default search action
Adam Wierman
Person information
- affiliation: California Institute of Technology, Pasadena, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j117]Zhengfei Zhang, Kishan Panaganti, Laixi Shi, Yanan Sui, Adam Wierman, Yisong Yue:
Distributionally Robust Constrained Reinforcement Learning under Strong Duality. RLJ 4: 1793-1821 (2024) - [j116]Palma London, Shai Vardi, Reza Eghbali, Adam Wierman:
Black-Box Acceleration of Monotone Convex Program Solvers. Oper. Res. 72(2): 796-815 (2024) - [j115]Junjie Qin, Shai Vardi, Adam Wierman:
Minimization Fractional Prophet Inequalities for Sequential Procurement. Math. Oper. Res. 49(2): 928-947 (2024) - [j114]Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang:
The Privacy Paradox and Optimal Bias-Variance Trade-offs in Data Acquisition. Math. Oper. Res. 49(4): 2749-2767 (2024) - [j113]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Learning-Augmented Decentralized Online Convex Optimization in Networks. Proc. ACM Meas. Anal. Comput. Syst. 8(3): 38:1-38:42 (2024) - [j112]Jie Feng, Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Decentralized Real-Time Voltage Control. IEEE Trans. Control. Netw. Syst. 11(3): 1370-1381 (2024) - [j111]Yu Su, Vivek Anand, Jannie Yu, Jian Tan, Adam Wierman:
Learning-Augmented Energy-Aware List Scheduling for Precedence-Constrained Tasks. ACM Trans. Model. Perform. Evaluation Comput. Syst. 9(4): 13:1-13:24 (2024) - [j110]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Online Learning for Robust Voltage Control Under Uncertain Grid Topology. IEEE Trans. Smart Grid 15(5): 4754-4764 (2024) - [c144]Nicolas Christianson, Bo Sun, Steven H. Low, Adam Wierman:
Risk-Sensitive Online Algorithms (Extended Abstract). COLT 2024: 1140-1141 - [c143]Yiheng Lin, James A. Preiss, Fengze Xie, Emile Anand, Soon-Jo Chung, Yisong Yue, Adam Wierman:
Online Policy Optimization in Unknown Nonlinear Systems. COLT 2024: 3475-3522 - [c142]Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman, Raouf Boutaba:
Online Algorithms with Uncertainty-Quantified Predictions. ICML 2024 - [c141]Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman:
Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization. ICML 2024 - [c140]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
Chasing Convex Functions with Long-term Constraints. ICML 2024 - [c139]Yingying Li, Jing Yu, Lauren Conger, Taylan Kargin, Adam Wierman:
Learning the Uncertainty Sets of Linear Control Systems via Set Membership: A Non-asymptotic Analysis. ICML 2024 - [c138]Kishan Panaganti, Adam Wierman, Eric Mazumdar:
Model-Free Robust ϕ-Divergence Reinforcement Learning Using Both Offline and Online Data. ICML 2024 - [c137]Laixi Shi, Eric Mazumdar, Yuejie Chi, Adam Wierman:
Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty. ICML 2024 - [c136]Junxuan Shen, Adam Wierman, Guannan Qu:
Combining model-based controller and ML advice via convex reparameterization. L4DC 2024: 679-693 - [c135]Tianyu Chen, Yiheng Lin, Nicolas Christianson, Zahaib Akhtar, Sharath Dharmaji, Mohammad Hajiesmaili, Adam Wierman, Ramesh K. Sitaraman:
SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming. SIGCOMM 2024: 613-644 - [c134]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
Two-Timescale Q-Learning with Function Approximation in Zero-Sum Stochastic Games. EC 2024: 378 - [c133]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
Online Conversion with Switching Costs: Robust and Learning-Augmented Algorithms. SIGMETRICS/Performance (Abstracts) 2024: 45-46 - [c132]Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
The Online Pause and Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load Shifting. SIGMETRICS/Performance (Abstracts) 2024: 47-48 - [i109]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
Chasing Convex Functions with Long-term Constraints. CoRR abs/2402.14012 (2024) - [i108]Laixi Shi, Eric Mazumdar, Yuejie Chi, Adam Wierman:
Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty. CoRR abs/2404.18909 (2024) - [i107]Kishan Panaganti, Adam Wierman, Eric Mazumdar:
Model-Free Robust φ-Divergence Reinforcement Learning Using Both Offline and Online Data. CoRR abs/2405.05468 (2024) - [i106]Nicolas Christianson, Bo Sun, Steven H. Low, Adam Wierman:
Risk-Sensitive Online Algorithms. CoRR abs/2405.09859 (2024) - [i105]Benjamin C. Lee, David Brooks, Arthur van Benthem, Udit Gupta, Gage Hills, Vincent Liu, Benjamin Pierce, Christopher Stewart, Emma Strubell, Gu-Yeon Wei, Adam Wierman, Yuan Yao, Minlan Yu:
Carbon Connect: An Ecosystem for Sustainable Computing. CoRR abs/2405.13858 (2024) - [i104]Ruiyang Jin, Zaiwei Chen, Yiheng Lin, Jie Song, Adam Wierman:
Approximate Global Convergence of Independent Learning in Multi-Agent Systems. CoRR abs/2405.19811 (2024) - [i103]Shangding Gu, Laixi Shi, Yuhao Ding, Alois Knoll, Costas J. Spanos, Adam Wierman, Ming Jin:
Enhancing Efficiency of Safe Reinforcement Learning via Sample Manipulation. CoRR abs/2405.20860 (2024) - [i102]Zhengfei Zhang, Kishan Panaganti, Laixi Shi, Yanan Sui, Adam Wierman, Yisong Yue:
Distributionally Robust Constrained Reinforcement Learning under Strong Duality. CoRR abs/2406.15788 (2024) - [i101]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management. CoRR abs/2408.07831 (2024) - [i100]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
Last-Iterate Convergence of Payoff-Based Independent Learning in Zero-Sum Stochastic Games. CoRR abs/2409.01447 (2024) - [i99]Laixi Shi, Jingchu Gai, Eric Mazumdar, Yuejie Chi, Adam Wierman:
Can We Break the Curse of Multiagency in Robust Multi-Agent Reinforcement Learning? CoRR abs/2409.20067 (2024) - [i98]Christopher Yeh, Nicolas Christianson, Alan Wu, Adam Wierman, Yisong Yue:
End-to-End Conformal Calibration for Optimization Under Uncertainty. CoRR abs/2409.20534 (2024) - [i97]Chengrui Qu, Laixi Shi, Kishan Panaganti, Pengcheng You, Adam Wierman:
Hybrid Transfer Reinforcement Learning: Provable Sample Efficiency from Shifted-Dynamics Data. CoRR abs/2411.03810 (2024) - [i96]Jianyi Yang, Pengfei Li, Adam Wierman, Shaolei Ren:
Online Budgeted Matching with General Bids. CoRR abs/2411.04204 (2024) - [i95]Chenbei Lu, Laixi Shi, Zaiwei Chen, Chenye Wu, Adam Wierman:
Overcoming the Curse of Dimensionality in Reinforcement Learning Through Approximate Factorization. CoRR abs/2411.07591 (2024) - [i94]Tongxin Li, Tinashe Handina, Shaolei Ren, Adam Wierman:
Safe Exploitative Play with Untrusted Type Beliefs. CoRR abs/2411.07679 (2024) - [i93]Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman:
Communication Efficient Decentralization for Smoothed Online Convex Optimization. CoRR abs/2411.08355 (2024) - [i92]Yuelin Han, Zhifeng Wu, Pengfei Li, Adam Wierman, Shaolei Ren:
The Unpaid Toll: Quantifying the Public Health Impact of AI. CoRR abs/2412.06288 (2024) - 2023
- [j109]Yorie Nakahira, Andrés Ferragut, Adam Wierman:
Generalized Exact Scheduling: A Minimal-Variance Distributed Deadline Scheduler. Oper. Res. 71(2): 433-470 (2023) - [j108]Yu Su, Shai Vardi, Xiaoqi Ren, Adam Wierman:
Communication-aware scheduling of precedence-constrained tasks on related machines. Oper. Res. Lett. 51(6): 709-716 (2023) - [j107]Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman:
Smoothed Online Optimization with Unreliable Predictions. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 12:1-12:36 (2023) - [j106]Yizhou Zhang, Guannan Qu, Pan Xu, Yiheng Lin, Zaiwei Chen, Adam Wierman:
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 13:1-13:51 (2023) - [j105]Jing Yu, Dimitar Ho, Adam Wierman:
Online Adversarial Stabilization of Unknown Networked Systems. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 26:1-26:43 (2023) - [j104]Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
The Online Pause and Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load Shifting. Proc. ACM Meas. Anal. Comput. Syst. 7(3): 45:1-45:32 (2023) - [j103]Sungho Shin, Yiheng Lin, Guannan Qu, Adam Wierman, Mihai Anitescu:
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems. SIAM J. Control. Optim. 61(3): 1113-1135 (2023) - [j102]Chen Liang, Linqi Guo, Alessandro Zocca, Steven H. Low, Adam Wierman:
Adaptive Network Response to Line Failures in Power Systems. IEEE Trans. Control. Netw. Syst. 10(1): 333-344 (2023) - [j101]Shih-Hao Tseng, SooJean Han, Adam Wierman:
Trading Throughput for Freshness: Freshness-aware Traffic Engineering and In-Network Freshness Control. ACM Trans. Model. Perform. Evaluation Comput. Syst. 8(1-2): 1-26 (2023) - [j100]Yue Chen, Changhong Zhao, Steven H. Low, Adam Wierman:
An Energy Sharing Mechanism Considering Network Constraints and Market Power Limitation. IEEE Trans. Smart Grid 14(2): 1027-1041 (2023) - [c131]Nicolas Christianson, Junxuan Shen, Adam Wierman:
Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems. AISTATS 2023: 9377-9399 - [c130]Sahin Lale, Yuanyuan Shi, Guannan Qu, Kamyar Azizzadenesheli, Adam Wierman, Anima Anandkumar:
KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Discrete-Time Systems. CDC 2023: 1334-1341 - [c129]Lucien Werner, Nicolas Christianson, Alessandro Zocca, Adam Wierman, Steven H. Low:
Pricing Uncertainty in Stochastic Multi-Stage Electricity Markets. CDC 2023: 1580-1587 - [c128]Jing Yu, Varun Gupta, Adam Wierman:
Online Adversarial Stabilization of Unknown Linear Time-Varying Systems. CDC 2023: 8320-8327 - [c127]Xutong Liu, Jinhang Zuo, Siwei Wang, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman, Wei Chen:
Contextual Combinatorial Bandits with Probabilistically Triggered Arms. ICML 2023: 22559-22593 - [c126]Yingying Li, James A. Preiss, Na Li, Yiheng Lin, Adam Wierman, Jeff S. Shamma:
Online switching control with stability and regret guarantees. L4DC 2023: 1138-1151 - [c125]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games. NeurIPS 2023 - [c124]Tongxin Li, Yiheng Lin, Shaolei Ren, Adam Wierman:
Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions. NeurIPS 2023 - [c123]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Robust Learning for Smoothed Online Convex Optimization with Feedback Delay. NeurIPS 2023 - [c122]Yiheng Lin, James A. Preiss, Emile Anand, Yingying Li, Yisong Yue, Adam Wierman:
Online Adaptive Policy Selection in Time-Varying Systems: No-Regret via Contractive Perturbations. NeurIPS 2023 - [c121]Jianyi Yang, Pengfei Li, Tongxin Li, Adam Wierman, Shaolei Ren:
Anytime-Competitive Reinforcement Learning with Policy Prior. NeurIPS 2023 - [c120]Christopher Yeh, Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen, Mohammad Mehdi Hosseini, Azarang Golmohammadi, Yuanyuan Shi, Yisong Yue, Adam Wierman:
SustainGym: Reinforcement Learning Environments for Sustainable Energy Systems. NeurIPS 2023 - [c119]Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, Adam Wierman:
Adversarial Attacks on Online Learning to Rank with Click Feedback. NeurIPS 2023 - [c118]Bo Sun, Lin Yang, Mohammad H. Hajiesmaili, Adam Wierman, John C. S. Lui, Don Towsley, Danny H. K. Tsang:
The Online Knapsack Problem with Departures. SIGMETRICS (Abstracts) 2023: 59-60 - [c117]Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman:
Smoothed Online Optimization with Unreliable Predictions. SIGMETRICS (Abstracts) 2023: 71-72 - [c116]Jing Yu, Dimitar Ho, Adam Wierman:
Online Adversarial Stabilization of Unknown Networked Systems. SIGMETRICS (Abstracts) 2023: 73-74 - [c115]Yizhou Zhang, Guannan Qu, Pan Xu, Yiheng Lin, Zaiwei Chen, Adam Wierman:
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning. SIGMETRICS (Abstracts) 2023: 83-84 - [c114]Zhaoyi Zhou, Zaiwei Chen, Yiheng Lin, Adam Wierman:
Convergence rates for localized actor-critic in networked Markov potential games. UAI 2023: 2563-2573 - [c113]Chenkai Yu, Hongyao Ma, Adam Wierman:
Price Cycles in Ridesharing Platforms. WINE 2023: 618-636 - [i91]Yingying Li, James A. Preiss, Na Li, Yiheng Lin, Adam Wierman, Jeff S. Shamma:
Online switching control with stability and regret guarantees. CoRR abs/2301.08445 (2023) - [i90]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games. CoRR abs/2303.03100 (2023) - [i89]Zhaoyi Zhou, Zaiwei Chen, Yiheng Lin, Adam Wierman:
Convergence Rates for Localized Actor-Critic in Networked Markov Potential Games. CoRR abs/2303.04865 (2023) - [i88]Xutong Liu, Jinhang Zuo, Siwei Wang, John C. S. Lui, Mohammad H. Hajiesmaili, Adam Wierman, Wei Chen:
Contextual Combinatorial Bandits with Probabilistically Triggered Arms. CoRR abs/2303.17110 (2023) - [i87]Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad H. Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
The Online Pause and Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load Shifting. CoRR abs/2303.17551 (2023) - [i86]Jing Yu, Varun Gupta, Adam Wierman:
Online Stabilization of Unknown Linear Time-Varying Systems. CoRR abs/2304.02878 (2023) - [i85]Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad H. Hajiesmaili, Adam Wierman:
Adversarial Attacks on Online Learning to Rank with Click Feedback. CoRR abs/2305.17071 (2023) - [i84]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Learning-Augmented Decentralized Online Convex Optimization in Networks. CoRR abs/2306.10158 (2023) - [i83]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Online learning for robust voltage control under uncertain grid topology. CoRR abs/2306.16674 (2023) - [i82]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Towards Environmentally Equitable AI via Geographical Load Balancing. CoRR abs/2307.05494 (2023) - [i81]Tongxin Li, Yiheng Lin, Shaolei Ren, Adam Wierman:
Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions. CoRR abs/2307.10524 (2023) - [i80]Yingying Li, Jing Yu, Lauren Conger, Adam Wierman:
Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis. CoRR abs/2309.14648 (2023) - [i79]Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman:
Online Algorithms with Uncertainty-Quantified Predictions. CoRR abs/2310.11558 (2023) - [i78]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Robust Learning for Smoothed Online Convex Optimization with Feedback Delay. CoRR abs/2310.20098 (2023) - [i77]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
Online Conversion with Switching Costs: Robust and Learning-Augmented Algorithms. CoRR abs/2310.20598 (2023) - [i76]Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman:
Best of Both Worlds: Stochastic and Adversarial Convex Function Chasing. CoRR abs/2311.00181 (2023) - [i75]Jianyi Yang, Pengfei Li, Tongxin Li, Adam Wierman, Shaolei Ren:
Anytime-Competitive Reinforcement Learning with Policy Prior. CoRR abs/2311.01568 (2023) - [i74]Jinhang Zuo, Zhiyao Zhang, Xuchuang Wang, Cheng Chen, Shuai Li, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman:
Adversarial Attacks on Cooperative Multi-agent Bandits. CoRR abs/2311.01698 (2023) - [i73]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
Two-Timescale Q-Learning with Function Approximation in Zero-Sum Stochastic Games. CoRR abs/2312.04905 (2023) - 2022
- [j99]John Z. F. Pang, Weixuan Lin, Hu Fu, Jack Kleeman, Eilyan Bitar, Adam Wierman:
Transparency and Control in Platforms for Networked Markets. Oper. Res. 70(3): 1665-1690 (2022) - [j98]Guannan Qu, Adam Wierman, Na Li:
Scalable Reinforcement Learning for Multiagent Networked Systems. Oper. Res. 70(6): 3601-3628 (2022) - [j97]Weici Pan, Guanya Shi, Yiheng Lin, Adam Wierman:
Online Optimization with Feedback Delay and Nonlinear Switching Cost. Proc. ACM Meas. Anal. Comput. Syst. 6(1): 17:1-17:34 (2022) - [j96]Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, Steven H. Low:
Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions. Proc. ACM Meas. Anal. Comput. Syst. 6(1): 18:1-18:35 (2022) - [j95]Yu Su, Jannie Yu, Vivek Anand, Adam Wierman:
Learning-Augmented Energy-Aware Scheduling of Precedence-Constrained Tasks. SIGMETRICS Perform. Evaluation Rev. 49(2): 3-5 (2022) - [j94]Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang:
The Privacy Paradox and Optimal Bias-Variance Trade-offs in Data Acquisition. SIGMETRICS Perform. Evaluation Rev. 49(2): 6-8 (2022) - [c112]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory (Extended Abstract). Allerton 2022: 1-2 - [c111]Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, Adam Wierman:
Competitive Control with Delayed Imperfect Information. ACC 2022: 2604-2610 - [c110]Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Real-Time Voltage Control. ACC 2022: 2715-2721 - [c109]Chen Liang, Alessandro Zocca, Steven H. Low, Adam Wierman:
Interface Networks for Failure Localization in Power Systems. ACC 2022: 4540-4546 - [c108]Nicolas Christianson, Tinashe Handina, Adam Wierman:
Chasing Convex Bodies and Functions with Black-Box Advice. COLT 2022: 867-908 - [c107]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Robust online voltage control with an unknown grid topology. e-Energy 2022: 240-250 - [c106]Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, Adam Wierman:
Decentralized Online Convex Optimization in Networked Systems. ICML 2022: 13356-13393 - [c105]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. NeurIPS 2022 - [c104]Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, Adam Wierman:
Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity. NeurIPS 2022 - [c103]Weici Pan, Guanya Shi, Yiheng Lin, Adam Wierman:
Online Optimization with Feedback Delay and Nonlinear Switching Cost. SIGMETRICS (Abstracts) 2022: 81-82 - [c102]Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, Steven H. Low:
Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions. SIGMETRICS (Abstracts) 2022: 107-108 - [i72]Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman:
Online Optimization with Untrusted Predictions. CoRR abs/2202.03519 (2022) - [i71]Chenkai Yu, Hongyao Ma, Adam Wierman:
Price Cycles in Ridesharing Platforms. CoRR abs/2202.07086 (2022) - [i70]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. CoRR abs/2202.07187 (2022) - [i69]Jing Yu, Dimitar Ho, Adam Wierman:
Online Stabilization of Unknown Networked Systems with Communication Constraints. CoRR abs/2203.02630 (2022) - [i68]Yue Chen, Changhong Zhao, Steven H. Low, Adam Wierman:
An Energy Sharing Mechanism Considering Network Constraints and Market Power Limitation. CoRR abs/2203.04503 (2022) - [i67]Sungho Shin, Yiheng Lin, Guannan Qu, Adam Wierman, Mihai Anitescu:
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems. CoRR abs/2204.05551 (2022) - [i66]Chen Liang, Alessandro Zocca, Steven H. Low, Adam Wierman:
Interface Networks for Failure Localization in Power Systems. CoRR abs/2205.06315 (2022) - [i65]Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven H. Low, Adam Wierman:
Equipping Black-Box Policies with Model-Based Advice for Stable Nonlinear Control. CoRR abs/2206.01341 (2022) - [i64]Sahin Lale, Yuanyuan Shi, Guannan Qu, Kamyar Azizzadenesheli, Adam Wierman, Anima Anandkumar:
KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Dynamical Systems. CoRR abs/2206.01704 (2022) - [i63]Nicolas Christianson, Tinashe Handina, Adam Wierman:
Chasing Convex Bodies and Functions with Black-Box Advice. CoRR abs/2206.11780 (2022) - [i62]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Robust Online Voltage Control with an Unknown Grid Topology. CoRR abs/2206.14369 (2022) - [i61]Jie Feng, Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Real-Time Voltage Control in Distribution Systems. CoRR abs/2209.07669 (2022) - [i60]Bo Sun, Lin Yang, Mohammad H. Hajiesmaili, Adam Wierman, John C. S. Lui, Don Towsley, Danny H. K. Tsang:
The Online Knapsack Problem with Departures. CoRR abs/2209.11934 (2022) - [i59]