default search action
Tom Oomen
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j54]Leontine Aarnoudse, Alexey Pavlov, Tom Oomen:
Nonlinear iterative learning control for discriminating between disturbances. Autom. 171: 111902 (2025) - 2024
- [j53]Tom Oomen, Cristian R. Rojas:
Reset-free data-driven gain estimation: Power iteration using reversed-circulant matrices. Autom. 161: 111505 (2024) - [j52]Rodrigo A. González, Koen Tiels, Tom Oomen:
Kernel-based identification using Lebesgue-sampled data. Autom. 164: 111648 (2024) - [j51]Rodrigo A. González, Koen Classens, Cristian R. Rojas, James S. Welsh, Tom Oomen:
Statistical Analysis of Block Coordinate Descent Algorithms for Linear Continuous-Time System Identification. IEEE Control. Syst. Lett. 8: 388-393 (2024) - [j50]Johan Kon, Roland Tóth, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Guaranteeing Stability in Structured Input-Output Models: With Application to System Identification. IEEE Control. Syst. Lett. 8: 1565-1570 (2024) - [j49]Lars Van De Kamp, Joey Reinders, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions. IFAC J. Syst. Control. 27: 100236 (2024) - [j48]Leontine Aarnoudse, Johan Kon, Wataru Ohnishi, Maurice Poot, Paul Tacx, Nard Strijbosch, Tom Oomen:
Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer. IFAC J. Syst. Control. 27: 100241 (2024) - [j47]Isaac A. Spiegel, Nard Strijbosch, Robin de Rozario, Tom Oomen, Kira Barton:
Stable Inversion of Piecewise Affine Systems With Application to Feedforward and Iterative Learning Control. IEEE Trans. Autom. Control. 69(10): 6836-6851 (2024) - [c112]Max van Meer, Kjell van Schie, Gert Witvoet, Tom Oomen:
Automated Model-Free Commutation for Coarse Pointing Actuators in Free-Space Optical Communication. AIM 2024: 592-597 - [c111]Kentaro Tsurumoto, Wataru Ohnishi, Takafumi Koseki, Max van Haren, Tom Oomen:
Combined Time-Domain Optimization Design for Task-Flexible and High Performance ILC. ECC 2024: 1190-1195 - [c110]Johan Kon, Jeroen van de Wijdeven, Dennis Bruijnen, Roland Tóth, Marcel Heertjes, Tom Oomen:
Unconstrained Parameterization of Stable LPV Input-Output Models: with Application to System Identification. ECC 2024: 2143-2148 - [c109]Max van Meer, Gert Witvoet, Tom Oomen:
Robust Commutation Design: Applied to Switched Reluctance Motors. ECC 2024: 2448-2453 - [c108]Mathyn van Dael, Gert Witvoet, Bas Swinkels, Diego Bersanetti, Manuel Pinto, Julia Casanueva, Maddalena Mantovani, Piernicola Spinicelli, Camilla De Rossi, Tom Oomen:
Iterative interaction decoupling for multivariate time-varying systems applied to a Gravitational Wave Detector. ECC 2024: 2454-2459 - [i46]Rodrigo A. González, Koen Classens, Cristian R. Rojas, James S. Welsh, Tom Oomen:
Identification of Additive Continuous-time Systems in Open and Closed-loop. CoRR abs/2401.01263 (2024) - [i45]Johan Kon, Jeroen van de Wijdeven, Dennis Bruijnen, Roland Tóth, Marcel Heertjes, Tom Oomen:
Unconstrained Parameterization of Stable LPV Input-Output Models: with Application to System Identification. CoRR abs/2401.10052 (2024) - [i44]Max van Meer, Gert Witvoet, Tom Oomen:
Robust Commutation Design: Applied to Switched Reluctance Motors. CoRR abs/2402.01216 (2024) - [i43]Rogier Dinkla, Sebastiaan Paul Mulders, Tom Oomen, Jan-Willem van Wingerden:
Closed-loop Data-Enabled Predictive Control and its equivalence with Closed-loop Subspace Predictive Control. CoRR abs/2402.14374 (2024) - [i42]Max van Haren, Kentaro Tsurumoto, Masahiro Mae, Lennart Blanken, Wataru Ohnishi, Tom Oomen:
A Frequency-Domain Approach for Enhanced Performance and Task Flexibility in Finite-Time ILC. CoRR abs/2403.02039 (2024) - [i41]Rodrigo A. González, Koen Classens, Cristian R. Rojas, James S. Welsh, Tom Oomen:
Statistical Analysis of Block Coordinate Descent Algorithms for Linear Continuous-time System Identification. CoRR abs/2404.09071 (2024) - [i40]Isaac A. Spiegel, Nard Strijbosch, Robin de Rozario, Tom Oomen, Kira Barton:
Stable Inversion of Piecewise Affine Systems with Application to Feedforward and Iterative Learning Control. CoRR abs/2404.09845 (2024) - [i39]Rogier Dinkla, Tom Oomen, Sebastiaan Paul Mulders, Jan-Willem van Wingerden:
Data-enabled Predictive Repetitive Control. CoRR abs/2408.15210 (2024) - 2023
- [j46]Max van Haren, Leonid Mirkin, Lennart Blanken, Tom Oomen:
Beyond Nyquist in Frequency Response Function Identification: Applied to Slow-Sampled Systems. IEEE Control. Syst. Lett. 7: 2131-2136 (2023) - [j45]Zhihe Zhuang, Hongfeng Tao, Yiyang Chen, Tom Oomen, Wojciech Paszke, Eric Rogers:
Optimal iterative learning control design for continuous-time systems with nonidentical trial lengths using alternating projections between multiple sets. J. Frankl. Inst. 360(5): 3825-3848 (2023) - [j44]Robin de Rozario, Tom Oomen:
Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence. IEEE Trans. Autom. Control. 68(3): 1807-1814 (2023) - [j43]Noud Mooren, Gert Witvoet, Tom Oomen:
Gaussian Process Repetitive Control With Application to an Industrial Substrate Carrier System With Spatial Disturbances. IEEE Trans. Control. Syst. Technol. 31(1): 344-358 (2023) - [j42]Joey Reinders, David Elshove, Bram Hunnekens, Nathan van de Wouw, Tom Oomen:
Triggered Repetitive Control: Application to Mechanically Ventilated Patients. IEEE Trans. Control. Syst. Technol. 31(4): 1581-1593 (2023) - [j41]Joey Reinders, Mattia Giaccagli, Bram Hunnekens, Daniele Astolfi, Tom Oomen, Nathan van de Wouw:
Repetitive Control for Lur'e-Type Systems: Application to Mechanical Ventilation. IEEE Trans. Control. Syst. Technol. 31(4): 1819-1829 (2023) - [j40]Nard Strijbosch, Koen Tiels, Tom Oomen:
Memory-Element-Based Hysteresis: Identification and Compensation of a Piezoelectric Actuator. IEEE Trans. Control. Syst. Technol. 31(6): 2863-2870 (2023) - [j39]Nic Dirkx, Koen Tiels, Tom Oomen:
A Wavelet-Based Approach to FRF Identification From Incomplete Data. IEEE Trans. Instrum. Meas. 72: 1-15 (2023) - [c107]Noa van Rijt, Ahmad Faza, Tom Oomen, Arnfinn Aas Eielsen:
Learning Control Applied to a Digital-to-analogue Converter. CCTA 2023: 91-96 - [c106]Rogier Dinkla, Tom Oomen, Jan-Willem van Wingerden, Sebastiaan Paul Mulders:
Data-Driven LIDAR Feedforward Predictive Wind Turbine Control. CCTA 2023: 559-565 - [c105]Nic Dirkx, Koen Tiels, Tom Oomen:
Iterative Robust Experiment Design for MIMO System Identification via the S-Lemma. CCTA 2023: 998-1003 - [c104]Hanul Jung, Paul Tacx, Tom Oomen, Sehoon Oh:
Novel Disturbance Observer Relevant Parametric System Identification Based on Robust Stability Criterion. CCTA 2023: 1010-1015 - [c103]Leontine Aarnoudse, Alexey Pavlov, Johan Kon, Tom Oomen:
Nonlinear Repetitive Control for Mitigating Noise Amplification. CDC 2023: 2891-2896 - [c102]Johan Kon, Jeroen van de Wijdeven, Dennis Bruijnen, Roland Tóth, Marcel Heertjes, Tom Oomen:
Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach. CDC 2023: 3720-3725 - [c101]Leontine Aarnoudse, Tom Oomen:
Efficient MIMO Iterative Feedback Tuning via Randomization. CDC 2023: 4512-4517 - [c100]Maurice Poot, Jim Portegies, Dragan Kostic, Tom Oomen:
Rational Basis Functions in Iterative Learning Control for Multivariable Systems. CDC 2023: 4644-4649 - [c99]Max van Meer, Rodrigo A. González, Gert Witvoet, Tom Oomen:
Nonlinear Bayesian Identification for Motor Commutation: Applied to Switched Reluctance Motors. CDC 2023: 5494-5499 - [c98]Lotfi M. Chaouach, Tom Oomen, Dimitris Boskos:
Comparing Structured Ambiguity Sets for Stochastic Optimization: Application to Uncertainty Quantification. CDC 2023: 8274-8279 - [c97]Robbert van der Kruk, Arend Jan van Noorden, Tom Oomen, René van de Molengraft, Herman Bruyninckx:
Robotic Control for Vibration Reduction of Swinging Products. ICM 2023: 1-8 - [i38]Rodrigo A. González, Koen Tiels, Tom Oomen:
Kernel-based identification using Lebesgue-sampled data. CoRR abs/2303.06045 (2023) - [i37]Max van Haren, Lennart Blanken, Tom Oomen:
A Kernel-Based Identification Approach to LPV Feedforward: With Application to Motion Systems. CoRR abs/2303.07932 (2023) - [i36]Johan Kon, Naomi de Vos, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Learning for Precision Motion of an Interventional X-ray System: Add-on Physics-Guided Neural Network Feedforward Control. CoRR abs/2303.07994 (2023) - [i35]Max van Meer, Emre Deniz, Gert Witvoet, Tom Oomen:
Cascaded Calibration of Mechatronic Systems via Bayesian Inference. CoRR abs/2304.03136 (2023) - [i34]Rodrigo A. González, Koen Tiels, Tom Oomen:
Identifying Lebesgue-sampled Continuous-time Impulse Response Models: A Kernel-based Approach. CoRR abs/2304.03312 (2023) - [i33]Koen Classens, W. P. M. H. Heemels, Tom Oomen:
Direct Shaping of Minimum and Maximum Singular Values: An ℋ/ℋ∞ Synthesis Approach for Fault Detection Filters. CoRR abs/2305.07258 (2023) - [i32]Max van Haren, Leonid Mirkin, Lennart Blanken, Tom Oomen:
Beyond Nyquist in Frequency Response Function Identification: Applied to Slow-Sampled Systems. CoRR abs/2306.02944 (2023) - [i31]Johan Kon, Jeroen van de Wijdeven, Dennis Bruijnen, Roland Tóth, Marcel Heertjes, Tom Oomen:
Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach. CoRR abs/2309.12722 (2023) - [i30]Max van Meer, Rodrigo A. González, Gert Witvoet, Tom Oomen:
Nonlinear Bayesian Identification for Motor Commutation: Applied to Switched Reluctance Motors. CoRR abs/2309.17099 (2023) - 2022
- [j38]Nard Strijbosch, Tom Oomen:
Iterative learning control for intermittently sampled data: Monotonic convergence, design, and applications. Autom. 139: 110171 (2022) - [j37]Noud Mooren, Gert Witvoet, Tom Oomen:
Gaussian process repetitive control: Beyond periodic internal models through kernels. Autom. 140: 110273 (2022) - [j36]Nard Strijbosch, Koen Tiels, Tom Oomen:
Hysteresis Feedforward Compensation: A Direct Tuning Approach Using Hybrid-MEM-Elements. IEEE Control. Syst. Lett. 6: 1070-1075 (2022) - [j35]Nic Dirkx, Marcel Bosselaar, Tom Oomen:
A Fast Smoothing-Based Algorithm to Generate l∞-Norm Constrained Signals for Multivariable Experiment Design. IEEE Control. Syst. Lett. 6: 1784-1789 (2022) - [j34]Tom Bloemers, Tom Oomen, Roland Tóth:
Frequency Response Data-Driven LPV Controller Synthesis for MIMO Systems. IEEE Control. Syst. Lett. 6: 2264-2269 (2022) - [j33]Max van Meer, Valentina Breschi, Tom Oomen, Simone Formentin:
Direct data-driven design of LPV controllers with soft performance specifications. J. Frankl. Inst. 359(2): 816-836 (2022) - [j32]Enzo Evers, Bram de Jager, Tom Oomen:
Incorporating Prior Knowledge in Local Parametric Modeling for Frequency Response Measurements: Applied to Thermal/Mechanical Systems. IEEE Trans. Control. Syst. Technol. 30(1): 142-152 (2022) - [j31]Tom Bloemers, Tom Oomen, Roland Tóth:
Frequency Response Data-Based LPV Controller Synthesis Applied to a Control Moment Gyroscope. IEEE Trans. Control. Syst. Technol. 30(6): 2734-2742 (2022) - [c96]Masahiro Mae, Max van Haren, Wataru Ohnishi, Tom Oomen, Hiroshi Fujimoto:
Feedforward of Sampled-Data System for High-Precision Motion Control using Basis Functions with ZOH Differentiator. ACC 2022: 3350 - [c95]Maurice Poot, Jim Portegies, Noud Mooren, Max van Haren, Max van Meer, Tom Oomen:
Gaussian Processes for Advanced Motion Control*. ACC 2022: 3355 - [c94]Kentaro Tsurumoto, Wataru Ohnishi, Takafumi Koseki, Nard Strijbosch, Tom Oomen:
A non-causal approach for suppressing the estimation delay of state observer. ACC 2022: 3356 - [c93]Johan Kon, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Physics-Guided Neural Networks for Feedforward Control: An Orthogonal Projection-Based Approach. ACC 2022: 4377-4382 - [c92]Max van Haren, Maurice Poot, Jim Portegies, Tom Oomen:
Position-Dependent Snap Feedforward: A Gaussian Process Framework. ACC 2022: 4778-4783 - [c91]Paul Tacx, Tom Oomen:
Bode Analysis of Uncertain Multivariable Systems. ACC 2022: 5056-5061 - [c90]Leontine Aarnoudse, Johan Kon, Koen Classens, Max van Meer, Maurice Poot, Paul Tacx, Nard Strijbosch, Tom Oomen:
Cross-Coupled Iterative Learning Control for Complex Systems: A Monotonically Convergent and Computationally Efficient Approach *. CDC 2022: 1485-1490 - [c89]Jan-Willem van Wingerden, Sebastiaan Paul Mulders, Rogier Dinkla, Tom Oomen, Michel Verhaegen:
Data-enabled predictive control with instrumental variables: the direct equivalence with subspace predictive control. CDC 2022: 2111-2116 - [c88]Johan Kon, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Unifying Model-Based and Neural Network Feedforward: Physics-Guided Neural Networks with Linear Autoregressive Dynamics. CDC 2022: 2475-2480 - [c87]Max van Haren, Lennart Blanken, Tom Oomen:
Frequency Domain Identification of Multirate Systems: A Lifted Local Polynomial Modeling Approach. CDC 2022: 2795-2800 - [c86]Lotfi M. Chaouach, Dimitris Boskos, Tom Oomen:
Uncertain uncertainty in data-driven stochastic optimization: towards structured ambiguity sets. CDC 2022: 4776-4781 - [i29]Johan Kon, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Physics-Guided Neural Networks for Feedforward Control: An Orthogonal Projection-Based Approach. CoRR abs/2201.03308 (2022) - [i28]Merijn Floren, Koen Classens, Tom Oomen, Jean-Philippe Noël:
Data-driven feedback linearisation using model predictive control. CoRR abs/2201.04550 (2022) - [i27]Max van Haren, Maurice Poot, Dragan Kostic, Robin van Es, Jim Portegies, Tom Oomen:
Gaussian Process Position-Dependent Feedforward: With Application to a Wire Bonder. CoRR abs/2201.07511 (2022) - [i26]Max van Haren, Maurice Poot, Jim Portegies, Tom Oomen:
Position-Dependent Snap Feedforward: A Gaussian Process Framework. CoRR abs/2202.00257 (2022) - [i25]Johan Kon, Marcel Heertjes, Tom Oomen:
Neural Network Training Using Closed-Loop Data: Hazards and an Instrumental Variable (IVNN) Solution. CoRR abs/2202.05337 (2022) - [i24]Max van Haren, Lennart Blanken, Tom Oomen:
Frequency Domain Identification of Multirate Systems: A Lifted Local Polynomial Modeling Approach. CoRR abs/2208.07016 (2022) - [i23]Leontine Aarnoudse, Tom Oomen:
Automated MIMO Motion Feedforward Control: Efficient Learning through Data-Driven Gradients via Adjoint Experiments and Stochastic Approximation. CoRR abs/2209.05139 (2022) - [i22]Leontine Aarnoudse, Johan Kon, Koen Classens, Max van Meer, Maurice Poot, Paul Tacx, Nard Strijbosch, Tom Oomen:
Cross-Coupled Iterative Learning Control for Complex Systems: A Monotonically Convergent and Computationally Efficient Approach. CoRR abs/2209.05155 (2022) - [i21]Jan-Willem van Wingerden, Sebastiaan Paul Mulders, Rogier Dinkla, Tom Oomen, Michel Verhaegen:
Data-enabled predictive control with instrumental variables: the direct equivalence with subspace predictive control. CoRR abs/2209.05210 (2022) - [i20]Max van Meer, Gert Witvoet, Tom Oomen:
Optimal Commutation for Switched Reluctance Motors using Gaussian Process Regression. CoRR abs/2209.06550 (2022) - [i19]Jilles van Hulst, Maurice Poot, Dragan Kostic, Kai Wa Yan, Jim Portegies, Tom Oomen:
Feedforward Control in the Presence of Input Nonlinearities: A Learning-based Approach. CoRR abs/2209.11504 (2022) - [i18]Johan Kon, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes, Tom Oomen:
Unifying Model-Based and Neural Network Feedforward: Physics-Guided Neural Networks with Linear Autoregressive Dynamics. CoRR abs/2209.12489 (2022) - [i17]Max van Haren, Lennart Blanken, Tom Oomen:
Basis Function feedforward for Position-Dependent Systems. CoRR abs/2211.01833 (2022) - 2021
- [j30]Robbert Voorhoeve, Tom Oomen:
Data-dependent orthogonal polynomials on generalized circles: A unified approach applied to δ-domain identification. Autom. 131: 109709 (2021) - [j29]Leontine Aarnoudse, Tom Oomen:
Model-Free Learning for Massive MIMO Systems: Stochastic Approximation Adjoint Iterative Learning Control. IEEE Control. Syst. Lett. 5(6): 1946-1951 (2021) - [j28]Joey Reinders, Bram Hunnekens, Frank Heck, Tom Oomen, Nathan van de Wouw:
Adaptive Control for Mechanical Ventilation for Improved Pressure Support. IEEE Trans. Control. Syst. Technol. 29(1): 180-193 (2021) - [j27]Robbert Voorhoeve, Robin de Rozario, Wouter H. T. M. Aangenent, Tom Oomen:
Identifying Position-Dependent Mechanical Systems: A Modal Approach Applied to a Flexible Wafer Stage. IEEE Trans. Control. Syst. Technol. 29(1): 194-206 (2021) - [c85]Maurice Poot, Jim Portegies, Tom Oomen:
Kernel-Based Learning Control for Iteration-Varying Tasks Applied to a Printer With Friction. AIM 2021: 1052-1057 - [c84]Thijs Sieswerda, Andrew J. Fleming, Tom Oomen:
Model-free Multi-variable Learning Control of a Five Axis Nanopositioning Stage. AIM 2021: 1190-1194 - [c83]Nic Dirkx, Marcel Bosselaar, Tom Oomen:
Peak Amplitude-Constrained Experiment Design for FRF Identification of MIMO Motion Systems. AMC 2021: 256-261 - [c82]Max van Haren, Maurice Poot, Dragan Kostic, Robin van Es, Jim Portegies, Tom Oomen:
Gaussian Process Position-Dependent Feedforward: With Application to a Wire Bonder. AMC 2021: 268-273 - [c81]Noud Mooren, Gert Witvoet, Tom Oomen:
A Gaussian Process Approach to Multiple Internal Models in Repetitive Control. AMC 2021: 274-279 - [c80]Mathyn van Dael, Gert Witvoet, Bas Swinkels, Tom Oomen:
Systematic feedback control design for scattered light noise mitigation in Virgo's MultiSAS. AMC 2021: 300-305 - [c79]Paul Tacx, Tom Oomen:
Accurate H∞iH∞-Norm Estimation via Finite-Frequency Norms of Local Parametric Models. ACC 2021: 332-337 - [c78]Stan Verbeek, Tom Oomen, Arnfinn Aas Eielsen:
Glitch Compensation for a Digital-to-Analogue Converter. ACC 2021: 751-757 - [c77]Koen Classens, W. P. M. H. Heemels, Tom Oomen:
Closed-loop Aspects in MIMO Fault Diagnosis with Application to Precision Mechatronics. ACC 2021: 1756-1761 - [c76]Leontine Aarnoudse, Tom Oomen:
Model-Free Learning for Massive MIMO Systems: Stochastic Approximation Adjoint Iterative Learning Control. ACC 2021: 2181-2186 - [c75]Nic Dirkx, Noud Mooren, Tom Oomen:
Suppressing non-collocated disturbances in inferential motion control: with application to a wafer stage. ACC 2021: 4333-4338 - [c74]Joey Reinders, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Linear repetitive control for a nonlinear mechanical ventilation system using feedback linearization. CCTA 2021: 719-726 - [c73]Leontine Aarnoudse, Tom Oomen:
Conjugate Gradient MIMO Iterative Learning Control Using Data-Driven Stochastic Gradients. CDC 2021: 3749-3754 - [c72]Johan Kon, Nard Strijbosch, Sjirk H. Koekebakker, Tom Oomen:
Intermittent Sampling in Repetitive Control: Exploiting Time-Varying Measurements. CDC 2021: 6566-6571 - [c71]Koen Classens, W. P. Maurice H. Heemels, Tom Oomen:
Digital Twins in Mechatronics: From Model-based Control to Predictive Maintenance. DTPI 2021: 336-339 - [c70]Leontine Aarnoudse, Wataru Ohnishi, Maurice Poot, Paul Tacx, Nard Strijbosch, Tom Oomen:
Control- Relevant Neural Networks for Intelligent Motion Feedforward. ICM 2021: 1-6 - [c69]Koen Classens, W. P. M. H. Heemels, Tom Oomen:
A Closed-Loop Perspective on Fault Detection for Precision Motion Control: With Application to an Overactuated System. ICM 2021: 1-6 - [c68]Nic Dirkx, Tom Oomen:
Suppressing spatially distributed disturbances by exploiting additional sensors and actuators in inferential motion control. ICM 2021: 1-6 - [c67]Wataru Ohnishi, Nard Strijbosch, Tom Oomen:
Multirate State Tracking for Improving Intersample Behavior in Iterative Learning Control. ICM 2021: 1-6 - [i16]Tom Bloemers, Roland Tóth, Tom Oomen:
Frequency-Domain Data-Driven Controller Synthesis for Unstable LPV Systems. CoRR abs/2107.09712 (2021) - [i15]Isaac A. Spiegel, Nard Strijbosch, Tom Oomen, Kira Barton:
Iterative learning control with discrete-time nonlinear nonminimum phase models via stable inversion. CoRR abs/2108.07315 (2021) - [i14]Tom Bloemers, Roland Tóth, Tom Oomen:
Frequency Response Data Based LPV Controller Synthesis Applied to a Control Moment Gyroscope. CoRR abs/2109.05774 (2021) - [i13]Leontine Aarnoudse, Tom Oomen:
Conjugate gradient MIMO iterative learning control using data-driven stochastic gradients. CoRR abs/2111.08445 (2021) - [i12]Johan Kon, Nard Strijbosch, Sjirk H. Koekebakker, Tom Oomen:
Intermittent Sampling in Repetitive Control: Exploiting Time-Varying Measurements. CoRR abs/2111.13008 (2021) - [i11]Max van Meer, Maurice Poot, Jim Portegies, Tom Oomen:
Learning nonlinear feedforward: a Gaussian Process Approach Applied to a Printer with Friction. CoRR abs/2112.03805 (2021) - 2020
- [j26]Lennart Blanken, Tom Oomen:
Kernel-based identification of non-causal systems with application to inverse model control. Autom. 114: 108830 (2020) - [j25]Frank Boeren, Alexander Lanzon, Tom Oomen:
Iterative Identification and Control Using Non-normalized Coprime Factors With Application in Wafer Stage Motion Control. IEEE Trans. Control. Syst. Technol. 28(2): 413-424 (2020) - [j24]Jurgen van Zundert, Tom Oomen, Jan Verhaegh, Wouter H. T. M. Aangenent, Duarte J. Antunes, W. P. M. H. Heemels:
Beyond Performance/Cost Tradeoffs in Motion Control: A Multirate Feedforward Design With Application to a Dual-Stage Wafer System. IEEE Trans. Control. Syst. Technol. 28(2): 448-461 (2020) - [j23]Lennart Blanken, Tom Oomen:
Multivariable Iterative Learning Control Design Procedures: From Decentralized to Centralized, Illustrated on an Industrial Printer. IEEE Trans. Control. Syst. Technol. 28(4): 1534-1541 (2020) - [c66]Tom Oomen:
Learning for Advanced Motion Control. AMC 2020: 65-72 - [c65]Enzo Evers, Robbert Voorhoeve, Tom Oomen:
On Frequency Response Function Identification for Advanced Motion Control. AMC 2020: 319-324 - [c64]Noud Mooren, Gert Witvoet, Ibrahim Açan, Joep Kooijman, Tom Oomen:
Suppressing Position-Dependent Disturbances in Repetitive Control: With Application to a Substrate Carrier System. AMC 2020: 331-336 - [c63]Nard Strijbosch, Tom Oomen:
Hybrid-MEM-Element Feedforward: With Application to Hysteretic Piezoelectric Actuators. CDC 2020: 934-939 - [i10]Joey Reinders, Ruben Verkade, Bram Hunnekens, Nathan van de Wouw, Tom Oomen:
Improving mechanical ventilation for patient care through repetitive control. CoRR abs/2004.00312 (2020) - [i9]Tom Oomen:
Learning for Advanced Motion Control. CoRR abs/2004.11017 (2020) - [i8]Enzo Evers, Robbert Voorhoeve, Tom Oomen:
On Frequency Response Function Identification for Advanced Motion Control. CoRR abs/2006.10373 (2020) - [i7]Enzo Evers, Rens Slenders, Rob W. van Gils, Tom Oomen:
Temperature-Dependent Modeling of Thermoelectric Elements. CoRR abs/2006.10379 (2020) - [i6]Leontine Aarnoudse, Nard Strijbosch, Edwin Verschueren, Tom Oomen:
Commutation-Angle Iterative Learning Control for Intermittent Data: Enhancing Piezo-Stepper Actuator Waveforms. CoRR abs/2006.13572 (2020) - [i5]Noud Mooren, Gert Witvoet, Tom Oomen:
Gaussian Process Repetitive Control for Suppressing Spatial Disturbances. CoRR abs/2006.16719 (2020) - [i4]Maurice Poot, Jim Portegies, Tom Oomen:
On the Role of Models in Learning Control: Actor-Critic Iterative Learning Control. CoRR abs/2007.00430 (2020)
2010 – 2019
- 2019
- [j22]Robin de Rozario, Tom Oomen:
Data-driven iterative inversion-based control: Achieving robustness through nonlinear learning. Autom. 107: 342-352 (2019) - [j21]Jurgen van Zundert, Tom Oomen:
Stable inversion of LPTV systems with application in position-dependent and non-equidistantly sampled systems. Int. J. Control 92(5): 1022-1032 (2019) - [j20]Thijs Vromen, Cam-Hing Dai, Nathan van de Wouw, Tom Oomen, Patricia Astrid, Apostolos Doris, Henk Nijmeijer:
Mitigation of Torsional Vibrations in Drilling Systems: A Robust Control Approach. IEEE Trans. Control. Syst. Technol. 27(1): 249-265 (2019) - [c62]Noud Mooren, Gert Witvoet, Tom Oomen:
Feedforward Motion Control: From Batch-to-Batch Learning to Online Parameter Estimation. ACC 2019: 947-952 - [c61]Robin de Rozario, Juliana Langen, Tom Oomen:
Multivariable Learning Using Frequency Response Data: A Robust Iterative Inversion-Based Control Approach with Application. ACC 2019: 2215-2220 - [c60]Gert Witvoet, Joost Peters, Stefan Kuiper, Tom Oomen:
Line-to-line repetitive control of a 6-DoF hexapod stage for overlay measurements using Atomic Force Microscopy. ACC 2019: 2464-2469 - [c59]Nard Strijbosch, Tom Oomen:
Beyond Quantization in Iterative Learning Control: Exploiting Time-Varying Time-Stamps. ACC 2019: 2984-2989 - [c58]Jurgen van Zundert, Wataru Ohnishi, Hiroshi Fujimoto, Tom Oomen:
System Inversion for Sampled-Data Feedforward Control: Balancing On-Sample and Intersample Behavior. ACC 2019: 4472-4477 - [c57]Joey Reinders, Frank Heck, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Online hose calibration for pressure control in mechanical ventilation. ACC 2019: 5414-5419 - [c56]Tom Bloemers, Roland Tóth, Tom Oomen:
Towards Data-Driven LPV Controller Synthesis Based on Frequency Response Functions. CDC 2019: 5680-5685 - [c55]Nard Strijbosch, Tom Oomen:
Intermittent Sampling in Iterative Learning Control: a Monotonically-Convergent Gradient-Descent Approach with Application to Time Stamping. CDC 2019: 6542-6547 - [c54]Martin Goubej, Sven Meeusen, Noud Mooren, Tom Oomen:
Iterative learning control in high-performance motion systems: from theory to implementation. ETFA 2019: 851-856 - 2018
- [c53]Robin de Rozario, Tom Oomen:
Improving transient learning behavior in model-free inversion-based iterative control with application to a desktop printer. AMC 2018: 455-460 - [c52]Lennart Blanken, Ids van den Meijdenberg, Tom Oomen:
Kernel-based regression of non-causal systems for inverse model feedforward estimation. AMC 2018: 461-466 - [c51]Jurgen van Zundert, Tom Oomen:
LPTV loop-shaping with application to non-equidistantly sampled precision mechatronics. AMC 2018: 467-472 - [c50]Tom Oomen, Cristian R. Rojas:
Sparse iterative learning control (SPILC): When to sample for resource-efficiency? AMC 2018: 497-503 - [c49]Robin de Rozario, Remy Pelzer, Sjirk H. Koekcbakker, Tom Oomen:
Accommodating Trial-Varying Tasks in Iterative Learning Control for LPV Systems, Applied to Printer Sheet Positioning. ACC 2018: 5213-5218 - [c48]Jurgen van Zundert, Fons Luijten, Tom Oomen:
Achieving Perfect Causal Feedforward Control in Presence of Nonminimum-Phase Behavior - Exploiting Additional Actuators and Squaring Down. ACC 2018: 6031-6036 - [c47]Lennart Blanken, Goksan Isil, Sjirk H. Koekebakker, Tom Oomen:
Data-Driven Feedforward Learning using Non-Causal Rational Basis Functions: Application to an Industrial Flatbed Printer. ACC 2018: 6672-6677 - [c46]Robbert Voorhoeve, Tom Oomen:
Numerically Reliable Identification of Fast Sampled Systems: A Novel δ-Domain Data-Dependent Orthonormal Polynomial Approach. CDC 2018: 1433-1438 - [c45]Enzo Evers, Bram De Jager, Tom Oomen:
Thermo-Mechanical Behavior in Precision Motion Control: Unified Framework for Fast and Accurate FRF Identification. IECON 2018: 4618-4623 - [i3]Lennart Blanken, Tom Oomen:
Multivariable Iterative Learning Control Design Procedures: from Decentralized to Centralized, Illustrated on an Industrial Printer. CoRR abs/1806.08550 (2018) - [i2]Robbert Voorhoeve, Robin de Rozario, Wouter H. T. M. Aangenent, Tom Oomen:
Identifying Position-Dependent Mechanical Systems: A Modal Approach with Applications to Wafer Stage Control. CoRR abs/1807.06942 (2018) - 2017
- [j19]Frank Boeren, Dennis Bruijnen, Tom Oomen:
Enhancing feedforward controller tuning via instrumental variables: with application to nanopositioning. Int. J. Control 90(4): 746-764 (2017) - [j18]Rick van der Maas, Annemiek van der Maas, Robbert Voorhoeve, Tom Oomen:
Accurate FRF Identification of LPV Systems: nD-LPM With Application to a Medical X-Ray System. IEEE Trans. Control. Syst. Technol. 25(5): 1724-1735 (2017) - [j17]Joost Bolder, Jurgen van Zundert, Sjirk H. Koekebakker, Tom Oomen:
Enhancing Flatbed Printer Accuracy and Throughput: Optimal Rational Feedforward Controller Tuning Via Iterative Learning Control. IEEE Trans. Ind. Electron. 64(5): 4207-4216 (2017) - [c44]Yijie Guo, Joost Peters, Tom Oomen, Sandipan Mishra:
Distributed model predictive control for ink-jet 3D printing. AIM 2017: 436-441 - [c43]Michiel A. Beijen, Marcel Heertjes, Robbert Voorhoeve, Tom Oomen:
Evaluating performance of multivariable vibration isolators: A frequency domain identification approach applied to an industrial AVIS. ACC 2017: 3512-3517 - [c42]Robin de Rozario, Tom Oomen, Maarten Steinbuch:
Iterative Learning Control and feedforward for LPV systems: Applied to a position-dependent motion system. ACC 2017: 3518-3523 - [c41]Jurgen van Zundert, Tom Oomen:
An approach to stable inversion of LPTV systems with application to a position-dependent motion system. ACC 2017: 4890-4895 - [c40]Gianmarco Rallo, Simone Formentin, Cristian R. Rojas, Tom Oomen, Sergio M. Savaresi:
Data-driven H∞-norm estimation via expert advice. CDC 2017: 1560-1565 - [c39]Lennart Blanken, Tim Hazelaar, Sjirk H. Koekebakker, Tom Oomen:
Multivariable repetitive control design framework applied to flatbed printing with continuous media flow. CDC 2017: 4727-4732 - [i1]Tom Oomen, Cristian R. Rojas:
Sparse Iterative Learning Control with Application to a Wafer Stage: Achieving Performance, Resource Efficiency, and Task Flexibility. CoRR abs/1706.01647 (2017) - 2016
- [j16]Jurgen van Zundert, Joost Bolder, Tom Oomen:
Optimality and flexibility in Iterative Learning Control for varying tasks. Autom. 67: 295-302 (2016) - [j15]Joost Bolder, Tom Oomen:
Inferential Iterative Learning Control: A 2D-system approach. Autom. 71: 247-253 (2016) - [j14]Robbert van Herpen, Okko H. Bosgra, Tom Oomen:
Bi-Orthonormal Polynomial Basis Function Framework With Applications in System Identification. IEEE Trans. Autom. Control. 61(11): 3285-3300 (2016) - [j13]Marcel François Heertjes, Bart Van der Velden, Tom Oomen:
Constrained Iterative Feedback Tuning for Robust Control of a Wafer Stage System. IEEE Trans. Control. Syst. Technol. 24(1): 56-66 (2016) - [c38]Lennart Blanken, Frank Boeren, Dennis Bruijnen, Tom Oomen:
Rational iterative feedforward tuning: Approaches, stable inversion, and experimental comparison. ACC 2016: 2629-2634 - [c37]Jurgen van Zundert, Tom Oomen, Dip Goswami, W. P. M. H. Heemels:
On the potential of lifted domain feedforward controllers with a periodic sampling sequence. ACC 2016: 4227-4232 - [c36]Annemiek van der Maas, Rick van der Maas, Robbert Voorhoeve, Tom Oomen:
Frequency response function identification of LPV systems: A 2D-LRM approach with application to a medical X-ray system. ACC 2016: 4598-4603 - [c35]Robbert Voorhoeve, Robin de Rozario, Tom Oomen:
Identification for motion control: Incorporating constraints and numerical considerations. ACC 2016: 6209-6214 - [c34]Lennart Blanken, Sjirk H. Koekebakker, Tom Oomen:
Design and modeling aspects in multivariable iterative learning control. CDC 2016: 5502-5507 - 2015
- [j12]Joost Bolder, Tom Oomen:
Rational Basis Functions in Iterative Learning Control - With Experimental Verification on a Motion System. IEEE Trans. Control. Syst. Technol. 23(2): 722-729 (2015) - [j11]Tom Oomen, Erik Grassens, Ferdinand Hendriks:
Inferential Motion Control: Identification and Robust Control Framework for Positioning an Unmeasurable Point of Interest. IEEE Trans. Control. Syst. Technol. 23(4): 1602-1610 (2015) - [c33]J. C. D. van Zundert, J. L. C. Verhaegh, Wouter H. T. M. Aangenent, Tom Oomen, Duarte Antunes, W. P. M. H. Heemels:
Feedforward for multi-rate motion control: Enhanced performance and cost-effectiveness. ACC 2015: 2831-2836 - [c32]Joost Bolder, Tom Oomen:
Data-driven optimal ILC for multivariable systems: Removing the need for L and Q filter design. ACC 2015: 3546-3551 - [c31]Jurgen van Zundert, Joost Bolder, Tom Oomen:
Iterative Learning Control for varying tasks: Achieving optimality for rational basis functions. ACC 2015: 3570-3575 - [c30]Rick van der Maas, Annemiek van der Maas, Tom Oomen:
Accurate frequency response function identification of LPV systems: A 2D local parametric modeling approach. CDC 2015: 1465-1470 - [c29]Federico Felici, Tom Oomen:
Enhancing current density profile control in tokamak experiments using iterative learning control. CDC 2015: 5370-5377 - [c28]Frank Boeren, Lennart Blanken, Dennis Bruijnen, Tom Oomen:
Optimal estimation of rational feedforward controllers: An instrumental variable approach. CDC 2015: 6058-6063 - [c27]Frank Boeren, Abhishek Bareja, Tom Kok, Tom Oomen:
Unified ILC framework for repeating and varying tasks: A frequency domain approach with application to a wire-bonder. CDC 2015: 6724-6729 - 2014
- [j10]Robbert van Herpen, Tom Oomen, Maarten Steinbuch:
Optimally conditioned instrumental variable approach for frequency-domain system identification. Autom. 50(9): 2281-2293 (2014) - [j9]Tom Oomen:
Controlling aliased dynamics in motion systems? An identification for sampled-data control approach. Int. J. Control 87(7): 1406-1422 (2014) - [j8]Tom Oomen, Robbert van Herpen, Sander Quist, Marc M. J. van de Wal, Okko H. Bosgra, Maarten Steinbuch:
Connecting System Identification and Robust Control for Next-Generation Motion Control of a Wafer Stage. IEEE Trans. Control. Syst. Technol. 22(1): 102-118 (2014) - [j7]Tom Oomen, Rick van der Maas, Cristian R. Rojas, Håkan Hjalmarsson:
Iterative Data-Driven ℋ∞ Norm Estimation of Multivariable Systems With Application to Robust Active Vibration Isolation. IEEE Trans. Control. Syst. Technol. 22(6): 2247-2260 (2014) - [c26]Robbert van Herpen, Tom Oomen, Edward Kikken, Marc M. J. van de Wal, Wouter H. T. M. Aangenent, Maarten Steinbuch:
Exploiting additional actuators and sensors for nano-positioning robust motion control. ACC 2014: 984-990 - [c25]Joost Bolder, Tom Oomen, Maarten Steinbuch:
On inferential Iterative Learning Control: With example to a printing system. ACC 2014: 1827-1832 - [c24]Frank Boeren, Tom Oomen, Maarten Steinbuch:
Accuracy aspects in motion feedforward tuning. ACC 2014: 2178-2183 - [c23]Sachin Tejwant Navalkar, Jan-Willem van Wingerden, Edwin van Solingen, Tom Oomen, G. A. M. van Kuik:
Subspace Predictive Repetitive Control for wind turbine load alleviation using trailing edge flaps. ACC 2014: 4422-4427 - [c22]Joost Bolder, Tom Oomen, Maarten Steinbuch:
Aspects in inferential Iterative Learning Control: A 2D systems analysis. CDC 2014: 3584-3589 - 2013
- [c21]Frank Boeren, Robbert van Herpen, Tom Oomen, Marc M. J. van de Wal, Okko H. Bosgra:
Enhancing performance through multivariable weighting function design in ℋ- loop-shaping: with application to a motion system. ACC 2013: 6039-6044 - [c20]Tom Oomen, Rick van der Maas, Cristian R. Rojas, Håkan Hjalmarsson:
Iteratively learning the ℌ∞-norm of multivariable systems applied to model-error-modeling of a vibration isolation system. ACC 2013: 6703-6708 - [c19]Frank Boeren, Tom Oomen:
Iterative feedforward control: a closed-loop identification problem and a solution. CDC 2013: 6694-6699 - [c18]Joost Bolder, Tom Oomen, Maarten Steinbuch:
Exploiting rational basis functions in iterative learning control. CDC 2013: 7321-7326 - 2012
- [j6]Tom Oomen, Okko H. Bosgra:
System identification for achieving robust performance. Autom. 48(9): 1975-1987 (2012) - [j5]David Rijlaarsdam, Tom Oomen, Pieter Nuij, Johan Schoukens, Maarten Steinbuch:
Uniquely connecting frequency domain representations of given order polynomial Wiener-Hammerstein systems. Autom. 48(9): 2381-2384 (2012) - [j4]Cristian R. Rojas, Tom Oomen, Håkan Hjalmarsson, Bo Wahlberg:
Analyzing iterations in identification with application to nonparametric H∞-norm estimation. Autom. 48(11): 2776-2790 (2012) - [c17]Joost Bolder, Bas P. Lemmen, Sjirk H. Koekebakker, Tom Oomen, Okko H. Bosgra, Maarten Steinbuch:
Iterative learning control with basis functions for media positioning in scanning inkjet printers. ISIC 2012: 1255-1260 - [c16]Tom Oomen, Robbert van Herpen, Sander Quist, Marc M. J. van de Wal, Okko H. Bosgra, Maarten Steinbuch:
Next-generation wafer stage motion control: Connecting system identification and robust control. ACC 2012: 2455-2460 - [c15]Robbert van Herpen, Tom Oomen, Okko H. Bosgra:
Bi-orthonormal basis functions for improved frequency-domain system identification. CDC 2012: 3451-3456 - 2011
- [j3]Tom Oomen, Jeroen van de Wijdeven, Okko H. Bosgra:
System Identification and Low-Order Optimal Control of Intersample Behavior in ILC. IEEE Trans. Autom. Control. 56(11): 2734-2739 (2011) - [c14]Robbert van Herpen, Tom Oomen, Okko H. Bosgra:
A robust-control-relevant perspective on model order selection. ACC 2011: 1224-1229 - [c13]Tom Oomen, Erik Grassens, Ferdinand Hendriks, Robbert van Herpen, Okko H. Bosgra:
Inferential motion control: Identification and robust control with unmeasured performance variables. CDC/ECC 2011: 964-969 - 2010
- [c12]Robbert van Herpen, Tom Oomen, Marc M. J. van de Wal, Okko H. Bosgra:
Experimental evaluation of robust-control-relevance: A confrontation with a next-generation wafer stage. ACC 2010: 3493-3499 - [c11]Tom Oomen, Stan van der Meulen, Okko H. Bosgra, Maarten Steinbuch, Jos Elfring:
A robust-control-relevant model validation approach for continuously variable transmission control. ACC 2010: 3518-3523 - [c10]Willem-Jan Evers, Igo Besselink, Arjan Teerhuis, Tom Oomen, Henk Nijmeijer:
Experimental validation of a truck roll model using asynchronous measurements with low signal-to-noise ratios. ACC 2010: 4588-4593 - [c9]Tom Oomen, Sander Quist, Robbert van Herpen, Okko H. Bosgra:
Identification and visualization of robust-control-relevant model sets with application to an industrial wafer stage. CDC 2010: 5530-5535
2000 – 2009
- 2009
- [j2]Tom Oomen, Jeroen van de Wijdeven, Okko H. Bosgra:
Suppressing intersample behavior in iterative learning control. Autom. 45(4): 981-988 (2009) - [c8]Maarten Steinbuch, Kees van Berkel, George A. L. Leenknegt, Tom Oomen, Jeroen van de Wijdeven:
Reading of cracked optical discs using Iterative Learning Control. ACC 2009: 258-263 - [c7]Tom Oomen, Jeroen van de Wijdeven, Okko H. Bosgra:
Low-order system identification and optimal control of intersample behavior in ILC. ACC 2009: 271-276 - [c6]Tom Oomen, Okko H. Bosgra, Marc M. J. van de Wal:
Identification for robust inferential control. CDC 2009: 2581-2586 - 2008
- [c5]Tom Oomen, Okko H. Bosgra:
Robust-control-relevant coprime factor identification: A numerically reliable frequency domain approach. ACC 2008: 625-631 - [c4]Tom Oomen, Jeroen van de Wijdeven, Okko H. Bosgra:
Suppressing intersample behavior in Iterative Learning Control. CDC 2008: 2391-2397 - [c3]Tom Oomen, Okko H. Bosgra:
Estimating disturbances and model uncertainty in model validation for robust control. CDC 2008: 5513-5518 - 2007
- [j1]Tom Oomen, Marc M. J. van de Wal, Okko H. Bosgra:
Design framework for high-performance optimal sampled-data control with application to a wafer stage. Int. J. Control 80(6): 919-934 (2007) - [c2]Tom Oomen, Marc M. J. van de Wal, Okko H. Bosgra:
Aliasing of Resonance Phenomena in Sampled-Data Feedback Control Design: Hazards, Modeling, and a Solution. ACC 2007: 2881-2886 - 2006
- [c1]Tom Oomen, Marc M. J. van de Wal, Okko H. Bosgra:
Exploiting H∞ Sampled-Data Control Theory for High-Precision Electromechanical Servo Control Design. ACC 2006: 1086-1091
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 20:16 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint