


Остановите войну!
for scientists:


default search action
Adam Wierman
Person information

- affiliation: California Institute of Technology, Pasadena, CA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j107]Yorie Nakahira
, Andrés Ferragut, Adam Wierman:
Generalized Exact Scheduling: A Minimal-Variance Distributed Deadline Scheduler. Oper. Res. 71(2): 433-470 (2023) - [j106]Daan Rutten
, Nicolas Christianson
, Debankur Mukherjee
, Adam Wierman
:
Smoothed Online Optimization with Unreliable Predictions. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 12:1-12:36 (2023) - [j105]Yizhou Zhang
, Guannan Qu
, Pan Xu
, Yiheng Lin
, Zaiwei Chen
, Adam Wierman
:
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 13:1-13:51 (2023) - [j104]Jing Yu
, Dimitar Ho
, Adam Wierman
:
Online Adversarial Stabilization of Unknown Networked Systems. Proc. ACM Meas. Anal. Comput. Syst. 7(1): 26:1-26:43 (2023) - [j103]Sungho Shin
, Yiheng Lin, Guannan Qu, Adam Wierman, Mihai Anitescu:
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems. SIAM J. Control. Optim. 61(3): 1113-1135 (2023) - [j102]Chen Liang
, Linqi Guo
, Alessandro Zocca
, Steven H. Low
, Adam Wierman
:
Adaptive Network Response to Line Failures in Power Systems. IEEE Trans. Control. Netw. Syst. 10(1): 333-344 (2023) - [j101]Shih-Hao Tseng
, SooJean Han
, Adam Wierman
:
Trading Throughput for Freshness: Freshness-aware Traffic Engineering and In-Network Freshness Control. ACM Trans. Model. Perform. Evaluation Comput. Syst. 8(1-2): 1-26 (2023) - [j100]Yue Chen
, Changhong Zhao
, Steven H. Low
, Adam Wierman
:
An Energy Sharing Mechanism Considering Network Constraints and Market Power Limitation. IEEE Trans. Smart Grid 14(2): 1027-1041 (2023) - [c120]Nicolas Christianson, Junxuan Shen, Adam Wierman:
Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems. AISTATS 2023: 9377-9399 - [c119]Xutong Liu, Jinhang Zuo, Siwei Wang, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman, Wei Chen:
Contextual Combinatorial Bandits with Probabilistically Triggered Arms. ICML 2023: 22559-22593 - [c118]Yingying Li, James A. Preiss, Na Li, Yiheng Lin, Adam Wierman, Jeff S. Shamma:
Online switching control with stability and regret guarantees. L4DC 2023: 1138-1151 - [c117]Bo Sun
, Lin Yang
, Mohammad H. Hajiesmaili
, Adam Wierman
, John C. S. Lui
, Don Towsley
, Danny H. K. Tsang
:
The Online Knapsack Problem with Departures. SIGMETRICS (Abstracts) 2023: 59-60 - [c116]Daan Rutten
, Nicolas Christianson
, Debankur Mukherjee
, Adam Wierman
:
Smoothed Online Optimization with Unreliable Predictions. SIGMETRICS (Abstracts) 2023: 71-72 - [c115]Jing Yu
, Dimitar Ho
, Adam Wierman
:
Online Adversarial Stabilization of Unknown Networked Systems. SIGMETRICS (Abstracts) 2023: 73-74 - [c114]Yizhou Zhang
, Guannan Qu
, Pan Xu
, Yiheng Lin
, Zaiwei Chen
, Adam Wierman
:
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning. SIGMETRICS (Abstracts) 2023: 83-84 - [c113]Zhaoyi Zhou, Zaiwei Chen, Yiheng Lin, Adam Wierman:
Convergence rates for localized actor-critic in networked Markov potential games. UAI 2023: 2563-2573 - [i90]Yingying Li, James A. Preiss, Na Li, Yiheng Lin, Adam Wierman, Jeff S. Shamma:
Online switching control with stability and regret guarantees. CoRR abs/2301.08445 (2023) - [i89]Zaiwei Chen, Kaiqing Zhang, Eric Mazumdar, Asuman E. Ozdaglar, Adam Wierman:
A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games. CoRR abs/2303.03100 (2023) - [i88]Zhaoyi Zhou, Zaiwei Chen, Yiheng Lin, Adam Wierman:
Convergence Rates for Localized Actor-Critic in Networked Markov Potential Games. CoRR abs/2303.04865 (2023) - [i87]Xutong Liu, Jinhang Zuo, Siwei Wang, John C. S. Lui, Mohammad H. Hajiesmaili, Adam Wierman, Wei Chen:
Contextual Combinatorial Bandits with Probabilistically Triggered Arms. CoRR abs/2303.17110 (2023) - [i86]Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad H. Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
The Online Pause and Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load Shifting. CoRR abs/2303.17551 (2023) - [i85]Jing Yu, Varun Gupta, Adam Wierman:
Online Stabilization of Unknown Linear Time-Varying Systems. CoRR abs/2304.02878 (2023) - [i84]Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad H. Hajiesmaili, Adam Wierman:
Adversarial Attacks on Online Learning to Rank with Click Feedback. CoRR abs/2305.17071 (2023) - [i83]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Learning-Augmented Decentralized Online Convex Optimization in Networks. CoRR abs/2306.10158 (2023) - [i82]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Online learning for robust voltage control under uncertain grid topology. CoRR abs/2306.16674 (2023) - [i81]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren
:
Towards Environmentally Equitable AI via Geographical Load Balancing. CoRR abs/2307.05494 (2023) - [i80]Tongxin Li, Yiheng Lin, Shaolei Ren, Adam Wierman:
Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions. CoRR abs/2307.10524 (2023) - [i79]Yingying Li, Jing Yu, Lauren Conger, Adam Wierman:
Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis. CoRR abs/2309.14648 (2023) - [i78]Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman:
Online Algorithms with Uncertainty-Quantified Predictions. CoRR abs/2310.11558 (2023) - [i77]Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren:
Robust Learning for Smoothed Online Convex Optimization with Feedback Delay. CoRR abs/2310.20098 (2023) - [i76]Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant J. Shenoy:
Online Conversion with Switching Costs: Robust and Learning-Augmented Algorithms. CoRR abs/2310.20598 (2023) - [i75]Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman:
Best of Both Worlds: Stochastic and Adversarial Convex Function Chasing. CoRR abs/2311.00181 (2023) - [i74]Jianyi Yang, Pengfei Li, Tongxin Li, Adam Wierman, Shaolei Ren:
Anytime-Competitive Reinforcement Learning with Policy Prior. CoRR abs/2311.01568 (2023) - [i73]Jinhang Zuo, Zhiyao Zhang, Xuchuang Wang, Cheng Chen, Shuai Li, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman:
Adversarial Attacks on Cooperative Multi-agent Bandits. CoRR abs/2311.01698 (2023) - 2022
- [j99]John Z. F. Pang
, Weixuan Lin
, Hu Fu, Jack Kleeman, Eilyan Bitar, Adam Wierman:
Transparency and Control in Platforms for Networked Markets. Oper. Res. 70(3): 1665-1690 (2022) - [j98]Guannan Qu
, Adam Wierman
, Na Li
:
Scalable Reinforcement Learning for Multiagent Networked Systems. Oper. Res. 70(6): 3601-3628 (2022) - [j97]Weici Pan, Guanya Shi, Yiheng Lin
, Adam Wierman:
Online Optimization with Feedback Delay and Nonlinear Switching Cost. Proc. ACM Meas. Anal. Comput. Syst. 6(1): 17:1-17:34 (2022) - [j96]Tongxin Li
, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, Steven H. Low:
Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions. Proc. ACM Meas. Anal. Comput. Syst. 6(1): 18:1-18:35 (2022) - [j95]Yu Su, Jannie Yu, Vivek Anand, Adam Wierman:
Learning-Augmented Energy-Aware Scheduling of Precedence-Constrained Tasks. SIGMETRICS Perform. Evaluation Rev. 49(2): 3-5 (2022) - [j94]Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang:
The Privacy Paradox and Optimal Bias-Variance Trade-offs in Data Acquisition. SIGMETRICS Perform. Evaluation Rev. 49(2): 6-8 (2022) - [c112]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory (Extended Abstract). Allerton 2022: 1-2 - [c111]Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, Adam Wierman:
Competitive Control with Delayed Imperfect Information. ACC 2022: 2604-2610 - [c110]Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Real-Time Voltage Control. ACC 2022: 2715-2721 - [c109]Chen Liang, Alessandro Zocca
, Steven H. Low, Adam Wierman:
Interface Networks for Failure Localization in Power Systems. ACC 2022: 4540-4546 - [c108]Nicolas Christianson, Tinashe Handina, Adam Wierman:
Chasing Convex Bodies and Functions with Black-Box Advice. COLT 2022: 867-908 - [c107]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Robust online voltage control with an unknown grid topology. e-Energy 2022: 240-250 - [c106]Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, Adam Wierman:
Decentralized Online Convex Optimization in Networked Systems. ICML 2022: 13356-13393 - [c105]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. NeurIPS 2022 - [c104]Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, Adam Wierman:
Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity. NeurIPS 2022 - [c103]Weici Pan, Guanya Shi, Yiheng Lin
, Adam Wierman:
Online Optimization with Feedback Delay and Nonlinear Switching Cost. SIGMETRICS (Abstracts) 2022: 81-82 - [c102]Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, Steven H. Low:
Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions. SIGMETRICS (Abstracts) 2022: 107-108 - [i72]Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman:
Online Optimization with Untrusted Predictions. CoRR abs/2202.03519 (2022) - [i71]Chenkai Yu, Hongyao Ma, Adam Wierman:
Price Cycles in Ridesharing Platforms. CoRR abs/2202.07086 (2022) - [i70]Yang Hu, Adam Wierman, Guannan Qu:
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. CoRR abs/2202.07187 (2022) - [i69]Jing Yu, Dimitar Ho, Adam Wierman:
Online Stabilization of Unknown Networked Systems with Communication Constraints. CoRR abs/2203.02630 (2022) - [i68]Yue Chen, Changhong Zhao, Steven H. Low, Adam Wierman:
An Energy Sharing Mechanism Considering Network Constraints and Market Power Limitation. CoRR abs/2203.04503 (2022) - [i67]Sungho Shin, Yiheng Lin, Guannan Qu, Adam Wierman, Mihai Anitescu
:
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems. CoRR abs/2204.05551 (2022) - [i66]Chen Liang, Alessandro Zocca, Steven H. Low, Adam Wierman:
Interface Networks for Failure Localization in Power Systems. CoRR abs/2205.06315 (2022) - [i65]Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin
, Steven H. Low, Adam Wierman:
Equipping Black-Box Policies with Model-Based Advice for Stable Nonlinear Control. CoRR abs/2206.01341 (2022) - [i64]Sahin Lale, Yuanyuan Shi, Guannan Qu, Kamyar Azizzadenesheli, Adam Wierman, Anima Anandkumar:
KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Dynamical Systems. CoRR abs/2206.01704 (2022) - [i63]Nicolas Christianson, Tinashe Handina, Adam Wierman:
Chasing Convex Bodies and Functions with Black-Box Advice. CoRR abs/2206.11780 (2022) - [i62]Christopher Yeh, Jing Yu, Yuanyuan Shi, Adam Wierman:
Robust Online Voltage Control with an Unknown Grid Topology. CoRR abs/2206.14369 (2022) - [i61]Jie Feng
, Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Real-Time Voltage Control in Distribution Systems. CoRR abs/2209.07669 (2022) - [i60]Bo Sun, Lin Yang, Mohammad H. Hajiesmaili, Adam Wierman, John C. S. Lui, Don Towsley
, Danny H. K. Tsang:
The Online Knapsack Problem with Departures. CoRR abs/2209.11934 (2022) - [i59]Yizhou Zhang, Guannan Qu, Pan Xu, Yiheng Lin, Zaiwei Chen, Adam Wierman:
Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning. CoRR abs/2211.17116 (2022) - 2021
- [j93]Riley Murray
, Venkat Chandrasekaran, Adam Wierman:
Newton Polytopes and Relative Entropy Optimization. Found. Comput. Math. 21(6): 1703-1737 (2021) - [j92]Riley Murray
, Venkat Chandrasekaran, Adam Wierman:
Signomial and polynomial optimization via relative entropy and partial dualization. Math. Program. Comput. 13(2): 257-295 (2021) - [j91]Riley Murray, Venkat Chandrasekaran, Adam Wierman:
Publisher Correction to: Signomial and polynomial optimization via relative entropy and partial dualization. Math. Program. Comput. 13(2): 297-299 (2021) - [j90]Xingyu Zhou, Ness B. Shroff, Adam Wierman:
Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers. Perform. Evaluation 145: 102146 (2021) - [j89]Tongxin Li
, Yue Chen
, Bo Sun
, Adam Wierman, Steven H. Low:
Information Aggregation for Constrained Online Control. Proc. ACM Meas. Anal. Comput. Syst. 5(2): 18:1-18:35 (2021) - [j88]Bo Sun
, Lin Yang
, Mohammad H. Hajiesmaili
, Adam Wierman
, John C. S. Lui
, Don Towsley
, Danny H. K. Tsang
:
The Online Knapsack Problem with Departures. Proc. ACM Meas. Anal. Comput. Syst. 6(3): 57:1-57:32 (2021) - [j87]Mor Harchol-Balter
, Takayuki Osogami
, Alan Scheller-Wolf, Adam Wierman:
Correction to: Multi-server queueing systems with multiple priority classes. Queueing Syst. Theory Appl. 99(3-4): 397-398 (2021) - [j86]Tongxin Li
, Bo Sun
, Yue Chen
, Zixin Ye, Steven H. Low
, Adam Wierman:
Learning-Based Predictive Control via Real-Time Aggregate Flexibility. IEEE Trans. Smart Grid 12(6): 4897-4913 (2021) - [c101]Ali Zeynali, Bo Sun, Mohammad Hassan Hajiesmaili, Adam Wierman:
Data-driven Competitive Algorithms for Online Knapsack and Set Cover. AAAI 2021: 10833-10841 - [c100]Guannan Qu, Chenkai Yu, Steven H. Low, Adam Wierman:
Exploiting Linear Models for Model-Free Nonlinear Control: A Provably Convergent Policy Gradient Approach. CDC 2021: 6539-6546 - [c99]Noman Bashir
, Tian Guo, Mohammad H. Hajiesmaili, David E. Irwin, Prashant J. Shenoy
, Ramesh K. Sitaraman, Abel Souza, Adam Wierman:
Enabling Sustainable Clouds: The Case for Virtualizing the Energy System. SoCC 2021: 350-358 - [c98]Lucien Werner, Adam Wierman, Steven H. Low:
Pricing flexibility of shiftable demand in electricity markets. e-Energy 2021: 1-14 - [c97]Guannan Qu, Yuanyuan Shi, Sahin Lale, Anima Anandkumar, Adam Wierman:
Stable Online Control of Linear Time-Varying Systems. L4DC 2021: 742-753 - [c96]Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, Adam Wierman:
Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems. NeurIPS 2021: 5174-5185 - [c95]Yiheng Lin, Guannan Qu, Longbo Huang, Adam Wierman:
Multi-Agent Reinforcement Learning in Stochastic Networked Systems. NeurIPS 2021: 7825-7837 - [c94]Bo Sun, Russell Lee, Mohammad H. Hajiesmaili, Adam Wierman, Danny H. K. Tsang:
Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems. NeurIPS 2021: 10339-10350 - [c93]Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang:
The Privacy Paradox and Optimal Bias-Variance Trade-offs in Data Acquisition. EC 2021: 689 - [c92]Tongxin Li, Yue Chen, Bo Sun
, Adam Wierman, Steven H. Low:
Information Aggregation for Constrained Online Control. SIGMETRICS (Abstracts) 2021: 7-8 - [c91]Bo Sun
, Ali Zeynali, Tongxin Li, Mohammad Hassan Hajiesmaili, Adam Wierman, Danny H. K. Tsang:
Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging. SIGMETRICS (Abstracts) 2021: 67-68 - [i58]Guannan Qu, Yuanyuan Shi, Sahin Lale, Anima Anandkumar, Adam Wierman:
Stable Online Control of Linear Time-Varying Systems. CoRR abs/2104.14134 (2021) - [i57]Alessandro Zocca
, Chen Liang, Linqi Guo, Steven H. Low, Adam Wierman:
A Spectral Representation of Power Systems with Applications to Adaptive Grid Partitioning and Cascading Failure Localization. CoRR abs/2105.05234 (2021) - [i56]Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang:
The Privacy Paradox and Optimal Bias-Variance Trade-offs in Data Acquisition. CoRR abs/2105.14262 (2021) - [i55]Shih-Hao Tseng, SooJean Han, Adam Wierman:
In-Network Freshness Control: Trading Throughput for Freshness. CoRR abs/2106.02156 (2021) - [i54]Noman Bashir, Tian Guo, Mohammad H. Hajiesmaili, David E. Irwin, Prashant J. Shenoy, Ramesh K. Sitaraman, Abel Souza, Adam Wierman:
Enabling Sustainable Clouds: The Case for Virtualizing the Energy System. CoRR abs/2106.08872 (2021) - [i53]Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, Steven H. Low:
Robustness and Consistency in Linear Quadratic Control with Predictions. CoRR abs/2106.09659 (2021) - [i52]Yiheng Lin, Yang Hu, Haoyuan Sun, Guanya Shi, Guannan Qu, Adam Wierman:
Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems. CoRR abs/2106.10497 (2021) - [i51]Bo Sun, Russell Lee, Mohammad H. Hajiesmaili, Adam Wierman, Danny H. K. Tsang:
Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems. CoRR abs/2109.01556 (2021) - [i50]Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman:
Stability Constrained Reinforcement Learning for Real-Time Voltage Control. CoRR abs/2109.14854 (2021) - [i49]Weici Pan, Guanya Shi, Yiheng Lin, Adam Wierman:
Online Optimization with Feedback Delay and Nonlinear Switching Cost. CoRR abs/2111.00095 (2021) - 2020
- [j85]Desmond W. H. Cai, Anish Agarwal, Adam Wierman:
On the Inefficiency of Forward Markets in Leader-Follower Competition. Oper. Res. 68(1): 35-52 (2020) - [j84]Navid Azizan
, Yu Su, Krishnamurthy Dvijotham, Adam Wierman:
Optimal Pricing in Markets with Nonconvex Costs. Oper. Res. 68(2): 480-496 (2020) - [j83]Zhixuan Fang, Longbo Huang, Adam Wierman:
Loyalty programs in the sharing economy: Optimality and competition. Perform. Evaluation 143: 102105 (2020) - [j82]Yang Cai
, Federico Echenique, Hu Fu, Katrina Ligett, Adam Wierman, Juba Ziani:
Third-Party Data Providers Ruin Simple Mechanisms. Proc. ACM Meas. Anal. Comput. Syst. 4(1): 12:1-12:31 (2020) - [j81]Lin Yang
, Mohammad Hassan Hajiesmaili, Ramesh K. Sitaraman
, Adam Wierman, Enrique Mallada
, Wing Shing Wong:
Online Linear Optimization with Inventory Management Constraints. Proc. ACM Meas. Anal. Comput. Syst. 4(1): 16:1-16:29 (2020) - [j80]Yiheng Lin, Gautam Goel, Adam Wierman:
Online Optimization with Predictions and Non-convex Losses. Proc. ACM Meas. Anal. Comput. Syst. 4(1): 18:1-18:32 (2020) - [j79]Ziv Scully
, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter L. Dorsman, Adam Wierman:
Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes. Proc. ACM Meas. Anal. Comput. Syst. 4(2): 30:1-30:33 (2020) - [j78]Bo Sun
, Ali Zeynali, Tongxin Li, Mohammad Hassan Hajiesmaili, Adam Wierman, Danny H. K. Tsang:
Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging. Proc. ACM Meas. Anal. Comput. Syst. 4(3): 51:1-51:32 (2020) - [j77]Xingyu Zhou, Ness B. Shroff, Adam Wierman:
Asymptotically Optimal Load Balancing in Large-scale Heterogeneous Systems with Multiple Dispatchers. SIGMETRICS Perform. Evaluation Rev. 48(3): 57-58 (2020) - [c90]Guannan Qu, Adam Wierman:
Finite-Time Analysis of Asynchronous Stochastic Approximation and $Q$-Learning. COLT 2020: 3185-3205 - [c89]Tongxin Li, Steven H. Low, Adam Wierman:
Real-time Flexibility Feedback for Closed-loop Aggregator and System Operator Coordination. e-Energy 2020: 279-292 - [c88]Guannan Qu, Adam Wierman, Na Li:
Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems. L4DC 2020: 256-266 - [c87]Guannan Qu, Yiheng Lin, Adam Wierman, Na Li:
Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward. NeurIPS 2020 - [c86]Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, Adam Wierman:
Online Optimization with Memory and Competitive Control. NeurIPS 2020 - [c85]Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, Adam Wierman:
The Power of Predictions in Online Control. NeurIPS 2020 - [c84]Lin Yang, Mohammad Hassan Hajiesmaili, Ramesh K. Sitaraman
, Adam Wierman, Enrique Mallada, Wing Shing Wong:
Online Linear Optimization with Inventory Management Constraints. SIGMETRICS (Abstracts) 2020: 7 - [c83]Yiheng Lin
, Gautam Goel, Adam Wierman:
Online Optimization with Predictions and Non-convex Losses. SIGMETRICS (Abstracts) 2020: 9-10 - [c82]Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter L. Dorsman, Adam Wierman:
Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes. SIGMETRICS (Abstracts) 2020: 35-36 - [c81]Palma London, Shai Vardi, Adam Wierman:
Logarithmic Communication for Distributed Optimization in Multi-Agent Systems. SIGMETRICS (Abstracts) 2020: 97-98 - [c80]Yang Cai
, Federico Echenique, Hu Fu, Katrina Ligett, Adam Wierman, Juba Ziani:
Third-Party Data Providers Ruin Simple Mechanisms. SIGMETRICS (Abstracts) 2020: 103 - [c79]Chen Liang
, Fengyu Zhou, Alessandro Zocca
, Steven H. Low, Adam Wierman:
Mitigating Cascading Failures via Local Responses. SmartGridComm 2020: 1-7 - [i48]Guannan Qu, Adam Wierman:
Finite-Time Analysis of Asynchronous Stochastic Approximation and Q-Learning. CoRR abs/2002.00260 (2020) - [i47]Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, Adam Wierman:
Beyond No-Regret: Competitive Control via Online Optimization with Memory. CoRR abs/2002.05318 (2020) - [i46]