syst. Lett. 7: 3585-3590 (2023)
[j23]Osama En-Nasr
, Xiaobo Tan
:
Numerical and Topological Conditions for Suboptimal Distributed Kalman Filtering. IEEE Trans. Control. Netw. Syst. 10(3): 1255-1265 (2023)
[j22]Maria L. Castaño
, Xiaobo Tan
:
Backstepping-Based Tracking Control of Underactuated Aquatic Robots. IEEE Trans. Control. Syst. Technol. 31(3): 1179-1195 (2023)
[c59]Yu Mei
, Preston Fairchild, Vaibhav Srivastava
, Changyong Cao, Xiaobo Tan:
Simultaneous Motion and Stiffness Control for Soft Pneumatic Manipulators based on a Lagrangian-based Dynamic Model. ACC 2023: 145-152
[c58]Demetris Coleman, Shaunak D. Bopardikar, Vaibhav Srivastava, Xiaobo Tan:
Exploration of Unknown Scalar Fields with Multifidelity Gaussian Processes Under Localization Uncertainty. ACC 2023: 3296-3303
[c57]Hee Rin Lee, Xiaobo Tan, Wenlong Zhang, Yiming Deng, Yongming Liu:
Situating Robots in the Organizational Dynamics of the Gas Energy Industry: A Collaborative Design Study. RO-MAN 2023: 1096-1101
[i4]Jiajia Li, Dong Chen, Xinda Qi, Zhaojian Li, Yanbo Huang, Daniel Morris, Xiaobo Tan:
Label-Efficient Learning in Agriculture: A Comprehensive Review. CoRR abs/2305.14691 (2023)- 2022
[j21]Dhrubajit Chowdhury, Yasir Khudhair Al-Nadawi, Xiaobo Tan:
Dynamic inversion-based hysteresis compensation using extended high-gain observer. Autom. 135: 109977 (2022)
[c56]Ankur Kamboj
, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava:
Towards Modeling Human Motor Learning Dynamics in High-Dimensional Spaces. ACC 2022: 683-688
[c55]Eric Gaskell
, Xiaobo Tan:
Optimal Control of Active Drifter Systems. CDC 2022: 564-570
[i3]Ankur Kamboj, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava:
Towards Modeling Human Motor Learning Dynamics in High-Dimensional Spaces. CoRR abs/2202.02863 (2022)- 2021
[j20]Yasir Khudhair Al-Nadawi
, Xiaobo Tan
, Hassan K. Khalil
:
Inversion-Free Hysteresis Compensation via Adaptive Conditional Servomechanism With Application to Nanopositioning Control. IEEE Trans. Control. Syst. Technol. 29(5): 1922-1935 (2021)
[j19]Mohammad Al Janaideh
, Rui Xu, Xiaobo Tan
:
Adaptive Estimation of Play Radii for a Prandtl-Ishlinskii Hysteresis Operator. IEEE Trans. Control. Syst. Technol. 29(6): 2687-2695 (2021)
[j18]Giorgos Mamakoukas
, Maria L. Castaño
, Xiaobo Tan
, Todd D. Murphey
:
Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems. IEEE Trans. Robotics 37(6): 2173-2192 (2021)
[c54]Maria L. Castaño, Xiaobo Tan:
Rapid Maneuvering Control of Pectoral Fin-Actuated Robotic Fish. AIM 2021: 705-712
[c53]Demetris Coleman, Shaunak D. Bopardikar, Xiaobo Tan:
Incorporating Observability via Control Barrier Functions with Application to Range-based Target Tracking. AIM 2021: 713-719
[c52]Demetris Coleman, Shaunak D. Bopardikar, Xiaobo Tan:
Observability-aware Target Tracking with Range Only Measurement. ACC 2021: 4217-4224- 2020
[j17]Xinda Qi
, Hongyang Shi
, Thassyo Pinto
, Xiaobo Tan
:
A Novel Pneumatic Soft Snake Robot Using Traveling-Wave Locomotion in Constrained Environments. IEEE Robotics Autom. Lett. 5(2): 1610-1617 (2020)
[j16]Osama En-Nasr
, Xiaobo Tan:
Time-Difference-of-Arrival (TDOA)-Based Distributed Target Localization by A Robotic Network. IEEE Trans. Control. Netw. Syst. 7(3): 1416-1427 (2020)
[c51]Maria L. Castaño, Andrew Hess, Giorgos Mamakoukas, Tong Gao, Todd D. Murphey
, Xiaobo Tan:
Control-oriented Modeling of Soft Robotic Swimmer with Koopman Operators. AIM 2020: 1679-1685
[c50]Pratap Bhanu Solanki, Shaunak D. Bopardikar, Xiaobo Tan:
A Bidirectional Alignment Control Approach for Planar LED-based Free-Space Optical Communication Systems. AIM 2020: 1949-1955
[c49]Pratap Bhanu Solanki, Shaunak D. Bopardikar, Xiaobo Tan:
Active Alignment Control-based LED Communication for Underwater Robots. IROS 2020: 1692-1698
[c48]Lai Wei, Xiaobo Tan, Vaibhav Srivastava:
Expedited Multi-Target Search with Guaranteed Performance via Multi-fidelity Gaussian Processes. IROS 2020: 7095-7100
[i2]Lai Wei, Xiaobo Tan, Vaibhav Srivastava:
Expedited Multi-Target Search with Guaranteed Performance via Multi-fidelity Gaussian Processes. CoRR abs/2005.08434 (2020)
[i1]Giorgos Mamakoukas, Maria L. Castano, Xiaobo Tan, Todd D. Murphey:
Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems. CoRR abs/2010.05778 (2020)
2010 – 2019
- 2019
[j15]Shaunak D. Bopardikar
, Osama En-Nasr
, Xiaobo Tan:
Randomized Sensor Selection for Nonlinear Systems With Application to Target Localization. IEEE Robotics Autom. Lett. 4(4): 3553-3560 (2019)
[c47]Maria L. Castaño, Xiaobo Tan:
Backstepping Control-based Trajectory Tracking for Tail-actuated Robotic Fish. AIM 2019: 839-844
[c46]Yasir Khudhair Al-Nadawi, Xiaobo Tan, Hassan K. Khalil:
Inversion-free Control of Hysteresis Nonlinearity Using An Adaptive Conditional Servomechanism. ACC 2019: 3676-3682
[c45]Giorgos Mamakoukas, Maria L. Castano, Xiaobo Tan, Todd D. Murphey
:
Local Koopman Operators for Data-Driven Control of Robotic Systems. Robotics: Science and Systems 2019- 2018
[j14]Lei Fang, Jiandong Wang, Xiaobo Tan:
An incremental harmonic balance-based approach for harmonic analysis of closed-loop systems with Prandtl-Ishlinskii operator. Autom. 88: 48-56 (2018)
[c44]Jun Zhang, David Torres, Nelson Sepulveda, Xiaobo Tan:
Programming of Systems with Hysteresis Using Pulsed Inputs. ACC 2018: 4490-4495- 2017
[c43]Maria L. Castano, Anastasia Mavrommati, Todd D. Murphey
, Xiaobo Tan:
Trajectory planning and tracking of robotic fish using ergodic exploration. ACC 2017: 5476-5481
[c42]Yasir Khudhair Al-Nadawi, Xiaobo Tan, Hassan K. Khalil:
An adaptive conditional servocompensator design for nanopositioning control. CDC 2017: 885-890- 2016
[j13]Feitian Zhang, Osama En-Nasr, Elena Litchman
, Xiaobo Tan:
Autonomous Sampling of Water Columns Using Gliding Robotic Fish: Algorithms and Harmful-Algae-Sampling Experiments. IEEE Syst. J. 10(3): 1271-1281 (2016)
[j12]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, Xiangmao Chang:
Monitoring Aquatic Debris Using Smartphone-Based Robots. IEEE Trans. Mob. Comput. 15(6): 1412-1426 (2016)
[j11]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu:
Energy-Efficient Aquatic Environment Monitoring Using Smartphone-Based Robots. ACM Trans. Sens. Networks 12(3): 25:1-25:28 (2016)
[c41]Lei Fang, Jiandong Wang, Xiaobo Tan, Qunli Shang:
Analysis and compensation of control valve stiction-induced limit cycles. AIM 2016: 1688-1693
[c40]Lei Fang, Jiandong Wang, Xiaobo Tan:
Frequency response analysis for closed-loop systems with hysteresis using incremental harmonic balance. ACC 2016: 1305-1310
[c39]Osama En-Nasr, Guoliang Xing, Xiaobo Tan:
Distributed time-difference-of-arrival (TDOA)-based localization of a moving target. CDC 2016: 2652-2658
[c38]Ali Ahrari
, Hong Lei, Montassar Aidi Sharif
, Kalyanmoy Deb, Xiaobo Tan:
Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions. GECCO (Companion) 2016: 123-124- 2015
[j10]Jun Zhang
, Emmanuelle Merced, Nelson Sepulveda, Xiaobo Tan:
Optimal compression of generalized Prandtl-Ishlinskii hysteresis models. Autom. 57: 170-179 (2015)
[j9]Mohamed Edardar, Xiaobo Tan, Hassan K. Khalil:
Design and Analysis of Sliding Mode Controller Under Approximate Hysteresis Compensation. IEEE Trans. Control. Syst. Technol. 23(2): 598-608 (2015)
[j8]Jianxun Wang, Xiaobo Tan:
Averaging Tail-Actuated Robotic Fish Dynamics Through Force and Moment Scaling. IEEE Trans. Robotics 31(4): 906-917 (2015)
[c37]Jun Zhang, David Torres, Nelson Sepulveda, Xiaobo Tan:
Compressive sensing-based Preisach hysteresis model identification. ACC 2015: 2637-2642
[c36]Ali Ahrari
, Hong Lei, Montassar Aidi Sharif
, Kalyanmoy Deb, Xiaobo Tan:
Design optimization of artificial lateral line system under uncertain conditions. CEC 2015: 1807-1814
[c35]Anthony J. Clark, Philip K. McKinley, Xiaobo Tan:
Enhancing a Model-Free Adaptive Controller through Evolutionary Computation. GECCO 2015: 137-144
[c34]Feitian Zhang, Osama En-Nasr, Elena Litchman
, Xiaobo Tan:
Autonomous sampling of water columns using gliding robotic fish: Control algorithms and field experiments. ICRA 2015: 517-522
[c33]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu:
Samba: a smartphone-based robot system for energy-efficient aquatic environment monitoring. IPSN 2015: 262-273- 2014
[j7]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Inversion-free stabilization and regulation of systems with hysteresis via integral action. Autom. 50(4): 1017-1025 (2014)
[j6]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Self-Excited Limit Cycles in an Integral-Controlled System With Backlash. IEEE Trans. Autom. Control. 59(4): 1020-1025 (2014)
[j5]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan:
Profiling Aquatic Diffusion Process UsingRobotic Sensor Networks. IEEE Trans. Mob. Comput. 13(4): 880-893 (2014)
[j4]Yu Wang, Rui Tan, Guoliang Xing, Xiaobo Tan, Jianxun Wang, Ruogu Zhou:
Spatiotemporal Aquatic Field Reconstruction Using Cyber-Physical Robotic Sensor Systems. ACM Trans. Sens. Networks 10(4): 57:1-57:27 (2014)
[c32]Feitian Zhang, Xiaobo Tan:
Nonlinear observer design for stabilization of gliding robotic fish. ACC 2014: 4715-4720
[c31]Jun Zhang, Emmanuelle Merced, Nelson Sepulveda, Xiaobo Tan:
Inversion of an extended generalized Prandtl-Ishlinskii hysteresis model: Theory and experimental results. ACC 2014: 4765-4770
[c30]Feitian Zhang, Xiaobo Tan:
Three-dimensional spiral tracking control for gliding robotic fish. CDC 2014: 5340-5345
[c29]Anthony J. Clark, Jianxun Wang, Xiaobo Tan, Philip K. McKinley:
Balancing performance and efficiency in a robotic fish with evolutionary multiobjective optimization. ICES 2014: 227-234
[c28]Feitian Zhang, Jianxun Wang, John Thon, Cody Thon, Elena Litchman
, Xiaobo Tan:
Gliding robotic fish for mobile sampling of aquatic environments. ICNSC 2014: 167-172
[c27]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, Xiangmao Chang:
Aquatic debris monitoring using smartphone-based robotic sensors. IPSN 2014: 13-24- 2013
[j3]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
An indirect adaptive servocompensator for signals of unknown frequencies with application to nanopositioning. Autom. 49(7): 2006-2016 (2013)
[j2]Alexander Esbrook, Xiaobo Tan, Hassan K. Khalil:
Control of Systems With Hysteresis Via Servocompensation and Its Application to Nanopositioning. IEEE Trans. Control. Syst. Technol. 21(3): 725-738 (2013)
[c26]Emmanuelle Merced, Jun Zhang, Xiaobo Tan, Nelson Sepulveda:
Robust control of VO2-coated microactuators based on self-sensing feedback. AIM 2013: 656-661
[c25]Sanaz Bazaz Behbahani
, Jianxun Wang, Xiaobo Tan:
A dynamic model for robotic fish with flexible pectoral fins. AIM 2013: 1552-1557
[c24]Bin Tian, Feitian Zhang, Xiaobo Tan:
Design and development of an LED-based optical communication system for autonomous underwater robots. AIM 2013: 1558-1563
[c23]Jun Zhang, Emmanuelle Merced, Nelson Sepulveda, Xiaobo Tan:
Kullback-Leibler divergence-based optimal compression of Preisach operator in hysteresis modeling. ACC 2013: 89-94
[c22]Jianxun Wang, Songlin Chen, Xiaobo Tan:
Control-oriented averaging of tail-actuated robotic fish dynamics. ACC 2013: 591-596
[c21]Mohamed Edardar, Xiaobo Tan, Hassan K. Khalil:
Closed-loop analysis for systems with fast linear dynamics preceded by hysteresis. ACC 2013: 3573-3578
[c20]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Self-excited limit cycles in an integral-controlled system with backlash. ACC 2013: 4736-4741
[c19]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Inversion-free stabilization and regulation of systems with hysteresis using integral action. ACC 2013: 6245-6250
[c18]Mohamed Edardar, Xiaobo Tan, Hassan K. Khalil:
Design and analysis of a sliding mode controller for systems with hysteresis. CDC 2013: 6658-6663- 2012
[c17]Anthony J. Clark, Jared M. Moore, Jianxun Wang, Xiaobo Tan, Philip K. McKinley:
Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish. ALIFE 2012
[c16]Mohamed Edardar, Xiaobo Tan, Hassan K. Khalil:
Sliding-mode tracking control of piezo-actuated nanopositioners. ACC 2012: 3825-3830
[c15]Feitian Zhang, Xiaobo Tan, Hassan K. Khalil:
Passivity-based controller design for stablization of underwater gliders. ACC 2012: 5408-5413
[c14]Mohamed Edardar, Xiaobo Tan, Hassan K. Khalil:
Tracking error analysis for singularly perturbed systems preceded by piecewise linear hysteresis. CDC 2012: 3139-3144
[c13]Feitian Zhang, John Thon, Cody Thon, Xiaobo Tan:
Miniature underwater glider: Design, modeling, and experimental results. ICRA 2012: 4904-4910
[c12]Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan:
Accuracy-aware aquatic diffusion process profiling using robotic sensor networks. IPSN 2012: 281-292
[c11]Feitian Zhang, Fumin Zhang
, Xiaobo Tan:
Steady spiraling motion of gliding robotic fish. IROS 2012: 1754-1759
[c10]Yu Wang, Rui Tan, Guoliang Xing, Xiaobo Tan, Jianxun Wang, Ruogu Zhou:
Spatiotemporal Aquatic Field Reconstruction Using Robotic Sensor Swarm. RTSS 2012: 205-214- 2011
[c9]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Regulation under disturbances with multiple harmonics of unknown frequency. ACC 2011: 3559-3564
[c8]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
Tracking an unknown two-frequency reference using a frequency estimator-based servocompensator. CDC/ECC 2011: 348-353
[c7]Jianxun Wang, Freddie Alequin-Ramos, Xiaobo Tan:
Dynamic modeling of robotic fish and its experimental validation. IROS 2011: 588-594- 2010
[c6]Alexander Esbrook, Matt Guibord, Xiaobo Tan, Hassan K. Khalil:
Control of systems with hysteresis via servocompensation and its application to nanopositioning. ACC 2010: 6531-6536
[c5]Alex Esbrook, Xiaobo Tan, Hassan K. Khalil:
A robust adaptive servocompensator for nanopositioning control. CDC 2010: 3688-3693
2000 – 2009
- 2009
[j1]Jeffrey H. Ahrens, Xiaobo Tan, Hassan K. Khalil:
Multirate Sampled-Data Output Feedback Control With Application to Smart Material Actuated Systems. IEEE Trans. Autom. Control. 54(11): 2518-2529 (2009)
[c4]Xiaobo Tan, Hassan K. Khalil:
Two-time-scale averaging of systems involving operators and its application to adaptive control of hysteretic systems. ACC 2009: 4476-4481- 2007
[c3]Xiaobo Tan, Hassan K. Khalil:
Control of Unknown Dynamic Hysteretic Systems Using Slow Adaptation: Preliminary Results. ACC 2007: 3294-3299
[c2]Jeffrey H. Ahrens, Xiaobo Tan, Hassan K. Khalil:
Multirate Sampled-Data Output Feedback Control of Smart Material Actuated Systems. ACC 2007: 4327-4332
[c1]James J. Reynolds, Xiaobo Tan, Hassan K. Khalil:
Closed-loop analysis of slow adaptation in the control of unknown dynamic hysteretic systems. CDC 2007: 3549-3554
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from
to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the
of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from
,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from
and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from
.
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2026-02-06 23:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID







