default search action
Stephen P. Boyd
Person information
- affiliation: Stanford University, USA
- award (2017): IEEE James H. Mulligan, Jr. Education Medal
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j142]Rafael Perez Martinez, Masaya Iwamoto, Kelly Woo, Zhengliang Bian, Roberto Tinti, Stephen P. Boyd, Srabanti Chowdhury:
Compact Model Parameter Extraction via Derivative-Free Optimization. IEEE Access 12: 123224-123235 (2024) - [j141]Eric Luxenberg, Philipp Schiele, Stephen P. Boyd:
Robust Bond Portfolio Construction via Convex-Concave Saddle Point Optimization. J. Optim. Theory Appl. 201(3): 1089-1115 (2024) - [j140]Eric Luxenberg, Dhruv Malik, Yuanzhi Li, Aarti Singh, Stephen P. Boyd:
Specifying and Solving Robust Empirical Risk Minimization Problems Using CVXPY. J. Optim. Theory Appl. 202(3): 1158-1168 (2024) - [j139]Philipp Schiele, Eric Luxenberg, Stephen P. Boyd:
Disciplined Saddle Programming. Trans. Mach. Learn. Res. 2024 (2024) - [j138]Tobia Marcucci, Parth Nobel, Russ Tedrake, Stephen P. Boyd:
Fast Path Planning Through Large Collections of Safe Boxes. IEEE Trans. Robotics 40: 3795-3811 (2024) - [i51]Joshua Ott, Mykel J. Kochenderfer, Stephen P. Boyd:
Approximate Sequential Optimization for Informative Path Planning. CoRR abs/2402.08841 (2024) - [i50]Rafael Perez Martinez, Masaya Iwamoto, Kelly Woo, Zhengliang Bian, Roberto Tinti, Stephen P. Boyd, Srabanti Chowdhury:
Compact Model Parameter Extraction via Derivative-Free Optimization. CoRR abs/2406.16355 (2024) - [i49]Rafael Perez Martinez, Stephen P. Boyd, Srabanti Chowdhury:
Robust Pareto Design of GaN HEMTs for Millimeter-Wave Applications. CoRR abs/2406.17337 (2024) - 2023
- [j137]Bennet E. Meyers, Stephen P. Boyd:
Signal Decomposition Using Masked Proximal Operators. Found. Trends Signal Process. 17(1): 1-78 (2023) - [j136]Shane T. Barratt, Stephen P. Boyd:
Fitting feature-dependent Markov chains. J. Glob. Optim. 87(2): 329-346 (2023) - [j135]Parth Nobel, Akshay Agrawal, Stephen P. Boyd:
Computing tighter bounds on the n-queens constant via Newton's method. Optim. Lett. 17(5): 1229-1240 (2023) - [j134]Parth Nobel, Emmanuel J. Candès, Stephen P. Boyd:
Tractable Evaluation of Stein's Unbiased Risk Estimate With Convex Regularizers. IEEE Trans. Signal Process. 71: 4330-4341 (2023) - [c121]Maolin Wang, Ian McInerney, Bartolomeo Stellato, Stephen P. Boyd, Hayden Kwok-Hay So:
RSQP: Problem-specific Architectural Customization for Accelerated Convex Quadratic Optimization. ISCA 2023: 73:1-73:12 - [i48]Philipp Schiele, Eric Luxenberg, Stephen P. Boyd:
Disciplined Saddle Programming. CoRR abs/2301.13427 (2023) - [i47]Tobia Marcucci, Parth Nobel, Russ Tedrake, Stephen P. Boyd:
Fast Path Planning Through Large Collections of Safe Boxes. CoRR abs/2305.01072 (2023) - [i46]Ziheng Cheng, Junzi Zhang, Akshay Agrawal, Stephen P. Boyd:
Joint Graph Learning and Model Fitting in Laplacian Regularized Stratified Models. CoRR abs/2305.02573 (2023) - [i45]Eric Luxenberg, Dhruv Malik, Yuanzhi Li, Aarti Singh, Stephen P. Boyd:
Specifying and Solving Robust Empirical Risk Minimization Problems Using CVXPY. CoRR abs/2306.05649 (2023) - [i44]Mehmet G. Ogut, Bennet E. Meyers, Stephen P. Boyd:
PV Fleet Modeling via Smooth Periodic Gaussian Copula. CoRR abs/2307.00004 (2023) - 2022
- [j133]Nir Shlezinger, Yonina C. Eldar, Stephen P. Boyd:
Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization. IEEE Access 10: 115384-115398 (2022) - [j132]Nicholas Moehle, Stephen P. Boyd:
A Certainty Equivalent Merton Problem. IEEE Control. Syst. Lett. 6: 1478-1483 (2022) - [j131]Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo Stellato, Stephen P. Boyd:
Embedded Code Generation With CVXPY. IEEE Control. Syst. Lett. 6: 2653-2658 (2022) - [j130]Guenther Walther, Alnur Ali, Xinyue Shen, Stephen P. Boyd:
Confidence Bands for a Log-Concave Density. J. Comput. Graph. Stat. 31(4): 1426-1438 (2022) - [j129]Akshay Agrawal, Stephen P. Boyd, Deepak Narayanan, Fiodar Kazhamiaka, Matei Zaharia:
Allocation of fungible resources via a fast, scalable price discovery method. Math. Program. Comput. 14(3): 593-622 (2022) - [j128]Anqi Fu, Lei Xing, Stephen P. Boyd:
Operator splitting for adaptive radiation therapy with nonlinear health dynamics. Optim. Methods Softw. 37(6): 2300-2323 (2022) - [j127]Shane T. Barratt, Stephen P. Boyd:
Stochastic Control With Affine Dynamics and Extended Quadratic Costs. IEEE Trans. Autom. Control. 67(1): 320-335 (2022) - [c120]Eric Luxenberg, Stephen P. Boyd, Misha van Beek, Wen Cao, Mykel J. Kochenderfer:
Strategic Asset Allocation with Illiquid Alternatives. ICAIF 2022: 249-256 - [c119]Guillermo Angeris, Alex Evans, Tarun Chitra, Stephen P. Boyd:
Optimal Routing for Constant Function Market Makers. EC 2022: 115-128 - [i43]Gabriel Maher, Stephen P. Boyd, Mykel John Kochenderfer, Cristian Matache, Alex Ulitsky, Slava Yukhymuk, Leonid Kopman:
A Light-Weight Multi-Objective Asynchronous Hyper-Parameter Optimizer. CoRR abs/2202.07735 (2022) - [i42]Bennet E. Meyers, Stephen P. Boyd:
Signal Decomposition Using Masked Proximal Operators. CoRR abs/2202.09338 (2022) - [i41]Nir Shlezinger, Yonina C. Eldar, Stephen P. Boyd:
Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization. CoRR abs/2205.02640 (2022) - [i40]Eric Luxenberg, Stephen P. Boyd, Mykel J. Kochenderfer, Misha van Beek, Wen Cao, Steven Diamond, Alex Ulitsky, Kunal Menda, Vidy Vairavamurthy:
Strategic Asset Allocation with Illiquid Alternatives. CoRR abs/2207.07767 (2022) - 2021
- [j126]Akshay Agrawal, Alnur Ali, Stephen P. Boyd:
Minimum-Distortion Embedding. Found. Trends Mach. Learn. 14(3): 211-378 (2021) - [j125]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd:
Learning Convex Optimization Models. IEEE CAA J. Autom. Sinica 8(8): 1355-1364 (2021) - [j124]Jonathan Tuck, Shane T. Barratt, Stephen P. Boyd:
A Distributed Method for Fitting Laplacian Regularized Stratified Models. J. Mach. Learn. Res. 22: 60:1-60:37 (2021) - [j123]Nicholas Moehle, Mykel J. Kochenderfer, Stephen P. Boyd, Andrew Ang:
Tax-Aware Portfolio Construction via Convex Optimization. J. Optim. Theory Appl. 189(2): 364-383 (2021) - [j122]Shane T. Barratt, Guillermo Angeris, Stephen P. Boyd:
Optimal representative sample weighting. Stat. Comput. 31(3): 19 (2021) - [j121]Charles W. Huang, Yong Yang, Neil Panjwani, Stephen P. Boyd, Lei Xing:
Pareto Optimal Projection Search (POPS): Automated Radiation Therapy Treatment Planning by Direct Search of the Pareto Surface. IEEE Trans. Biomed. Eng. 68(10): 2907-2917 (2021) - [j120]Steven Diamond, Vincent Sitzmann, Frank D. Julca-Aguilar, Stephen P. Boyd, Gordon Wetzstein, Felix Heide:
Dirty Pixels: Towards End-to-end Image Processing and Perception. ACM Trans. Graph. 40(3): 23:1-23:15 (2021) - [c118]Junzi Zhang, Jongho Kim, Brendan O'Donoghue, Stephen P. Boyd:
Sample Efficient Reinforcement Learning with REINFORCE. AAAI 2021: 10887-10895 - [c117]Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth Kandula, Stephen P. Boyd, Matei Zaharia:
Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP. SOSP 2021: 521-537 - [i39]Shane T. Barratt, Yining Dong, Stephen P. Boyd:
Low Rank Forecasting. CoRR abs/2101.12414 (2021) - [i38]Shane T. Barratt, Stephen P. Boyd:
Covariance Prediction via Convex Optimization. CoRR abs/2101.12416 (2021) - [i37]Akshay Agrawal, Alnur Ali, Stephen P. Boyd:
Minimum-Distortion Embedding. CoRR abs/2103.02559 (2021) - [i36]Akshay Agrawal, Stephen P. Boyd, Deepak Narayanan, Fiodar Kazhamiaka, Matei Zaharia:
Allocation of Fungible Resources via a Fast, Scalable Price Discovery Method. CoRR abs/2104.00282 (2021) - [i35]Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth Kandula, Stephen P. Boyd, Matei Zaharia:
Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP. CoRR abs/2110.11927 (2021) - 2020
- [j119]Mojtaba Tefagh, Stephen P. Boyd:
SWIFTCORE: a tool for the context-specific reconstruction of genome-scale metabolic networks. BMC Bioinform. 21(1): 140 (2020) - [j118]Reza Takapoui, Nicholas Moehle, Stephen P. Boyd, Alberto Bemporad:
A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control 93(1): 2-12 (2020) - [j117]Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, Stephen P. Boyd:
OSQP: an operator splitting solver for quadratic programs. Math. Program. Comput. 12(4): 637-672 (2020) - [j116]Akshay Agrawal, Stephen P. Boyd:
Disciplined quasiconvex programming. Optim. Lett. 14(7): 1643-1657 (2020) - [j115]Shane T. Barratt, Guillermo Angeris, Stephen P. Boyd:
Minimizing a sum of clipped convex functions. Optim. Lett. 14(8): 2443-2459 (2020) - [j114]Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
On the Convergence of Mirror Descent beyond Stochastic Convex Programming. SIAM J. Optim. 30(1): 687-716 (2020) - [j113]Junzi Zhang, Brendan O'Donoghue, Stephen P. Boyd:
Globally Convergent Type-I Anderson Acceleration for Nonsmooth Fixed-Point Iterations. SIAM J. Optim. 30(4): 3170-3197 (2020) - [j112]Anqi Fu, Junzi Zhang, Stephen P. Boyd:
Anderson Accelerated Douglas-Rachford Splitting. SIAM J. Sci. Comput. 42(6): A3560-A3583 (2020) - [c116]Shane T. Barratt, Stephen P. Boyd:
Fitting a Kalman Smoother to Data. ACC 2020: 1526-1531 - [c115]Jongho Kim, Youngsuk Park, John D. Fox, Stephen P. Boyd, William J. Dally:
Optimal Operation of a Plug-in Hybrid Vehicle with Battery Thermal and Degradation Model. ACC 2020: 3083-3090 - [c114]Youngsuk Park, Sauptik Dhar, Stephen P. Boyd, Mohak Shah:
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize. ICASSP 2020: 3597-3601 - [c113]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd, Bartolomeo Stellato:
Learning Convex Optimization Control Policies. L4DC 2020: 361-373 - [c112]Malayandi Palan, Shane T. Barratt, Alex McCauley, Dorsa Sadigh, Vikas Sindhwani, Stephen P. Boyd:
Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint. L4DC 2020: 374-383 - [i34]Jonathan Tuck, Stephen P. Boyd:
Eigen-Stratified Models. CoRR abs/2001.10389 (2020) - [i33]Jonathan Tuck, Stephen P. Boyd:
Fitting Laplacian Regularized Stratified Gaussian Models. CoRR abs/2005.01752 (2020) - [i32]Shane T. Barratt, Guillermo Angeris, Stephen P. Boyd:
Optimal Representative Sample Weighting. CoRR abs/2005.09065 (2020) - [i31]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd:
Learning Convex Optimization Models. CoRR abs/2006.04248 (2020) - [i30]Junzi Zhang, Jongho Kim, Brendan O'Donoghue, Stephen P. Boyd:
Sample Efficient Reinforcement Learning with REINFORCE. CoRR abs/2010.11364 (2020)
2010 – 2019
- 2019
- [j111]David Hallac, Peter Nystrup, Stephen P. Boyd:
Greedy Gaussian segmentation of multivariate time series. Adv. Data Anal. Classif. 13(3): 727-751 (2019) - [j110]Peter Nystrup, Stephen P. Boyd, Erik Lindström, Henrik Madsen:
Multi-period portfolio selection with drawdown control. Ann. Oper. Res. 282(1-2): 245-271 (2019) - [j109]Enzo Busseti, Walaa M. Moursi, Stephen P. Boyd:
Solution refinement at regular points of conic problems. Comput. Optim. Appl. 74(3): 627-643 (2019) - [j108]Jonathan Tuck, David Hallac, Stephen P. Boyd:
Distributed majorization-minimization for Laplacian regularized problems. IEEE CAA J. Autom. Sinica 6(1): 45-52 (2019) - [j107]Baris Ungun, Lei Xing, Stephen P. Boyd:
Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods. INFORMS J. Comput. 31(3): 544-558 (2019) - [j106]Nicholas Moehle, Xinyue Shen, Zhi-Quan Luo, Stephen P. Boyd:
A Distributed Method for Optimal Capacity Reservation. J. Optim. Theory Appl. 182(3): 1130-1149 (2019) - [j105]Goran Banjac, Paul Goulart, Bartolomeo Stellato, Stephen P. Boyd:
Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization. J. Optim. Theory Appl. 183(2): 490-519 (2019) - [j104]Akshay Agrawal, Steven Diamond, Stephen P. Boyd:
Disciplined geometric programming. Optim. Lett. 13(5): 961-976 (2019) - [j103]Shane T. Barratt, Mykel J. Kochenderfer, Stephen P. Boyd:
Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace From Position Data. IEEE Trans. Intell. Transp. Syst. 20(9): 3536-3545 (2019) - [c111]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. NeurIPS 2019: 9558-9570 - [i29]Shane T. Barratt, Stephen P. Boyd:
Least Squares Auto-Tuning. CoRR abs/1904.05460 (2019) - [i28]Jonathan Tuck, Shane T. Barratt, Stephen P. Boyd:
A Distributed Method for Fitting Laplacian Regularized Stratified Models. CoRR abs/1904.12017 (2019) - [i27]Akshay Agrawal, Stephen P. Boyd:
Disciplined Quasiconvex Programming. CoRR abs/1905.00562 (2019) - [i26]Dave Deriso, Stephen P. Boyd:
A General Optimization Framework for Dynamic Time Warping. CoRR abs/1905.12893 (2019) - [i25]Youngsuk Park, Sauptik Dhar, Stephen P. Boyd, Mohak Shah:
Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize. CoRR abs/1910.07056 (2019) - [i24]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. CoRR abs/1910.12430 (2019) - [i23]Akshay Agrawal, Shane T. Barratt, Stephen P. Boyd, Bartolomeo Stellato:
Learning Convex Optimization Control Policies. CoRR abs/1912.09529 (2019) - 2018
- [j102]Alberto Bemporad, Valentina Breschi, Dario Piga, Stephen P. Boyd:
Fitting jump models. Autom. 96: 11-21 (2018) - [j101]Akshay Agrawal, Robin Verschueren, Steven Diamond, Stephen P. Boyd:
A rewriting system for convex optimization problems. J. Control. Decis. 5(1): 42-60 (2018) - [j100]Jaehyun Park, Stephen P. Boyd:
A semidefinite programming method for integer convex quadratic minimization. Optim. Lett. 12(3): 499-518 (2018) - [j99]Steven Diamond, Reza Takapoui, Stephen P. Boyd:
A general system for heuristic minimization of convex functions over non-convex sets. Optim. Methods Softw. 33(1): 165-193 (2018) - [j98]Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen P. Boyd, Wolfgang Heidrich, Felix Heide, Gordon Wetzstein:
End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37(4): 114 (2018) - [c110]Valentina Breschi, Alberto Bemporad, Dario Piga, Stephen P. Boyd:
Prediction error methods in learning jump ARMAX models. CDC 2018: 2247-2252 - [c109]Bartolomeo Stellato, Vihangkumar V. Naik, Alberto Bemporad, Paul Goulart, Stephen P. Boyd:
Embedded Mixed-Integer Quadratic optimization Using the OSQP Solver. ECC 2018: 1536-1541 - [c108]Qingyun Sun, Mengyuan Yan, David L. Donoho, Stephen P. Boyd:
Convolutional Imputation of Matrix Networks. ICML 2018: 4825-4834 - [c107]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-based Clustering of Multivariate Time Series Data. IJCAI 2018: 5254-5258 - [i22]Ping Yin, Steven Diamond, Bill Lin, Stephen P. Boyd:
Network Optimization for Unified Packet and Circuit Switched Networks. CoRR abs/1808.00586 (2018) - [i21]Shane T. Barratt, Mykel J. Kochenderfer, Stephen P. Boyd:
Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace from Position Data. CoRR abs/1810.09568 (2018) - [i20]Akshay Agrawal, Steven Diamond, Stephen P. Boyd:
Disciplined Geometric Programming. CoRR abs/1812.04074 (2018) - 2017
- [j97]Stephen P. Boyd, Enzo Busseti, Steven Diamond, Ronald N. Kahn, Kwangmoo Koh, Peter Nystrup, Jan Speth:
Multi-Period Trading via Convex Optimization. Found. Trends Optim. 3(1): 1-76 (2017) - [j96]David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosic, Stephen P. Boyd, Jure Leskovec:
SnapVX: A Network-Based Convex Optimization Solver. J. Mach. Learn. Res. 18: 4:1-4:5 (2017) - [j95]Nicholas Boyd, Trevor Hastie, Stephen P. Boyd, Benjamin Recht, Michael I. Jordan:
Saturating Splines and Feature Selection. J. Mach. Learn. Res. 18: 197:1-197:32 (2017) - [j94]Steven Diamond, Stephen P. Boyd:
Stochastic Matrix-Free Equilibration. J. Optim. Theory Appl. 172(2): 436-454 (2017) - [j93]Pontus Giselsson, Stephen P. Boyd:
Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM. IEEE Trans. Autom. Control. 62(2): 532-544 (2017) - [j92]Nan Zhang, Zhiqiang Yao, Yixian Liu, Stephen P. Boyd, Zhi-Quan Luo:
Dynamic Resource Allocation for Energy Efficient Transmission in Digital Subscriber Lines. IEEE Trans. Signal Process. 65(16): 4353-4366 (2017) - [c106]Youngsuk Park, David Hallac, Stephen P. Boyd, Jure Leskovec:
Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields. AISTATS 2017: 1302-1310 - [c105]Matt Wytock, Nicholas Moehle, Stephen P. Boyd:
Dynamic energy management with scenario-based robust MPC. ACC 2017: 2042-2047 - [c104]Goran Banjac, Bartolomeo Stellato, Nicholas Moehle, Paul Goulart, Alberto Bemporad, Stephen P. Boyd:
Embedded code generation using the OSQP solver. CDC 2017: 1906-1911 - [c103]David Hallac, Youngsuk Park, Stephen P. Boyd, Jure Leskovec:
Network Inference via the Time-Varying Graphical Lasso. KDD 2017: 205-213 - [c102]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. KDD 2017: 215-223 - [c101]Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
Stochastic Mirror Descent in Variationally Coherent Optimization Problems. NIPS 2017: 7040-7049 - [i19]Steven Diamond, Vincent Sitzmann, Stephen P. Boyd, Gordon Wetzstein, Felix Heide:
Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data. CoRR abs/1701.06487 (2017) - [i18]David Hallac, Youngsuk Park, Stephen P. Boyd, Jure Leskovec:
Network Inference via the Time-Varying Graphical Lasso. CoRR abs/1703.01958 (2017) - [i17]Nicholas Moehle, Xinyue Shen, Zhi-Quan Luo, Stephen P. Boyd:
A Distributed Method for Optimal Capacity Reservation. CoRR abs/1705.00677 (2017) - [i16]David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. CoRR abs/1706.03161 (2017) - [i15]Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn:
Mirror descent in non-convex stochastic programming. CoRR abs/1706.05681 (2017) - [i14]Akshay Agrawal, Robin Verschueren, Steven Diamond, Stephen P. Boyd:
A Rewriting System for Convex Optimization Problems. CoRR abs/1709.04494 (2017) - [i13]Alberto Bemporad, Valentina Breschi, Dario Piga, Stephen P. Boyd:
Fitting Jump Models. CoRR abs/1711.09220 (2017) - 2016
- [j91]Madeleine Udell, Stephen P. Boyd:
Bounding duality gap for separable problems with linear constraints. Comput. Optim. Appl. 64(2): 355-378 (2016) - [j90]Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen P. Boyd:
Generalized Low Rank Models. Found. Trends Mach. Learn. 9(1): 1-118 (2016) - [j89]Steven Diamond, Stephen P. Boyd:
CVXPY: A Python-Embedded Modeling Language for Convex Optimization. J. Mach. Learn. Res. 17: 83:1-83:5 (2016) - [j88]Weijie Su, Stephen P. Boyd, Emmanuel J. Candès:
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights. J. Mach. Learn. Res. 17: 153:1-153:43 (2016) - [j87]Brendan O'Donoghue, Eric Chu, Neal Parikh, Stephen P. Boyd:
Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding. J. Optim. Theory Appl. 169(3): 1042-1068 (2016) - [j86]Thomas Lipp, Stephen P. Boyd:
Antagonistic control. Syst. Control. Lett. 98: 44-48 (2016) - [c100]Nicholas Moehle, Stephen P. Boyd:
Optimal current waveforms for switched-reluctance motors. CCA 2016: 1129-1136 - [c99]Reza Takapoui, Nicholas Moehle, Stephen P. Boyd, Alberto Bemporad:
A simple effective heuristic for embedded mixed-integer quadratic programming. ACC 2016: 5619-5625 - [c98]Xinyue Shen, Steven Diamond, Yuantao Gu, Stephen P. Boyd:
Disciplined convex-concave programming. CDC 2016: 1009-1014 - [c97]Pontus Giselsson, Mattias Fält, Stephen P. Boyd:
Line search for averaged operator iteration. CDC 2016: 1015-1022 - [c96]Nicholas Moehle, Stephen P. Boyd:
Maximum torque-per-current control of induction motors via semidefinite programming. CDC 2016: 1920-1925 - [c95]Nan Zhang, Zhiqiang Yao, Yixian Liu, Stephen P. Boyd, Zhi-Quan Luo:
Optimal Resource Allocation for Energy Efficient Transmission in DSL.