


default search action
2nd L4DC 2020: Online Event, Berkeley, CA, USA
- Alexandre M. Bayen, Ali Jadbabaie, George J. Pappas, Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, Melanie N. Zeilinger:

Proceedings of the 2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020, Online Event, Berkeley, CA, USA, 11-12 June 2020. Proceedings of Machine Learning Research 120, PMLR 2020 - Preface. 1-4

- Mona Buisson-Fenet, Friedrich Solowjow, Sebastian Trimpe:

Actively Learning Gaussian Process Dynamics. 5-15 - Yue Sun, Samet Oymak, Maryam Fazel:

Finite Sample System Identification: Optimal Rates and the Role of Regularization. 16-25 - Thinh T. Doan, Justin Romberg:

Finite-Time Performance of Distributed Two-Time-Scale Stochastic Approximation. 26-36 - Valentina Breschi, Simone Formentin:

Virtual Reference Feedback Tuning with data-driven reference model selection. 37-45 - Valentina Breschi, Simone Formentin:

Direct Data-Driven Control with Embedded Anti-Windup Compensation. 46-54 - Trevor D. Ruiz

, Sharmodeep Bhattacharyya, Mahesh Balasubramanian, Kristofer E. Bouchard:
Sparse and Low-bias Estimation of High Dimensional Vector Autoregressive Models. 55-64 - Abulikemu Abuduweili

, Changliu Liu:
Robust Online Model Adaptation by Extended Kalman Filter with Exponential Moving Average and Dynamic Multi-Epoch Strategy. 65-74 - Alex Devonport, Murat Arcak

:
Estimating Reachable Sets with Scenario Optimization. 75-84 - Fabio Bonassi, Enrico Terzi, Marcello Farina, Riccardo Scattolini:

LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification. 85-94 - Ismail Senöz, Albert Podusenko, Wouter M. Kouw, Bert de Vries:

Bayesian joint state and parameter tracking in autoregressive models. 95-104 - Nam Hee Kim, Zhaoming Xie, Michiel van de Panne:

Learning to Correspond Dynamical Systems. 105-117 - Sandeep Menta, Joseph Warrington, John Lygeros, Manfred Morari:

Learning solutions to hybrid control problems using Benders cuts. 118-126 - Xunbi A. Ji

, Tamás G. Molnár, Sergei S. Avedisov, Gábor Orosz:
Feed-forward Neural Networks with Trainable Delay. 127-136 - Monimoy Bujarbaruah, Charlott Vallon:

Exploiting Model Sparsity in Adaptive MPC: A Compressed Sensing Viewpoint. 137-146 - Sebastian Curi, Silvan Melchior, Felix Berkenkamp, Andreas Krause:

Structured Variational Inference in Partially Observable UnstableGaussian Process State Space Models. 147-157 - Sanae Amani, Mahnoosh Alizadeh, Christos Thrampoulidis:

Regret Bound for Safe Gaussian Process Bandit Optimization. 158-159 - Jonas Umlauft, Thomas Beckers, Alexandre Capone, Armin Lederer, Sandra Hirche:

Smart Forgetting for Safe Online Learning with Gaussian Processes. 160-169 - Signe Moe, Filippo Remonato, Esten Ingar Grøtli, Jan Tommy Gravdahl:

Linear Antisymmetric Recurrent Neural Networks. 170-178 - Kaiqing Zhang, Bin Hu, Tamer Basar:

Policy Optimization for H2 Linear Control with H∞ Robustness Guarantee: Implicit Regularization and Global Convergence. 179-190 - Rodrigo A. González, Cristian R. Rojas:

A Finite-Sample Deviation Bound for Stable Autoregressive Processes. 191-200 - Xuezhou Zhang, Xiaojin Zhu, Laurent Lessard:

Online Data Poisoning Attacks. 201-210 - Napat Karnchanachari, Miguel de la Iglesia Valls, David Hoeller, Marco Hutter:

Practical Reinforcement Learning For MPC: Learning from sparse objectives in under an hour on a real robot. 211-224 - Andreas Rene Geist, Sebastian Trimpe:

Learning Constrained Dynamics with Gauss' Principle adhering Gaussian Processes. 225-234 - Luiz F. O. Chamon, Santiago Paternain, Alejandro Ribeiro:

Counterfactual Programming for Optimal Control. 235-244 - Tianyu Wang, Vikas Dhiman, Nikolay Atanasov:

Learning Navigation Costs from Demonstrations with Semantic Observations. 245-255 - Guannan Qu, Adam Wierman, Na Li:

Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems. 256-266 - Mirko Mazzoleni, Matteo Scandella, Simone Formentin, Fabio Previdi:

Black-box continuous-time transfer function estimation with stability guarantees: a kernel-based approach. 267-276 - Homanga Bharadhwaj, Kevin Xie, Florian Shkurti:

Model-Predictive Control via Cross-Entropy and Gradient-Based Optimization. 277-286 - Luca Furieri, Yang Zheng, Maryam Kamgarpour:

Learning the Globally Optimal Distributed LQ Regulator. 287-297 - Reza Khodayi-Mehr, Michael M. Zavlanos:

VarNet: Variational Neural Networks for the Solution of Partial Differential Equations. 298-307 - Harish K. Venkataraman, Derya Aksaray, Peter Seiler:

Tractable Reinforcement Learning of Signal Temporal Logic Objectives. 308-317 - Jasmine Sekhon, Cody H. Fleming:

A Spatially and Temporally Attentive Joint Trajectory Prediction Framework for Modeling Vessel Intent. 318-327 - Jayesh K. Gupta, Kunal Menda, Zachary Manchester, Mykel J. Kochenderfer:

Structured Mechanical Models for Robot Learning and Control. 328-337 - Sivaranjani S., Etika Agarwal, Vijay Gupta:

Data-driven Identification of Approximate Passive Linear Models for Nonlinear Systems. 338-339 - Aidan Laracy, Hamid R. Ossareh:

Constraint Management for Batch Processes Using Iterative Learning Control and Reference Governors. 340-349 - Sarah Dean, Nikolai Matni, Benjamin Recht, Vickie Ye:

Robust Guarantees for Perception-Based Control. 350-360 - Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd, Bartolomeo Stellato

:
Learning Convex Optimization Control Policies. 361-373 - Malayandi Palan, Shane T. Barratt, Alex McCauley, Dorsa Sadigh, Vikas Sindhwani, Stephen P. Boyd:

Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint. 374-383 - Joshua Hanson

, Maxim Raginsky:
Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets. 384-392 - Max Revay, Ian R. Manchester:

Contracting Implicit Recurrent Neural Networks: Stable Models with Improved Trainability. 393-403 - Anguluri Rajasekhar, Abed AlRahman Al Makdah, Vaibhav Katewa, Fabio Pasqualetti:

On the Robustness of Data-Driven Controllers for Linear Systems. 404-412 - Joan Bas-Serrano, Gergely Neu:

Faster saddle-point optimization for solving large-scale Markov decision processes. 413-423 - Lukas Hewing, Elena Arcari, Lukas P. Fröhlich, Melanie N. Zeilinger:

On Simulation and Trajectory Prediction with Gaussian Process Dynamics. 424-434 - Anastasios Tsiamis, Nikolai Matni, George J. Pappas:

Sample Complexity of Kalman Filtering for Unknown Systems. 435-444 - Achin Jain, Francesco Smarra, Enrico Reticcioli, Alessandro D'Innocenzo, Manfred Morari:

NeurOpt: Neural network based optimization for building energy management and climate control. 445-454 - Kim Peter Wabersich, Melanie N. Zeilinger:

Bayesian model predictive control: Efficient model exploration and regret bounds using posterior sampling. 455-464 - Armin Lederer, Alexandre Capone, Sandra Hirche:

Parameter Optimization for Learning-based Control of Control-Affine Systems. 465-475 - Mohammad Akbari, Bahman Gharesifard, Tamás Linder:

Riccati updates for online linear quadratic control. 476-485 - Jianqing Fan, Zhaoran Wang, Yuchen Xie, Zhuoran Yang:

A Theoretical Analysis of Deep Q-Learning. 486-489 - Alexandre Capone, Gerrit Noske, Jonas Umlauft, Thomas Beckers, Armin Lederer, Sandra Hirche:

Localized active learning of Gaussian process state space models. 490-499 - Anjian Li, Somil Bansal, Georgios Giovanis, Varun Tolani, Claire J. Tomlin, Mo Chen:

Generating Robust Supervision for Learning-Based Visual Navigation Using Hamilton-Jacobi Reachability. 500-510 - Janine Matschek, Rolf Findeisen:

Learning supported Model Predictive Control for Tracking of Periodic References. 511-520 - Peter Coppens, Mathijs Schuurmans, Panagiotis Patrinos:

Data-driven distributionally robust LQR with multiplicative noise. 521-530 - Hesameddin Mohammadi, Mihailo R. Jovanovic, Mahdi Soltanolkotabi

:
Learning the model-free linear quadratic regulator via random search. 531-539 - Yuchao Li, Karl Henrik Johansson, Jonas Mårtensson:

Lambda-Policy Iteration with Randomization for Contractive Models with Infinite Policies: Well-Posedness and Convergence. 540-549 - Jack Umenberger, Thomas B. Schön:

Optimistic robust linear quadratic dual control. 550-560 - Manxi Wu, Saurabh Amin, Asuman E. Ozdaglar:

Bayesian Learning with Adaptive Load Allocation Strategies. 561-570 - Angelo Domenico Bonzanini, Ali Mesbah:

Learning-based Stochastic Model Predictive Control with State-Dependent Uncertainty. 571-580 - Devavrat Shah, Qiaomin Xie, Zhi Xu:

Stable Reinforcement Learning with Unbounded State Space. 581 - Donghwan Lee, Niao He:

Periodic Q-Learning. 582-598 - Benjamin Gravell, Tyler H. Summers:

Robust Learning-Based Control via Bootstrapped Multiplicative Noise. 599-607 - Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue:

Robust Regression for Safe Exploration in Control. 608-619 - Liyuan Zheng, Lillian J. Ratliff:

Constrained Upper Confidence Reinforcement Learning. 620-629 - Muhammad Asif Rana, Anqi Li, Dieter Fox, Byron Boots, Fabio Ramos, Nathan D. Ratliff:

Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable Dynamical Systems. 630-639 - Nathanael Bosch, Jan Achterhold

, Laura Leal-Taixé, Jörg Stückler:
Planning from Images with Deep Latent Gaussian Process Dynamics. 640-650 - Kun Wang, Mridul Aanjaneya, Kostas E. Bekris:

A First Principles Approach for Data-Efficient System Identification of Spring-Rod Systems via Differentiable Physics Engines. 651-665 - Zeyu Jia, Lin Yang

, Csaba Szepesvári, Mengdi Wang:
Model-Based Reinforcement Learning with Value-Targeted Regression. 666-686 - Soojean Han:

Localized Learning of Robust Controllers for Networked Systems with Dynamic Topology. 687-696 - Manish Goyal, Parasara Sridhar Duggirala:

NeuralExplorer: State Space Exploration of Closed Loop Control Systems Using Neural Networks. 697 - Mark Boyer:

Toward fusion plasma scenario planning for NSTX-U using machine-learning-accelerated models. 698-707 - Andrew J. Taylor, Andrew Singletary, Yisong Yue, Aaron D. Ames:

Learning for Safety-Critical Control with Control Barrier Functions. 708-717 - Amir Ali Ahmadi, Bachir El Khadir:

Learning Dynamical Systems with Side Information. 718-727 - Marcus Pereira, Ziyi Wang, Tianrong Chen, Emily A. Reed, Evangelos A. Theodorou:

Feynman-Kac Neural Network Architectures for Stochastic Control Using Second-Order FBSDE Theory. 728-738 - Jeongho Kim, Insoon Yang:

Hamilton-Jacobi-Bellman Equations for Q-Learning in Continuous Time. 739-748 - Changkyu Song, Abdeslam Boularias:

Identifying Mechanical Models of Unknown Objects with Differentiable Physics Simulations. 749-760 - Nathan O. Lambert, Brandon Amos, Omry Yadan, Roberto Calandra:

Objective Mismatch in Model-based Reinforcement Learning. 761-770 - Avishai Sintov, Andrew Kimmel, Bowen Wen, Abdeslam Boularias, Kostas E. Bekris:

Tools for Data-driven Modeling of Within-Hand Manipulation with Underactuated Adaptive Hands. 771-780 - Mohammad Javad Khojasteh

, Vikas Dhiman
, Massimo Franceschetti, Nikolay Atanasov:
Probabilistic Safety Constraints for Learned High Relative Degree System Dynamics. 781-792 - Colin Summers, Kendall Lowrey, Aravind Rajeswaran, Siddhartha S. Srinivasa, Emanuel Todorov:

Lyceum: An efficient and scalable ecosystem for robot learning. 793-803 - Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier:

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm. 804-813 - Yingying Li, Yujie Tang, Runyu Zhang, Na Li:

Distributed Reinforcement Learning for Decentralized Linear Quadratic Control: A Derivative-Free Policy Optimization Approach. 814 - Tim Seyde, Wilko Schwarting, Sertac Karaman, Daniela Rus:

Learning to Plan via Deep Optimistic Value Exploration. 815-825 - Aditya Gahlawat, Pan Zhao, Andrew Patterson, Naira Hovakimyan, Evangelos A. Theodorou:

L1-GP: L1 Adaptive Control with Bayesian Learning. 826-837 - Ahmed Allibhoy, Jorge Cortés:

Data-Driven Distributed Predictive Control via Network Optimization. 838-839 - Mohak Bhardwaj, Ankur Handa, Dieter Fox, Byron Boots:

Information Theoretic Model Predictive Q-Learning. 840-850 - Dylan J. Foster, Tuhin Sarkar, Alexander Rakhlin:

Learning nonlinear dynamical systems from a single trajectory. 851-861 - Hao Gong, Mengdi Wang:

A Duality Approach for Regret Minimization in Average-Award Ergodic Markov Decision Processes. 862-883 - Jacob H. Seidman, Mahyar Fazlyab, Victor M. Preciado, George J. Pappas:

Robust Deep Learning as Optimal Control: Insights and Convergence Guarantees. 884-893 - Elena Arcari, Lukas Hewing, Max Schlichting, Melanie N. Zeilinger:

Dual Stochastic MPC for Systems with Parametric and Structural Uncertainty. 894-903 - Hany Abdulsamad, Jan Peters:

Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation. 904-914 - Jia-Jie Zhu, Bernhard Schölkopf, Moritz Diehl:

A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control. 915-923 - Amrit Singh Bedi, Dheeraj Peddireddy, Vaneet Aggarwal, Alec Koppel:

Efficient Large-Scale Gaussian Process Bandits by Believing only Informative Actions. 924-934 - Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra:

Plan2Vec: Unsupervised Representation Learning by Latent Plans. 935-946 - Joao Paulo Jansch-Porto, Bin Hu, Geir E. Dullerud:

Policy Learning of MDPs with Mixed Continuous/Discrete Variables: A Case Study on Model-Free Control of Markovian Jump Systems. 947-957 - Rahul Singh, Qinsheng Zhang, Yongxin Chen:

Improving Robustness via Risk Averse Distributional Reinforcement Learning. 958-968 - Karl Pertsch, Oleh Rybkin, Jingyun Yang, Shenghao Zhou, Konstantinos G. Derpanis, Kostas Daniilidis, Joseph J. Lim, Andrew Jaegle:

Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning. 969-979 - Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:

Safe non-smooth black-box optimization with application to policy search. 980-989 - Fernando Castañeda, Mathias Wulfman, Ayush Agrawal, Tyler Westenbroek, Shankar Sastry, Claire J. Tomlin, Koushil Sreenath:

Improving Input-Output Linearizing Controllers for Bipedal Robots via Reinforcement Learning. 990-999 - Alessandro Falsone, Federico Molinari, Maria Prandini:

Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees. 1000-1009

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














