default search action
Nikolai Matni
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j12]Shaoru Chen, Victor M. Preciado, Manfred Morari, Nikolai Matni:
Robust model predictive control with polytopic model uncertainty through System Level Synthesis. Autom. 162: 111431 (2024) - [c85]Thomas T. C. K. Zhang, Leonardo Felipe Toso, James Anderson, Nikolai Matni:
Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data. ICLR 2024 - [c84]Thomas T. C. K. Zhang, Bruce D. Lee, Ingvar M. Ziemann, George J. Pappas, Nikolai Matni:
Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples. ICML 2024 - [c83]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss. ICML 2024 - [c82]Farhad Nawaz, Tianyu Li, Nikolai Matni, Nadia Figueroa:
Learning Complex Motion Plans using Neural ODEs with Safety and Stability Guarantees. ICRA 2024: 17216-17222 - [c81]Bruce D. Lee, Anders Rantzer, Nikolai Matni:
Nonasymptotic regret analysis of adaptive linear quadratic control with model misspecification. L4DC 2024: 980-992 - [c80]Anish Bhattacharya, Ratnesh Madaan, Fernando Cladera Ojeda, Sai Vemprala, Rogerio Bonatti, Kostas Daniilidis, Ashish Kapoor, Vijay Kumar, Nikolai Matni, Jayesh K. Gupta:
EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields. WACV 2024: 5834-5843 - [i83]Bruce D. Lee, Anders Rantzer, Nikolai Matni:
Nonasymptotic Regret Analysis of Adaptive Linear Quadratic Control with Model Misspecification. CoRR abs/2401.00073 (2024) - [i82]Hanli Zhang, Anusha Srikanthan, Spencer Folk, Vijay Kumar, Nikolai Matni:
Why Change Your Controller When You Can Change Your Planner: Drag-Aware Trajectory Generation for Quadrotor Systems. CoRR abs/2401.04960 (2024) - [i81]Nikolai Matni, Aaron D. Ames, John C. Doyle:
Towards a Theory of Control Architecture: A quantitative framework for layered multi-rate control. CoRR abs/2401.15185 (2024) - [i80]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss. CoRR abs/2402.05928 (2024) - [i79]Bo Wu, Bruce D. Lee, Kostas Daniilidis, Bernadette Bucher, Nikolai Matni:
Uncertainty-Aware Deployment of Pre-trained Language-Conditioned Imitation Learning Policies. CoRR abs/2403.18222 (2024) - [i78]Bruce D. Lee, Ingvar M. Ziemann, George J. Pappas, Nikolai Matni:
Active Learning for Control-Oriented Identification of Nonlinear Systems. CoRR abs/2404.09030 (2024) - [i77]Farhad Nawaz, Shaoting Peng, Lars Lindemann, Nadia Figueroa, Nikolai Matni:
Reactive Temporal Logic-based Planning and Control for Interactive Robotic Tasks. CoRR abs/2404.19594 (2024) - [i76]Anish Bhattacharya, Nishanth Rao, Dhruv Parikh, Pratik Kunapuli, Nikolai Matni, Vijay Kumar:
Vision Transformers for End-to-End Vision-Based Quadrotor Obstacle Avoidance. CoRR abs/2405.10391 (2024) - [i75]Brian Lee, Nikolai Matni:
Single Trajectory Conformal Prediction. CoRR abs/2406.01570 (2024) - [i74]Bruce D. Lee, Leonardo F. Toso, Thomas T. C. K. Zhang, James Anderson, Nikolai Matni:
Regret Analysis of Multi-task Representation Learning for Linear-Quadratic Adaptive Control. CoRR abs/2407.05781 (2024) - [i73]Fengjun Yang, Nikolai Matni:
Coordinating Planning and Tracking in Layered Control Policies via Actor-Critic Learning. CoRR abs/2408.01639 (2024) - [i72]Anusha Srikanthan, Aren Karapetyan, Vijay Kumar, Nikolai Matni:
Closed-loop Analysis of ADMM-based Suboptimal Linear Model Predictive Control. CoRR abs/2409.11351 (2024) - [i71]Ingvar M. Ziemann, Nikolai Matni, George J. Pappas:
State space models, emergence, and ergodicity: How many parameters are needed for stable predictions? CoRR abs/2409.13421 (2024) - [i70]Thomas T. Zhang, Bruce D. Lee, Ingvar M. Ziemann, George J. Pappas, Nikolai Matni:
Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples. CoRR abs/2410.11227 (2024) - 2023
- [j11]Carmen Amo Alonso, Jing Shuang Li, James Anderson, Nikolai Matni:
Distributed and Localized Model-Predictive Control-Part I: Synthesis and Implementation. IEEE Trans. Control. Netw. Syst. 10(2): 1058-1068 (2023) - [j10]Carmen Amo Alonso, Jing Shuang Li, Nikolai Matni, James Anderson:
Distributed and Localized Model Predictive Control - Part II: Theoretical Guarantees. IEEE Trans. Control. Netw. Syst. 10(3): 1113-1123 (2023) - [j9]Lars Lindemann, Lejun Jiang, Nikolai Matni, George J. Pappas:
Risk of Stochastic Systems for Temporal Logic Specifications. ACM Trans. Embed. Comput. Syst. 22(3): 54:1-54:31 (2023) - [c79]Thomas T. C. K. Zhang, Bruce D. Lee, Hamed Hassani, Nikolai Matni:
Adversarial Tradeoffs in Robust State Estimation. ACC 2023: 4083-4089 - [c78]Bruce D. Lee, Ingvar M. Ziemann, Anastasios Tsiamis, Henrik Sandberg, Nikolai Matni:
The Fundamental Limitations of Learning Linear-Quadratic Regulators. CDC 2023: 4053-4060 - [c77]Shaoru Chen, Kong Yao Chee, Nikolai Matni, M. Ani Hsieh, George J. Pappas:
Safety Filter Design for Neural Network Systems via Convex Optimization. CDC 2023: 6356-6363 - [c76]Ingvar M. Ziemann, Anastasios Tsiamis, Bruce D. Lee, Yassir Jedra, Nikolai Matni, George J. Pappas:
A Tutorial on the Non-Asymptotic Theory of System Identification. CDC 2023: 8921-8939 - [c75]Daniel Pfrommer, Max Simchowitz, Tyler Westenbroek, Nikolai Matni, Stephen Tu:
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization. ICML 2023: 27737-27821 - [c74]David Brandfonbrener, Stephen Tu, Avi Singh, Stefan Welker, Chad Boodoo, Nikolai Matni, Jake Varley:
Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based Reinforcement Learning. ICRA 2023: 11336-11342 - [c73]Anusha Srikanthan, Fengjun Yang, Igor Spasojevic, Dinesh Thakur, Vijay Kumar, Nikolai Matni:
A Data-Driven Approach to Synthesizing Dynamics-Aware Trajectories for Underactuated Robotic Systems. IROS 2023: 8215-8222 - [c72]Thomas T. C. K. Zhang, Katie Kang, Bruce D. Lee, Claire J. Tomlin, Sergey Levine, Stephen Tu, Nikolai Matni:
Multi-Task Imitation Learning for Linear Dynamical Systems. L4DC 2023: 586-599 - [c71]Kong Yao Chee, M. Ani Hsieh, Nikolai Matni:
Learning-enhanced Nonlinear Model Predictive Control using Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles. L4DC 2023: 1125-1137 - [c70]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
The noise level in linear regression with dependent data. NeurIPS 2023 - [c69]Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pappas, Hamed Hassani, Corina S. Pasareanu, Clark W. Barrett:
Toward Certified Robustness Against Real-World Distribution Shifts. SaTML 2023: 537-553 - [e1]Nikolai Matni, Manfred Morari, George J. Pappas:
Learning for Dynamics and Control Conference, L4DC 2023, 15-16 June 2023, Philadelphia, PA, USA. Proceedings of Machine Learning Research 211, PMLR 2023 [contents] - [i69]Bruce D. Lee, Ingvar M. Ziemann, Anastasios Tsiamis, Henrik Sandberg, Nikolai Matni:
The Fundamental Limitations of Learning Linear-Quadratic Regulators. CoRR abs/2303.15637 (2023) - [i68]Daniel Pfrommer, Max Simchowitz, Tyler Westenbroek, Nikolai Matni, Stephen Tu:
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization. CoRR abs/2305.09619 (2023) - [i67]Ingvar M. Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni:
The noise level in linear regression with dependent data. CoRR abs/2305.11165 (2023) - [i66]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Control and Estimation. CoRR abs/2305.16415 (2023) - [i65]Anusha Srikanthan, Fengjun Yang, Igor Spasojevic, Dinesh Thakur, Vijay Kumar, Nikolai Matni:
A Data-Driven Approach to Synthesizing Dynamics-Aware Trajectories for Underactuated Robotic Systems. CoRR abs/2307.13782 (2023) - [i64]Farhad Nawaz, Tianyu Li, Nikolai Matni, Nadia Figueroa:
Learning Safe and Stable Motion Plans with Neural Ordinary Differential Equations. CoRR abs/2308.00186 (2023) - [i63]Thomas T. C. K. Zhang, Leonardo Felipe Toso, James Anderson, Nikolai Matni:
Meta-Learning Operators to Optimality from Multi-Task Non-IID Data. CoRR abs/2308.04428 (2023) - [i62]Shaoru Chen, Kong Yao Chee, Nikolai Matni, M. Ani Hsieh, George J. Pappas:
Safety Filter Design for Neural Network Systems via Convex Optimization. CoRR abs/2308.08086 (2023) - [i61]Ingvar M. Ziemann, Anastasios Tsiamis, Bruce D. Lee, Yassir Jedra, Nikolai Matni, George J. Pappas:
A Tutorial on the Non-Asymptotic Theory of System Identification. CoRR abs/2309.03873 (2023) - [i60]Anish Bhattacharya, Ratnesh Madaan, Fernando Cladera Ojeda, Sai Vemprala, Rogerio Bonatti, Kostas Daniilidis, Ashish Kapoor, Vijay Kumar, Nikolai Matni, Jayesh K. Gupta:
EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields. CoRR abs/2310.02437 (2023) - [i59]Anusha Srikanthan, Vijay Kumar, Nikolai Matni:
Augmented Lagrangian Methods as Layered Control Architectures. CoRR abs/2311.06404 (2023) - 2022
- [c68]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control. CDC 2022: 3416-3423 - [c67]Fengjun Yang, Fernando Gama, Somayeh Sojoudi, Nikolai Matni:
Distributed Optimal Control of Graph Symmetric Systems via Graph Filters. CDC 2022: 5245-5252 - [c66]Ingvar M. Ziemann, Anastasios Tsiamis, Henrik Sandberg, Nikolai Matni:
How are policy gradient methods affected by the limits of control? CDC 2022: 5992-5999 - [c65]Shaoru Chen, Ning-Yuan Li, Victor M. Preciado, Nikolai Matni:
Robust Model Predictive Control of Time-Delay Systems through System Level Synthesis. CDC 2022: 6902-6909 - [c64]Ingvar M. Ziemann, Henrik Sandberg, Nikolai Matni:
Single Trajectory Nonparametric Learning of Nonlinear Dynamics. COLT 2022: 3333-3364 - [c63]Anastasios Tsiamis, Ingvar M. Ziemann, Manfred Morari, Nikolai Matni, George J. Pappas:
Learning to Control Linear Systems can be Hard. COLT 2022: 3820-3857 - [c62]Georgios Georgakis, Bernadette Bucher, Anton Arapin, Karl Schmeckpeper, Nikolai Matni, Kostas Daniilidis:
Uncertainty-driven Planner for Exploration and Navigation. ICRA 2022: 11295-11302 - [c61]Stephen Tu, Alexander Robey, Tingnan Zhang, Nikolai Matni:
On the Sample Complexity of Stability Constrained Imitation Learning. L4DC 2022: 180-191 - [c60]Thomas T. C. K. Zhang, Stephen Tu, Nicholas M. Boffi, Jean-Jacques E. Slotine, Nikolai Matni:
Adversarially Robust Stability Certificates can be Sample-Efficient. L4DC 2022: 532-545 - [c59]Bibit Bianchini, Mathew Halm, Nikolai Matni, Michael Posa:
Generalization Bounded Implicit Learning of Nearly Discontinuous Functions. L4DC 2022: 1112-1124 - [c58]Daniel Pfrommer, Thomas T. C. K. Zhang, Stephen Tu, Nikolai Matni:
TaSIL: Taylor Series Imitation Learning. NeurIPS 2022 - [i58]Daniel Pfrommer, Nikolai Matni:
Linear Variational State Space Filtering. CoRR abs/2201.01353 (2022) - [i57]Ingvar M. Ziemann, Henrik Sandberg, Nikolai Matni:
Single Trajectory Nonparametric Learning of Nonlinear Dynamics. CoRR abs/2202.08311 (2022) - [i56]Georgios Georgakis, Bernadette Bucher, Anton Arapin, Karl Schmeckpeper, Nikolai Matni, Kostas Daniilidis:
Uncertainty-driven Planner for Exploration and Navigation. CoRR abs/2202.11907 (2022) - [i55]Carmen Amo Alonso, Jing Shuang Li, Nikolai Matni, James Anderson:
Distributed and Localized Model Predictive Control. Part II: Theoretical Guarantees. CoRR abs/2203.00780 (2022) - [i54]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control. CoRR abs/2203.10763 (2022) - [i53]Shaoru Chen, Victor M. Preciado, Manfred Morari, Nikolai Matni:
Robust Model Predictive Control with Polytopic Model Uncertainty through System Level Synthesis. CoRR abs/2203.11375 (2022) - [i52]Anastasios Tsiamis, Ingvar M. Ziemann, Manfred Morari, Nikolai Matni, George J. Pappas:
Learning to Control Linear Systems can be Hard. CoRR abs/2205.14035 (2022) - [i51]Lars Lindemann, Lejun Jiang, Nikolai Matni, George J. Pappas:
Risk of Stochastic Systems for Temporal Logic Specifications. CoRR abs/2205.14523 (2022) - [i50]Daniel Pfrommer, Thomas T. C. K. Zhang, Stephen Tu, Nikolai Matni:
TaSIL: Taylor Series Imitation Learning. CoRR abs/2205.14812 (2022) - [i49]Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pappas, Hamed Hassani, Corina S. Pasareanu, Clark W. Barrett:
Toward Certified Robustness Against Real-World Distribution Shifts. CoRR abs/2206.03669 (2022) - [i48]Ingvar M. Ziemann, Anastasios Tsiamis, Henrik Sandberg, Nikolai Matni:
How are policy gradient methods affected by the limits of control? CoRR abs/2206.06863 (2022) - [i47]Anastasios Tsiamis, Ingvar M. Ziemann, Nikolai Matni, George J. Pappas:
Statistical Learning Theory for Control: A Finite Sample Perspective. CoRR abs/2209.05423 (2022) - [i46]Shaoru Chen, Ning-Yuan Li, Victor M. Preciado, Nikolai Matni:
Robust Model Predictive Control of Time-Delay Systems through System Level Synthesis. CoRR abs/2209.11841 (2022) - [i45]David Brandfonbrener, Stephen Tu, Avi Singh, Stefan Welker, Chad Boodoo, Nikolai Matni, Jake Varley:
Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based Reinforcement Learning. CoRR abs/2210.02343 (2022) - [i44]Fengjun Yang, Fernando Gama, Somayeh Sojoudi, Nikolai Matni:
Distributed Optimal Control of Graph Symmetric Systems via Graph Filters. CoRR abs/2210.15847 (2022) - [i43]Kong Yao Chee, M. Ani Hsieh, Nikolai Matni:
Learning-enhanced Nonlinear Model Predictive Control using Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles. CoRR abs/2211.13829 (2022) - [i42]Thomas T. C. K. Zhang, Katie Kang, Bruce D. Lee, Claire J. Tomlin, Sergey Levine, Stephen Tu, Nikolai Matni:
Multi-Task Imitation Learning for Linear Dynamical Systems. CoRR abs/2212.00186 (2022) - 2021
- [c57]Alexander Robey, Lars Lindemann, Stephen Tu, Nikolai Matni:
Learning Robust Hybrid Control Barrier Functions for Uncertain Systems. ADHS 2021: 1-6 - [c56]Lars Lindemann, Nikolai Matni, George J. Pappas:
STL Robustness Risk over Discrete-Time Stochastic Processes. CDC 2021: 1329-1335 - [c55]Fengjun Yang, Nikolai Matni:
Communication Topology Co-Design in Graph Recurrent Neural Network based Distributed Control. CDC 2021: 3619-3626 - [c54]Bernadette Bucher, Karl Schmeckpeper, Nikolai Matni, Kostas Daniilidis:
An Adversarial Objective for Scalable Exploration. IROS 2021: 2670-2677 - [c53]Anton Xue, Nikolai Matni:
Data-Driven System Level Synthesis. L4DC 2021: 189-200 - [c52]Jingxi Xu, Bruce D. Lee, Nikolai Matni, Dinesh Jayaraman:
How Are Learned Perception-Based Controllers Impacted by the Limits of Robust Control? L4DC 2021: 954-966 - [i41]Alexander Robey, Lars Lindemann, Stephen Tu, Nikolai Matni:
Learning Robust Hybrid Control Barrier Functions for Uncertain Systems. CoRR abs/2101.06492 (2021) - [i40]Stephen Tu, Alexander Robey, Nikolai Matni:
Closing the Closed-Loop Distribution Shift in Safe Imitation Learning. CoRR abs/2102.09161 (2021) - [i39]Jingxi Xu, Bruce D. Lee, Nikolai Matni, Dinesh Jayaraman:
How Are Learned Perception-Based Controllers Impacted by the Limits of Robust Control? CoRR abs/2104.00827 (2021) - [i38]Lars Lindemann, Nikolai Matni, George J. Pappas:
STL Robustness Risk over Discrete-Time Stochastic Processes. CoRR abs/2104.01503 (2021) - [i37]Fengjun Yang, Nikolai Matni:
Communication Topology Co-Design in Graph Recurrent Neural Network Based Distributed Control. CoRR abs/2104.13868 (2021) - [i36]Shaoru Chen, Nikolai Matni, Manfred Morari, Victor M. Preciado:
System Level Synthesis-based Robust Model Predictive Control through Convex Inner Approximation. CoRR abs/2111.05509 (2021) - [i35]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Adversarial Tradeoffs in Linear Inverse Problems and Robust State Estimation. CoRR abs/2111.08864 (2021) - [i34]Lars Lindemann, Alexander Robey, Lejun Jiang, Stephen Tu, Nikolai Matni:
Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations. CoRR abs/2111.09971 (2021) - [i33]Bibit Bianchini, Mathew Halm, Nikolai Matni, Michael Posa:
Generalization Bounded Implicit Learning of Nearly Discontinuous Functions. CoRR abs/2112.06881 (2021) - [i32]Thomas T. C. K. Zhang, Stephen Tu, Nicholas M. Boffi, Jean-Jacques E. Slotine, Nikolai Matni:
Adversarially Robust Stability Certificates can be Sample-Efficient. CoRR abs/2112.10690 (2021) - [i31]Carmen Amo Alonso, Fengjun Yang, Nikolai Matni:
Data-driven Distributed and Localized Model Predictive Control. CoRR abs/2112.12229 (2021) - 2020
- [j8]Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, Stephen Tu:
On the Sample Complexity of the Linear Quadratic Regulator. Found. Comput. Math. 20(4): 633-679 (2020) - [j7]Salar Fattahi, Nikolai Matni, Somayeh Sojoudi:
Efficient Learning of Distributed Linear-Quadratic Control Policies. SIAM J. Control. Optim. 58(5): 2927-2951 (2020) - [c51]Nikolai Matni, Anish A. Sarma:
Robust Performance Guarantees for System Level Synthesis. ACC 2020: 779-786 - [c50]Natalie Bernat, Jiexin Chen, Nikolai Matni, John Doyle:
The driver and the engineer: Reinforcement learning and robust control. ACC 2020: 3932-3939 - [c49]Shaoru Chen, Han Wang, Manfred Morari, Victor M. Preciado, Nikolai Matni:
Robust Closed-loop Model Predictive Control via System Level Synthesis. CDC 2020: 2152-2159 - [c48]Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen Tu, Nikolai Matni:
Learning Control Barrier Functions from Expert Demonstrations. CDC 2020: 3717-3724 - [c47]Carmen Amo Alonso, Nikolai Matni:
Distributed and Localized Closed Loop Model Predictive Control via System Level Synthesis. CDC 2020: 5598-5605 - [c46]Carmen Amo Alonso, Nikolai Matni, James Anderson:
Explicit Distributed and Localized Model Predictive Control via System Level Synthesis. CDC 2020: 5606-5613 - [c45]Nicholas M. Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques E. Slotine, Vikas Sindhwani:
Learning Stability Certificates from Data. CoRL 2020: 1341-1350 - [c44]Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos V. Dimarogonas, Stephen Tu, Nikolai Matni:
Learning Hybrid Control Barrier Functions from Data. CoRL 2020: 1351-1370 - [c43]Sangdon Park, Osbert Bastani, Nikolai Matni, Insup Lee:
PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction. ICLR 2020 - [c42]Laura Jarin-Lipschitz, Rebecca Li, Ty Nguyen, Vijay Kumar, Nikolai Matni:
Robust, Perception Based Control with Quadrotors. IROS 2020: 7737-7743 - [c41]Sarah Dean, Nikolai Matni, Benjamin Recht, Vickie Ye:
Robust Guarantees for Perception-Based Control. L4DC 2020: 350-360 - [c40]Anastasios Tsiamis, Nikolai Matni, George J. Pappas:
Sample Complexity of Kalman Filtering for Unknown Systems. L4DC 2020: 435-444 - [i30]Sangdon Park, Osbert Bastani, Nikolai Matni, Insup Lee:
PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction. CoRR abs/2001.00106 (2020) - [i29]Bernadette Bucher, Karl Schmeckpeper, Nikolai Matni, Kostas Daniilidis:
Action for Better Prediction. CoRR abs/2003.06082 (2020) - [i28]Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen Tu, Nikolai Matni:
Learning Control Barrier Functions from Expert Demonstrations. CoRR abs/2004.03315 (2020) - [i27]Carmen Amo Alonso, Nikolai Matni, James Anderson:
Explicit Distributed and Localized Model Predictive Control via System Level Synthesis. CoRR abs/2005.13807 (2020) - [i26]Laura Jarin-Lipschitz, Rebecca Li, Ty Nguyen, Vijay Kumar, Nikolai Matni:
Evaluating Robust, Perception Based Control with Quadrotors. CoRR abs/2007.04220 (2020) - [i25]Nicholas M. Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques E. Slotine, Vikas Sindhwani:
Learning Stability Certificates from Data. CoRR abs/2008.05952 (2020) - [i24]Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos V. Dimarogonas, Stephen Tu, Nikolai Matni:
Learning Hybrid Control Barrier Functions from Data. CoRR abs/2011.04112 (2020) - [i23]Anton Xue, Nikolai Matni:
Data-Driven System Level Synthesis. CoRR abs/2011.10674 (2020)
2010 – 2019
- 2019
- [j6]James Anderson, John C. Doyle, Steven H. Low, Nikolai Matni:
System level synthesis. Annu. Rev. Control. 47: 364-393 (2019) - [j5]Yuh-Shyang Wang, Nikolai Matni, John C. Doyle:
A System-Level Approach to Controller Synthesis. IEEE Trans. Autom. Control. 64(10): 4079-4093 (2019) - [c39]Sarah Dean, Stephen Tu, Nikolai Matni, Benjamin Recht:
Safely Learning to Control the Constrained Linear Quadratic Regulator. ACC 2019: 5582-5588 - [c38]Salar Fattahi, Nikolai Matni, Somayeh Sojoudi:
Learning Sparse Dynamical Systems from a Single Sample Trajectory. CDC 2019: 2682-2689 - [c37]Nikolai Matni, Alexandre Proutière, Anders Rantzer, Stephen Tu:
From self-tuning regulators to reinforcement learning and back again. CDC 2019: 3724-3740 - [c36]Nikolai Matni, Stephen Tu:
A Tutorial on Concentration Bounds for System Identification. CDC 2019: 3741-3749 - [i22]James Anderson, Nikolai Matni, Yuxiao Chen:
Sparsity Preserving Discretization With Error Bounds. CoRR abs/1903.11267 (2019) - [i21]James Anderson, John C. Doyle, Steven H. Low, Nikolai Matni:
System Level Synthesis. CoRR abs/1904.01634 (2019) - [i20]